The United States is an Ocean Nation

The U.S. exclusive economic zone (EEZ) extends 200 nautical miles offshore, encompassing diverse ecosystems and vast natural resources, such as fisheries and energy and other mineral resources. The U.S. EEZ is the largest in the world, spanning over 13,000 miles of coastline and containing 3.4 million square nautical miles of ocean—larger than the combined land area of all fifty states. (A square nautical mile is equal to 1.3 square miles.)

U.S. states also have jurisdiction over a significant portion of the Great Lakes. This chain of freshwater lakes and its tributaries constitute the largest reservoir of fresh surface water on the planet, containing 6.5 quadrillion gallons of fresh water and covering an area of about 72,000 square nautical miles. The Great Lakes’ U.S. coastline borders eight states and is roughly the same length as the entire Atlantic Coast.
The Members of the U.S. Commission on Ocean Policy, directed by the United States Congress and appointed by the President under the Oceans Act of 2000 (Public Law 106–256) to make recommendations for a coordinated and comprehensive national ocean policy, hereby approve An Ocean Blueprint for the 21st Century, the final report of the Commission’s findings and recommendations in fulfillment of our responsibilities and obligations under such Act.

Admiral James D. Watkins, USN (Ret.), Chairman

Robert Ballard, Ph.D.
Mr. Ted A. Beattie
Mrs. Lillian Borrone
Dr. James M. Coleman
Ms. Ann D’Amato

Mr. Lawrence Dickerson
Vice Admiral Paul G. Gaffney II, USN (Ret.)
Professor Marc J. Hershman
Mr. Paul L. Kelly
Mr. Christopher Koch

Dr. Frank Muller-Karger
Mr. Edward B. Rasmuson
Dr. Andrew A. Rosenberg
Mr. William D. Ruckelshaus
Dr. Paul A. Sandifer
Dear Mr. President:

I am pleased to submit for your consideration An Ocean Blueprint for the 21st Century, the final report of the U.S. Commission on Ocean Policy. As mandated by the Oceans Act of 2000, this report contains balanced and practical proposals for the establishment of a comprehensive and coordinated ocean policy for our nation. The sixteen Commissioners you appointed, representing diverse interests and experience, unanimously support the Commissions’ findings, recommendations and vision for the future.

The value of the oceans and coasts to the nation is immense and their full potential remains unrealized. Over half the U.S. population lives in coastal watershed counties and roughly one-half of the nation’s gross domestic product ($4.5 trillion in 2000) is generated in those counties and in adjacent ocean waters.

However, there is widespread agreement that our oceans and marine resources are in serious trouble, increasingly affected by rapid growth along our coasts, land and air pollution, unsustainable exploitation of too many of our fishery resources, and frequently ineffective management. The consistent message we heard throughout the country is that we must act now to halt continuing degradation.

We believe that a historic opportunity is at hand to make positive and lasting changes in the way we manage our oceans. The comments we received from Governors of states and territories, tribal leaders, industry, nongovernmental organizations, and the public at large were strongly supportive of our assessment of declining ocean and coastal conditions, the need for a new management approach, and our call for immediate action.

A comprehensive and coordinated national ocean policy requires moving away from the current fragmented, single-issue way of doing business and toward ecosystem-based management. This new approach considers the relationships among all ecosystem components, and will lead to better decisions that protect the environment while promoting the economy and balancing multiple uses of our oceans and coasts.

The Commission, therefore, considers the following actions essential. First, a new national ocean policy framework must be established to improve federal coordination and effectiveness. An important part of this new framework is strengthening support for state, territorial, tribal, and local efforts to identify and resolve issues at the regional level. Second, it is also critical that decisions about ocean and coastal resources be based on the most current, credible, and unbiased scientific data and information. Finally, formal and informal
ocean education should be strengthened to better engage the general public, cultivate a
broad stewardship ethic, and prepare a new generation of leaders to meet future ocean
policy challenges.

Implementation of the Commission's recommendations, which will require a new and
modest investment over current funding levels, can create a system that sustains our resources
and generates significantly greater benefits for our nation. We have recommended creation of
an Ocean Policy Trust Fund that will dedicate funds generated from ocean activities to
implement our Ocean Blueprint for the 21st Century.

