COLUMBIA Accident investigation board

Note: Volumes II – VI contain a number of conclusions and recommendations, several of which were adopted by the Board in Volume I. The other conclusions and recommendations drawn in Volumes II – VI do not necessarily reflect the opinion of the Board, but are included for the record. When there is conflict, Volume I takes precedence.

REPORT VOLUME IV October 2003

On the Front Cover

This was the crew patch for STS-107. The central element of the patch was the microgravity symbol, µg, flowing into the rays of the Astronaut symbol. The orbital inclination was portrayed by the 39-degree angle of the Earth's horizon to the Astronaut symbol. The sunrise was representative of the numerous science experiments that were the dawn of a new era for continued microgravity research on the International Space Station and beyond. The breadth of science conducted on this mission had widespread benefits to life on Earth and the continued exploration of space, illustrated by the Earth and stars. The constellation Columba (the dove) was chosen to symbolize peace on Earth and the Space Shuttle Columbia. In addition, the seven stars represent the STS-107 crew members, as well as honoring the original Mercury 7 astronauts who paved the way to make research in space possible. The Israeli flag represented the first person from that country to fly on the Space Shuttle.

On the Back Cover

This emblem memorializes the three U.S. human space flight accidents – Apollo 1, Challenger, and Columbia. The words across the top translate to: "To The Stars, Despite Adversity – Always Explore"

The Board would like to acknowledge the hard work and effort of the following individuals in the production of Volumes II – VI.

Maj. Gen. John L. Barry Dennis R. Jenkins Lt. Col. Donald J. White Lt. Col. Patrick A. Goodman Joshua M. Limbaugh Joseph A. Reid Christine F. Cole Jana T. Schultz Lester A. Reingold Christopher M. Kirchhoff Ariel H. Simon Jennifer L. Bukvics Donna J. Fudge Susan M. Plott Ellen M. Tanner Matthew J. Martin Frances C. Fisher

Executive Director to the Chairman Investigator and Liaison to the Board **Technical Editor Technical Editor** Layout Artist **Graphic Designer** Administrative Assistant Administrative Assistant Lead Editor Editor Assistant Editor Lead Project Manager Senior Paralegal, Group II Coordinator Project Supervisor, Group III Coordinator **Project Supervisor Government Relations Consultant** ANSER Ligison

Limited First Printing, October 2003, by the Columbia Accident Investigation Board

Subsequent Printing and Distribution by the National Aeronautics and Space Administration and the Government Printing Office Washington, D.C.

VOLUME I

THE ACCIDENT The Evolution of the Space Shuttle Program Co <i>lumbia</i> 's Final Flight Accident Analysis Other Factors Considered
WHY THE ACCIDENT OCCURRED From Challenger to Columbia Decision Making at NASA The Accident's Organizational Causes History as Cause: Columbia and Challenger
A LOOK AHEAD Implications for the Future of Human Space Flight Other Significant Observations Recommendations
APPENDICES The Investigation Board Member Biographies Board Staff
CAID TECHNICAL DOCUMENTS CITED IN THE REPORT Reader's Guide to Volume II
Supplement to the Report
Corrections to Volume I of the Report
STS-107 Training Investigation
Payload Operations Checklist 3
Fault Tree Closure Summary
Fault Tree Elements – Not Closed
Space Weather Conditions
Payload and Payload Integration
Working Scenario
Debris Transport Analysis
Data Review and Timeline Reconstruction Report
Debris Recovery
STS-107 Columbia Reconstruction Report
Impact Modeling
STS-107 In-Flight Options Assessment
Orbiter Major Modification (OMM) Review
Maintenance, Material, and Management Inputs
Public Safety Analysis
MER Manager's Tiger Team Checklist
Past Reports Review
Qualification and Interpretation of Sensor Data from STS-107
Bolt Catcher Debris Analysis

Volume III	OTHER TECHNICAL DOCUMENTS Reader's Guide to Volume III
Appendix E.1	CoFR Endorsements
Appendix E.2	STS-107 Image Analysis Team Final Report
Appendix E.3	An Assessment of Potential Material Candidates for the "Flight Day 2" Radar Object Observed during the NASA Mission STS-107
Appendix E.4	Columbia Early Sighting Assessment Team Final Report

	Reader's Guide to Volume IV	
Appendix F.1	Water Absorption by Foam	
Appendix F.2	Follow the TPS	19
Appendix F.3	MADS Sensor Data	53
Appendix F.4	ET Cryoinsulation	179
Appendix F.5	Space Shuttle STS-107 Columbia Accident Investigation,	
	External Tank Working Group Final Report – Volume 1	239

Volume	V
--------	---

OTHER SIGNIFICANT DOCUMENTS

Appendix G.1	Requirements and Proce	dures for Certif	fication of Flight R	eadiness
--------------	------------------------	------------------	----------------------	----------

- Appendix G.2 Appendix R, Space Shuttle Program Contingency Action Plan
- Appendix G.3 CAIB Charter, with Revisions
- Appendix G.4 Group 1 Matrix Brief on Maintenance, Material, and Management
- Appendix G.5 Vehicle Data Mapping (VDM) Team Final Report, Jun 13, 2003
- Appendix G.6 SRB Working Group Presentation to CAIB
- Appendix G.7 Starfire Team Final Report, Jun 3, 2003
- Appendix G.8 Using the Data and Observations from Flight STS-107... Exec Summary
- Appendix G.9 Contracts, Incentives, and Safety/Technical Excellence
- Appendix G.10 Detailed Summaries: Rogers Commission Report, ASAP Report, SIAT Report
- Appendix G.11 Foam Application and Production Chart
- Appendix G.12 Crew Survivability Report
- Appendix G.13 Aero/Aerothermal/Thermal/Structures Team Final Report, Aug 6, 2003

Volume VI	TRANSCRIPTS OF BO	TRANSCRIPTS OF BOARD PUBLIC HEARINGS				
	Reader's Guide to	Volume VI				
Appendix H.1	March 6, 2003	Houston, Texas				
Appendix H.2	March 17, 2003	Houston, Texas				
Appendix H.3	March 18, 2003	Houston, Texas				
Appendix H.4	March 25, 2003	Cape Canaveral, Florida				
Appendix H.5	March 26, 2003	Cape Canaveral, Florida				
Appendix H.6	April 7, 2003	Houston, Texas				
Appendix H.7	April 8, 2003	Houston, Texas				
Appendix H.8	April 23, 2003	Houston, Texas				
Appendix H.9	May 6, 2003	Houston, Texas				
Appendix H.10	June 12, 2003	Washington, DC				

GUIDE

Reader's Guide to Volume IV

Volume III of the Report contains appendices that were not cited in Volume I. These consist of documents produced by NASA and other organizations, which were provided to the Columbia Accident Investigation Board in support of its inquiry into the February 1, 2003 destruction of the Space Shuttle *Columbia*. The documents are compiled in this volume in the interest of establishing a complete record, but they do not necessarily represent the views of the Board. Volume I contains the Board's findings, analysis, and recommendations. The documents in Volume III through V are also contained in their original color format on the DVD disc in the back of Volume II.

This Page Intentionally Left Blank

Volume IV Appendix F.1 Water Absorption by Foam

The CAIB requested these data be included in this Appendix. This Appendix is a summary of present and past efforts that were initiated to characterize the moisture absorption capability of sprayed-on-foam-insulation (SOFI) and specifically, BX-250.

This Page Intentionally Left Blank

Preliminary Evaluation of Water vapor transmission and Liquid Water Absorption in ET Foam Samples

Leon R. Glicksman June 1, 2003

I have examined the report of May 15 on water vapor transmission testing of BX 250 foam by Jeff Kolodziejczak and the report by Palmer Peters on water absorption by external tank foam. Although I have corresponded with both of them, because of my academic schedule I have been unable to visit the Marshall Center. I hope to do that in the next few weeks so that I can gain further insight into the details of their work and allow me to submit a final report.

The tests described in the reports appear to yield the property data that was initially requested by the Board. The test results of both water vapor permeability and liquid water absorption of polyurethane foams agree with previous tests reported in the literature as well as personal communications I have with people in industry and government labs knowledgeable about foams.

The test results by Palmer Peters raises some intriguing questions about the possibility of liquid water penetrating through wormholes or in knit lines that extend from the surface to the interior of the foam. If this is substantiated, it could represent a mechanism by which liquid water is trapped near the surface and is subsequently vaporized to initiate a crack in the foam. I would suggest further tests to investigate this possibility. Other means of detecting water within the foam sample should be explored.

The role of long voids within the foam needs to be examined in terms of permeability enhancement and possible sites for water accumulation. Tests should also be undertaken to determine water vapor permeation and liquid or solid water accumulation within the foam when a substantial temperature gradient exists through the foam.