The urgent need for action is clear. It is equally clear that, by rising to the challenge today
and addressing the many activities that are affecting our continent at its edges, our nation can
protect the ocean environment, create jobs, increase revenues, enhance security, expand trade,
and ensure ample supplies of energy, minerals, food, and life-saving drugs.

Our report is just the beginning of what must be a sustained effort. The Commission
encourages you to work with Congress, the Governors and other stakeholders, and, where
appropriate, to use existing Presidential authorities to commence implementation of our
recommendations at an early date.

On behalf of all sixteen Commissioners, I would like to thank you for the opportunity to
serve our nation as members of the U.S. Commission on Ocean Policy. It has been a privilege
to contribute to a new age of ocean awareness and stewardship. Although our work officially
ends ninety days after submission of this report, we stand ready now and in the future to
assist in the implementation of our recommendations and achievement of our vision—one
in which our oceans and coasts are clean, safe, sustainably managed, and preserved for the
benefit and enjoyment of future generations.

Respectfully,

[Signature]

James D. Watkins
Admiral, U.S. Navy (Retired)
Chairman
September 2004

The Honorable William H. Frist, M.D.
Majority Leader
United States Senate
Washington, D.C. 20510

Dear Mr. Leader:

I am pleased to submit for your consideration *An Ocean Blueprint for the 21st Century*, the final report of the U.S. Commission on Ocean Policy. As mandated by the Oceans Act of 2000, this report contains balanced and practical proposals for the establishment of a comprehensive and coordinated ocean policy for our nation. The sixteen Commissioners, appointed by President Bush and representing diverse interests and experience, unanimously support the Commissions' findings, recommendations and vision for the future.

The value of the oceans and coasts to the nation is immense and their full potential remains unrealized. Over half the U.S. population lives in coastal watershed counties and roughly one-half of the nation's gross domestic product ($4.5 trillion in 2000) is generated in those counties and in adjacent ocean waters.

However, there is widespread agreement that our oceans and marine resources are in serious trouble, increasingly affected by rapid growth along our coasts, land and air pollution, unsustainable exploitation of too many of our fishery resources, and frequently ineffective management. The consistent message we heard throughout the country is that we must act now to halt continuing degradation.

We believe that a historic opportunity is at hand to make positive and lasting changes in the way we manage our oceans. The comments we received from Governors of states and territories, tribal leaders, industry, nongovernmental organizations, and the public at large were strongly supportive of our assessment of declining ocean and coastal conditions, the need for a new management approach, and our call for immediate action.

A comprehensive and coordinated national ocean policy requires moving away from the current fragmented, single-issue way of doing business and toward ecosystem-based management. This new approach considers the relationships among all ecosystem components, and will lead to better decisions that protect the environment while promoting the economy and balancing multiple uses of our oceans and coasts.

The Commission, therefore, considers the following actions essential. First, a new national ocean policy framework must be established to improve federal coordination and effectiveness. An important part of this new framework is strengthening support for state, territorial, tribal, and local efforts to identify and resolve issues at the regional level. Second, it is also critical that decisions about ocean and coastal resources be based on the most
current, credible, and unbiased scientific data and information. Finally, formal and informal ocean education should be strengthened to better engage the general public, cultivate a broad stewardship ethic, and prepare a new generation of leaders to meet future ocean policy challenges.

Implementation of the Commission's recommendations, which will require a new and modest investment over current funding levels, can create a system that sustains our resources and generates significantly greater benefits for our nation. We have recommended creation of an Ocean Policy Trust Fund that will dedicate funds generated from ocean activities to implement our Ocean Blueprint for the 21st Century.

The urgent need for action is clear. It is equally clear that, by rising to the challenge today and addressing the many activities that are affecting our continent at its edges, our nation can protect the ocean environment, create jobs, increase revenues, enhance security, expand trade, and ensure ample supplies of energy, minerals, food, and life-saving drugs.

Our report is just the beginning of what must be a sustained effort. The Commission encourages Congress to work with the Administration, the Governors, and other stakeholders to implement our recommendations.

On behalf of all sixteen Commissioners, I would like to express our appreciation for this opportunity to serve our nation as members of the U.S. Commission on Ocean Policy. It has been a privilege to contribute to a new age of ocean awareness and stewardship. Although our work officially ends ninety days after submission of this report, we stand ready now and in the future to assist in the implementation of our recommendations and achievement of our vision—one in which our oceans and coasts are clean, safe, sustainably managed, and preserved for the benefit and enjoyment of future generations.

Sincerely,

[Signature]

James D. Watkins
Admiral, U.S. Navy (Retired)
Chairman

cc: The Honorable Tom Daschle
September 2004

The Honorable J. Dennis Hastert
Speaker of the House of Representatives
Washington, D.C. 20515

Dear Mr. Speaker:

I am pleased to submit for your consideration An Ocean Blueprint for the 21st Century, the final report of the U.S. Commission on Ocean Policy. As mandated by the Oceans Act of 2000, this report contains balanced and practical proposals for the establishment of a comprehensive and coordinated ocean policy for our nation. The sixteen Commissioners, appointed by President Bush and representing diverse interests and experience, unanimously support the Commissions' findings, recommendations and vision for the future.

The value of the oceans and coasts to the nation is immense and their full potential remains unrealized. Over half the U.S. population lives in coastal watershed counties and roughly one-half of the nation's gross domestic product ($4.5 trillion in 2000) is generated in those counties and in adjacent ocean waters.

However, there is widespread agreement that our oceans and marine resources are in serious trouble, increasingly affected by rapid growth along our coasts, land and air pollution, unsustainable exploitation of too many of our fishery resources, and frequently ineffective management. The consistent message we heard throughout the country is that we must act now to halt continuing degradation.

We believe that a historic opportunity is at hand to make positive and lasting changes in the way we manage our oceans. The comments we received from Governors of states and territories, tribal leaders, industry, nongovernmental organizations, and the public at large were strongly supportive of our assessment of declining ocean and coastal conditions, the need for a new management approach, and our call for immediate action.

A comprehensive and coordinated national ocean policy requires moving away from the current fragmented, single-issue way of doing business and toward ecosystem-based management. This new approach considers the relationships among all ecosystem components, and will lead to better decisions that protect the environment while promoting the economy and balancing multiple uses of our oceans and coasts.

The Commission, therefore, considers the following actions essential. First, a new national ocean policy framework must be established to improve federal coordination and effectiveness. An important part of this new framework is strengthening support for state, territorial, tribal, and local efforts to identify and resolve issues at the regional level. Second, it is also critical that decisions about ocean and coastal resources be based on the most current, credible, and unbiased scientific data and information. Finally, formal and informal
ocean education should be strengthened to better engage the general public, cultivate a broad stewardship ethic, and prepare a new generation of leaders to meet future ocean policy challenges.

Implementation of the Commission’s recommendations, which will require a new and modest investment over current funding levels, can create a system that sustains our resources and generates significantly greater benefits for our nation. We have recommended creation of an Ocean Policy Trust Fund that will dedicate funds generated from ocean activities to implement our Ocean Blueprint for the 21st Century.

The urgent need for action is clear. It is equally clear that, by rising to the challenge today and addressing the many activities that are affecting our continent at its edges, our nation can protect the ocean environment, create jobs, increase revenues, enhance security, expand trade, and ensure ample supplies of energy, minerals, food, and life-saving drugs.

Our report is just the beginning of what must be a sustained effort. The Commission encourages Congress to work with the Administration, the Governors, and other stakeholders to implement our recommendations.

On behalf of all sixteen Commissioners, I would like to express our appreciation for this opportunity to serve our nation as members of the U.S. Commission on Ocean Policy. It has been a privilege to contribute to a new age of ocean awareness and stewardship. Although our work officially ends ninety days after submission of this report, we stand ready now and in the future to assist in the implementation of our recommendations and achievement of our vision—one in which our oceans and coasts are clean, safe, sustainably managed, and preserved for the benefit and enjoyment of future generations.

Sincerely,

James D. Watkins
Admiral, U.S. Navy (Retired)
Chairman

cc: The Honorable Nancy Pelosi
Chairman
Admiral James D. Watkins, USN (Ret.)
Chairman and President Emeritus,
Consortium for Oceanographic Research
and Education, Washington, D.C.