Although the test results raise the possibility of water ingress into the foam and subsequent vaporization and possible crack formation, the amount of water would not cause a substantial increase in the foam density by water or ice formation.

The test results need to be integrated into a mechanistic, quantitative model of possible failure modes to determine if any are possible.

Leon R. Glicksman Consultant

Summary of Water Absorption Data of BX-250 to Address CAIB Action B1-00194

Scotty Sparks/NASA/MSFC/ED34 27 May 2003

The following is a summary of present and past efforts that were initiated to characterize the moisture absorption capability of sprayed-on-foam-insulation (SOFI) and, specifically, BX-250. Recent efforts to characterize moisture absorption were conducted by Drs. Palmer Peters/NASA-MSFC and Jeff Kolodziejczak/NASA-MSFC. Peters investigated the ability of foam to absorb liquid water and Kolodziejczak characterized the water vapor transmissibility of foam. Their work enjoyed the oversight of Dr. Leon Glicksman/MIT who helped coordinate test plans, review data, and offer expert analysis of the data. Other efforts, which include accelerated moisture absorption and on-pad rainfall significance, are two different sets of data that lend understanding to the moisture-to-foam relationship.

The Columbia Accident Investigation Board (CAIB) initiated the following request (CAIB Action B1-00194) to compile data to support their investigation:

"Request that MSFC: 1) plan and conduct moisture absorption testing on foam exposed to low (less than 100 °F) ambient temperatures, 2) use Prof. Leon Glicksman of MIT as an outside expert for planning tests and analyzing the results, and 3) report results obtained from these tests and from previous moisture absorption tests to the CAIB."

Moisture Absorption (Peters, Kolodziejczak, Sharpe)

- Liquid Phase Absorption
 - o Date: May 2003
 - Test Conductor: Dr. Palmer Peters/MSFC
 - Scope: To characterize the moisture absorption of BX-250 via submersion in dyed liquid water
 - Procedure:
 - NCFI 24-124 and BX-250 as two small, 1-inch-cube specimens referred to as Foam1 (NCFI 24-124) and Foam 2 (BX-250). Water-mass gain was measured when these specimens were submerged 2 ½ inches below distilled, de-aired water surfaces for 3,765 minutes. See Figure 1.
 - Conclusions:
 - "Water absorbed by submersion can be accounted for primarily by liquid in open surface cells resulting from machining or removing the outer skin, or rind."
 - "... indicate limited penetration of water into submerged foam surfaces. This agrees with prior reported studies and expert opinions, which indicate most absorption occurs through water vapor permeating foam having a temperature gradient"
 - Sectioning of foam after submersion indicated only absorption in thin layer around the machined foam. This layer characterized to be less than or equivalent to broken cells on surface. See Figure 2.
 - "The amount of increased mass from submersion is equivalent to a thickness of water comparable to the cell dimensions, as shown in <u>Table 1</u>, suggesting that damaged (open) cells at the surface and surface connected voids absorb most, if not all, of the water."
 - Reference:
 - Investigation of Water Absorption by External-Tank-Types of Foam, Palmer N. Peters, SD46, Marshall Space Flight Center, May 2003.
- Vapor Phase Transmission
 - o Date: May 2003
 - o Test Conductor: Dr. Jeff Kolodziejczak/MSFC

DRAF1 Scope: These tests are specifically designed to study the transmission of water vapor through BX-250 foam in the context of evaluation of the probability of external tank foam loss scenarios and determination of foam debris properties as they relate to the

COLUMBIA ACCIDENT INVESTIGATION BOARD

Columbia Accident Investigation.Conclusions:

0

- All specimens exhibited water vapor transmission at a level consistent published polyurethane foam values, for example a web summary of BASF Walltite foam quotes values from 30 to 125 ng/Pa-s-m² as typical for tests of 25mm thick commercial foam samples. See Figure 3.
 - This level of transmission deemed to be insignificant in terms of producing detrimental effects (*still pending concurrence from additional experts-ss*)
 - Low level of moisture absorption
 - Limited time (from tanking to launch) with imposed thermal gradient
- All of the permeability values are within ±25% of the mean. Local effects in the test chamber, differences among the test specimens and differences among the test dishes may contribute uncertainty to the values at the 25% level.
- Reference: Procedure for Testing Water Vapor Transmission of BX-250 Foam Under Thermal and Pressure Gradient Conditions, Jeff Kolodziejczak, Marshall Space Flight Center, May 2003.
- Accelerated Moisture Conditioning
 - o Date: April 2003
 - Test Conductor: Jon Sharpe/LMC
 - Scope: Observe accelerated moisture absorption characteristics of BX-250 that was soon to undergo testing to support the investigation and corrective action for IFA-87.
 Variables such as conditions (120 °F/93% RH and 32 °F/76% RH), cure state (freshly

sprayed vs. two-week cured), and surface preparation (rind vs. machined) were included in the testing.