Robert Ballard, Ph.D.
Professor of Oceanography,
Graduate School of Oceanography,
University of Rhode Island

Ted A. Beattie
President and Chief Executive Officer,
John G. Shedd Aquarium, Illinois

Lillian Borrone
Former Assistant Executive Director,
Port Authority of New York and New Jersey

James M. Coleman, Ph.D.
Boyd Professor, Coastal Studies Institute,
Louisiana State University

Ann D’Amato
Chief of Staff, Office of the City Attorney,
Los Angeles, California

Lawrence Dickerson
President and Chief Operating Officer,
Diamond Offshore Drilling, Inc., Texas

Vice Admiral Paul G. Gaffney II, USN (Ret.)
President, Monmouth University,
New Jersey

Marc J. Hershman
Professor, School of Marine Affairs,
University of Washington

Paul L. Kelly
Senior Vice President,
Rowan Companies, Inc., Texas

Christopher Koch
President and Chief Executive Officer,
World Shipping Council, Washington, D.C.

Frank Muller-Karger, Ph.D.
Professor, College of Marine Science,
University of South Florida

Edward B. Rasmuson
Chairman of the Board of Directors,
Wells Fargo Bank, Alaska

The U.S. Commission on Ocean Policy- (l-r) front row: Professor Marc J. Hershman; Dr. Thomas R. Kitsos (Executive Director); Mr. Ted A. Beattie; and Dr. Paul A. Sandifer. Second row: Mr. Lawrence Dickerson; Mrs. Lillian Borrone; Ms. Ann D’Amato; and Mr. Paul L. Kelly. Back row: Mr. Christopher Koch; Mr. Edward B. Rasmuson; Dr. James M. Coleman; Admiral James D. Watkins, USN (Ret.) (Chairman); Mr. William D. Ruckelshaus; Dr. Andrew A. Rosenberg; Vice Admiral Paul G. Gaffney II, USN (Ret.); Dr. Robert Ballard; and Dr. Frank Muller-Karger.

Andrew A. Rosenberg, Ph.D.
Professor, Department of Natural
Resources and Institute for the Study
of Earth, Oceans, and Space,
University of New Hampshire

William D. Ruckelshaus
Strategic Director, Madrona Venture Group,
Seattle, Washington

Paul A. Sandifer, Ph.D.
Senior Scientist, National Oceanic
and Atmospheric Administration,
South Carolina

Executive Director
Thomas Kitsos, Ph.D.
Science Advisory Panel

Donald F. Boesch, Ph.D.
President, University of Maryland Center for Environmental Science

Kenneth Brink, Ph.D.
Director, Coastal Ocean Institute and Rinehart Coastal Research Center, Woods Hole Oceanographic Institution

Daniel W. Bromley, Ph.D.
Anderson-Bascom Professor of Applied Economics, University of Wisconsin-Madison

Otis Brown Ph.D.
Dean, Rosenstiel School of Marine and Atmospheric Science, University of Miami

Biliana Cicin-Sain, Ph.D.
Director, Gerard J. Mangone Center for Marine Policy and Professor of Marine Policy, University of Delaware

Robert A. Frosch, Ph.D.
Senior Research Associate, John F. Kennedy School of Government, Harvard University and former NASA Administrator

Robert B. Gagosian, Ph.D.
President and Director, Woods Hole Oceanographic Institution

J. Frederick Grassle, Ph.D.
Director, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey

D. Jay Grimes, Ph.D.
Provost, Gulf Coast and Director, Gulf Coast Research Laboratory, University of Southern Mississippi

Susan Hanna, Ph.D.
Professor, Marine Economics, Oregon State University

Ray Hilborn, Ph.D.
Richard C. and Lois M. Worthington Professor of Fisheries Management, School of Aquatic and Fishery Sciences, University of Washington

DeWitt John, Ph.D.
Director, Environmental Studies Program, Bowdoin College

Geraldine Knatz, Ph.D.
Managing Director of Development, Port of Long Beach, California

Marcia McNutt, Ph.D.
President and Chief Executive Officer, Monterey Bay Aquarium Research Institute

Jacqueline Michel, Ph.D.
President, Research Planning, Inc.

Edward L. Miles, Ph.D.
Virginia and Prentice M. Bloedel Professor of Marine Studies and Public Affairs, School of Marine Affairs, University of Washington

Michael K. Orbach, Ph.D.
Director, Marine Laboratory and Coastal Environmental Management Program, Nicholas School of the Environment and Earth Sciences, Duke University

John A. Orcutt, Ph.D.
Deputy Director for Research, Scripps Institution of Oceanography and Director, Center for Earth Observations and Applications, University of California, San Diego
Shirley A. Pomponi, Ph.D.
President and CEO, Harbor Branch
Oceanographic Institution, Inc.

David B. Prior, Ph.D.
Provost and Executive Vice President,
Texas A&M University

Andrew R. Solow, Ph.D.
Director, Marine Policy Center,
Woods Hole Oceanographic Institution

Robert C. Spindel, Ph.D.
Director Emeritus, Applied Physics
Laboratory, University of Washington

Carolyn A. Thoroughgood, Ph.D.
Dean, College of Marine Studies and
Director, Sea Grant College Program,
University of Delaware

Sharon Walker, Ph.D.
Administrator, J.L. Scott Marine Education
Center and Aquarium and Professor,
Department of Coastal Sciences, College
of Science and Technology, University of
Southern Mississippi

Warren M. Washington, Ph.D.
Senior Scientist, National Center for
Atmospheric Research and Chair,
National Science Board

Robert M. White, Sc.D.
President Emeritus, National Academy
of Engineering and former NOAA
Administrator
COMMISSION STAFF

Thomas Kitsos
Executive Director

Colleen (Lee) Benner
Associate Director, Administration

Christine Blackburn
Policy Associate, Research, Education and Marine Operations

Sylvia Boone
Administrative Officer

Brooks Bowen
Policy Associate, Stewardship

Laura Cantral
Associate Director, Governance

Polin Cohanne
Executive Assistant to the Executive Director

Angela Corridore
Policy Associate, Stewardship

Aimee David
Policy Associate, Governance

Morgan Gopnik
Senior Advisor

Peter Hill
Special Assistant to the Executive Director for Government Relations

Michael Kearns
Special Assistant to the Executive Director and Assistant Project Manager

Gerhard Kuska
Policy Associate, Governance

Frank Lockhart
Policy Associate, Stewardship

Macy Moy
Special Assistant to the Chairman

Kate Naughten
Public Affairs Officer and Project Manager

Roxanne Nikolaus
Policy Associate, Research, Education and Marine Operations

Stacy Pickstock
Administrative Assistant

Robyn Scafford
Administrative Assistant

Ken Turgeon
Associate Director, Research, Education and Marine Operations

CAPT Malcolm Williams, USCG (Ret.)
Associate Director, Stewardship

Former Staff

Amie Chou
CMDR Peyton Coleman, USCG
Katherine Gallagher
CDR James Jarvis, USN
Margretta Kennedy
RADM Timothy McGee, USN
Patrick Newman
LCDR Justin Reeves, USN
Terry Schaff
CAPT David W. Titley, USN
Deborah Trefts
Jennifer Welch
CAPT George White, NOAA Corps
ACKNOWLEDGEMENTS

An effort of this magnitude could not have been completed without the help of many dedicated people. The Commission is deeply grateful to the scores of individuals who provided testimony, technical input, insightful comments, figures and photographs, production help, and many other forms of assistance in completing this momentous task.

A complete record of testimony presented to the Commission can be found in Appendices 1 and 2, and on the Commission’s Web site at www.oceancommission.gov. These presentations were invaluable in communicating the problems facing our oceans and coasts—and suggesting positive solutions.

A number of consultants were instrumental in helping the Commission conduct its meetings and complete its report, particularly in the following areas:

Meeting facilitation, strategy, and advice—John Ehrmann and Jay West of the Meridian Institute, and Philip Angell.

Public relations—Scott Treibitz, David Roscow, Victoria Sackett, and Dean Tinnin of Tricom Associates, and Herbert Rosen.

Web site development and maintenance—Tom LaPoint, Jerry Lau, and Davida Remer of the National Oceanic and Atmospheric Administration's National Ocean Service.