- Conclusions:
 - Data confounded by the measurement of combined mass of aluminum substrate and foam
 - Approximately no absorption observed in 32 °F/76% RH conditioning for both just-sprayed and two-week cured materials. See Figure 4.
 - Just-sprayed material arrived to maximum moisture absorption in 48 hours in 120 °F/93% RH conditioning. See Figure 5.
 - Two-week cured material absorbed very little moisture at 120 °F/93% RH conditioning
 - Reference: Lockheed-Martin Job Order 9266 BX-250 Moisture Absorption

On-Pad Rainfall Significance (Bourgeois)

0

- o Date: April 1999
- Test Conductor: Chris Bourgeois/LMC
- Scope: Analyze the correlation of on-pad rainfall to orbiter hit count to support investigation and corrective action of IFA-87.
- Conclusions:
 - Limited positive correlation between KSC Prelaunch Dew Point and Bipod foam loss from STS-108 to STS-107 (7 flights spanning 12/01 to 1/03). See <u>Table 2</u>.
 - Limited absence of correlation between on-pad rainfall and orbiter lower-surface tile damage (>1") from STS-86 to STS-96 (8 flights spanning 9/97 to 5/99). See Figure 6.
- Reference:
 - "ET Weather Report 11", Jeff Kolodziejczak, February 2003.
 - "KSC ET Exposure Environments", Chris Bourgeois, April 1999.

Sparks/Summary of Water Absorption Data of BX-250

2

- "KSC Environments vs. Orbiter Damage", Chris Bourgeois, April 1999.
- "KSC Rainfall Data vs. Orbiter Damage", Chris Bourgeois, April 1999.

Peters sums up well in his report data compiled to the present, "Water absorbed by submersion can be accounted for primarily by liquid in open surface cells resulting from machining or removing the outer skin, or rind....This agrees with prior reported studies and expert opinions, which indicate most absorption occurs through water vapor permeating foam having a temperature gradient". Furthermore, moisture absorption per vapor transmission under a temperature gradient was shown not to be significant due to the low permeability of the SOFI.

Figure 1. Plot of mass changes for NCFI 24-124 and BX-250 following submersion under 2.5 inches of distilled water for 3,765 minutes and blotting excess surface water before starting measurements.

Figure 2. (a) Shows blue dye decorating the surface of a BX-250 foam cube that was submerged 26.5 hours then sectioned, revealing the interior. (b) Shows a magnified image at the sectioned surface.

Specimen	Size,	Initial	*Submersion	⁺ Mass After	⁺⁺ H ₂ O	Initial	Comments
	cm	Mass, g	Data Submersion, g		Liquid	Evaporation	
						Kale,	
Foam 1	2.54	0.5990	6 cm: 21° C	1 1560	1/13	Not	Lacking
the only	cube	ambient	62.8 hrs	increase=93%	(cell=80)	established	rapid
NSFI 24-	cube	unioient	02.0 1115.	mereuse 9570	(een 00)	estublished	initial data
124							
Foam 2,	2.54	0.4673	6cm; 21° C	0.9110	115	Inaccurate;	Late start
BX-250	cube	ambient	62.8 hrs.	increase=95%	(cell~150)	late aver.	
						~2.7	
04/30/03	2.86	0.8655	5 cm, 21° C	Shook instead	191 with	>3	Shaking
BX-250	aver,	ambient	26.5 hrs.	of blotted, est.	dye error		left little
	cube		in blue dye	= 1.80	$(\text{cell} \sim 150)$		excess
05/07/02 1	2.51	0.5204	5 219 (Not monomed	Nat	Net	puddle
DS/0//03-1	2.51	0.5204	$5 \text{ cm}; 21^{\circ} \text{ C}$	to speed up	INOL	Not	nriority
DA-250	cube	amorent	21 1118.	first IR image	determined	uctermineu	priority
05/07/03-2	2.78	0 7710	5 cm ² 21° C	Not measured	Not	Not	IR image
BX-250	x2.54	ambient	20.8 hrs	to speed up IR	determined	determined	priority
	x2.94			image			1 2
05/08/03-1	2.64	0.6412	5 cm; 0.1 ° C	1.1516	117 with	3.85 aver,	Blotted,
BX-250	x2.7	baked	113 hrs.	increase=80%	dye error	1 st 10 min.	weighed,
	x2.74	@ 50°	in blue dye		(cell~150)		IR imaged
		С	-			et	
05/08/03-2	2.6	0.5985	5 cm; 0.1 ° C	1.0937	118	$6.4 \text{ aver, } 1^{\text{st}}$	Blotted,
BX-250	x2.65	baked	113 hrs	increase=83%	(cell~150)	26 min.	weighed,
	X2.7	$(a) 50^{\circ}$					repeatedly
		C					weighed
05/10/03-1	2.60	0 5631	5 cm ² 52° C	1 2258	168	6.0	Blotted
BX-250	x2.48	baked	148 8 hrs	increase=118%	(cell~150)	0.0	Interior
	x2.60	@ 50°	1 10.0 mb.		(rind dark
		C					in image
05/10/03-2	2.57	0.5855	5 cm; 52° C	1.1543	146	6.0	Blotted,
BX-250	x2.70	baked	148.6 hrs.	increase=97%	(cell~150)		Interior
	x2.39	@ 50°	in blue dye				rind dark
		С	-				in image

Table 1: Measured Water Absorption/De-Sorption Characteristics by Submersion.

		Sum	ma	ry o	f Results	5	
		Specific		ΔP	Transmission	Permeance	Permeability
Specimen	Dimensions	Gravity	ΔT	H20	g/hr-m^2	ng/s-Pa-m^2	ng/s-Pa-m
#1 (rind)	4"x4"x0.9"	0.03687	38°C	9 kPa	3.32	102.82	2.35
#2 (knit line)	4"x4"x1.0"	0.02975	38°C	9 kPa	2.44	75.51	1.92
#3 (bulk)	4"x4"x0.6"	0.0286	38°C	9 kPa	3.07	95.04	1.45
			Dis	cus	sion		
 All specin polyurethand quotes value commercial 	 All specimens exhibited water vapor transmission at a level consistent published polyurethane foam values, for example a web summary of BASF Walltite foam quotes values from 30 to 125 ng/Pa-s-m² as typical for tests of 25mm thick commercial foam samples. 						
 The relati exhibited the line, no rind) density eithe 	ve values did e highest rate e exhibited th er.	d not exf e of trans e lowest	nbit e smiss perr	expecte sion, w neabili	ed behavior. I hile the purely ty. The result	he sample wi y bulk sample is do not corre	th rind (no knit- elate with
• The specimens vary in the number of large elongated voids in the bulk material. These voids have diameters from 10 to 40 mil and extend in depth along the direction of rise as much as 0.5 inches.							
 An unmodeled parameter such as the number and depth of large elongated voids may be a dominate permeability factor. So far, no attempt to characterize these voids has been made in this test set. 							
 All of the permeability values are within ±25% of the mean. Local effects in the test chamber, differences among the test specimens and differences among the test dishes may contribute uncertainty to the values at the 25% level. 							

Figure 3. Summary for "Procedure for Testing Water Vapor Transmission of BX-250 Foam Under Thermal and Pressure Gradient Conditions"

COLUMBIA ACCIDENT INVESTIGATION BOARD

 \sim

Sparks/Summary of Water Absorption Data of BX-250

Figure 4. Accelerated Moisture Conditioning (32 °F/76% RH)

B1-000194

CTF059-0971

 $^{\circ}$

REPORT VOLUME IV OCTOBER 2003

DRAFT

Date/EST	STS	Bipod	Melbourne: (Temperature-
		Foam	Dew Point Temperature)
		Loss?	@L-8hrs
01/16/03:10:39	107	Yes	1°F
11/23/02:19:49	113	No	22°F
10/07/02:15:45	112	Yes	0°F
06/05/02:17:22	111	No	10°F
04/08/02:16:44	110	No	16°F
03/01/02:06:22	109	No	14°F
12/05/01:17:19	108	No	11°F

Table 2. Preliminary analysis of environmental moisture conditions for launches with bipod foam loss vs. those without observed loss. (Melbourne, FL)

Lower Surface Damage > 1" vs Rain Fall

Figure 6. Correlation of On-Pad Rainfall to Orbiter Lower Surface Tile Damage.