The members of the Commission’s Science Advisory Panel (listed in the preceding pages) were at our side from start to finish, answering questions, clarifying technical points, preparing and reviewing written materials, and generally sharing their decades of collective wisdom. In addition, we extend our thanks to the following individuals who served as researchers, reviewers, and wise advisors, or helped in dozens of other ways:

The members and staff of the Pew Oceans Commission, led by the Honorable Leon Panetta, also deserve our recognition and thanks for their contributions to the development of a new national ocean policy and their steadfast support for the work of this Commission.

Input from Governors and other state-level representatives and groups were invaluable to the development of this report. The official comments from thirty-seven state and territorial Governors and five tribal leaders can be found in the Special Addendum to this report, and on the Commission’s Web site at www.oceancommission.gov. Special thanks go to the members and staff of the Coastal States Organization and the National Governors Association for their critical roles in conveying state level interests and perspectives.

Although too numerous to list by name, the Commission extends its heartfelt appreciation to the many knowledgeable and dedicated federal agency employees who supplied detailed information, answered a barrage of questions, and offered excellent advice. Particular thanks go to the Council on Environmental Quality for its role as the Administration’s chief liaison to the Commission.

We also appreciate the support provided to the Commission by the Members of Congress and their staffs, in particular those who serve on committees with key jurisdiction over ocean and coastal issues and who have closely followed the progress of the Commission’s work. This includes the Members and staff of the Senate Committee on Commerce, Science and Transportation, and the Committee on Appropriations, as well as the House Committees on Science, Resources, and Transportation and Infrastructure. Additional thanks are extended to the Members of the House Oceans Caucus and their staff.

Finally, the work reflected in this report would simply not have been possible without the support and dedication of a talented group of professionals, the members of the Commission staff, to whom we extend our deepest gratitude for their tireless effort on behalf of a new national ocean policy.
CONTENTS

Letter to the President ... vii
Letter to the Senate Majority Leader .. ix
Letter to the Speaker of the House ... xi
Members of the U.S. Commission on Ocean Policy ... xii
Members of the Science Advisory Panel ... xiv
Commission Staff .. xvii
Acknowledgements .. xviii

EXECUTIVE SUMMARY .. 1

PART I
OUR OCEANS: A NATIONAL ASSET

CHAPTER 1
RECOGNIZING OCEAN ASSETS AND CHALLENGES ... 30

Evaluating the Vast Wealth of U.S. Oceans and Coasts ... 30
Economic and Employment Value ... 30
Marine Transportation and Ports ... 32
Marine Fisheries .. 32
Offshore Energy, Minerals, and Emerging Uses ... 33
Human Health and Biodiversity ... 33
Tourism and Recreation ... 35
Coastal Real Estate ... 36
Nonmarket Values ... 36
Undermining America’s Ocean and Coastal Assets ... 38
Degraded Waters .. 38
Compromised Resources .. 40
Conflicts Between Man and Nature .. 41
Acting Today for Tomorrow’s Generations .. 44

CHAPTER 2
UNDERSTANDING THE PAST TO SHAPE A NEW NATIONAL OCEAN POLICY 48

Ocean Policy from World War II to the Oceans Act of 2000 ... 48
Formative Years .. 48
From Sputnik to Stratton ... 49
Years of Activism .. 51
Contention and Stalemate .. 53
Search for Coherence ... 54
Consensus for Change ... 55
Launching the U.S. Commission on Ocean Policy .. 55
A Broad Mandate ... 55
The Commission Members ... 56
How the Commission Did Its Work ... 56
The Preliminary Report and Governor’s Comments ... 59
The Result ... 59
CHAPTER 3
SETTING THE NATION’S SIGHTS ..60
 Imagining a Brighter Future ...60
 Building Ocean Policy on Sound Guiding Principles61
 Translating Principles into Policy ...63
 Ecosystem-based Management ...63
 Science for Decision Making ..67
 Effective Ocean Governance ..68
 Public Education ...68

PRIMER ON OCEAN JURISDICTIONS:
DRAWING LINES IN THE WATER ..70

PART II
BLUEPRINT FOR CHANGE:
A NEW NATIONAL OCEAN POLICY FRAMEWORK

CHAPTER 4
ENHANCING OCEAN LEADERSHIP AND COORDINATION76
 Making Improvements at the National Level76
 National Ocean Council ..79
 Assistant to the President ..80
 President’s Council of Advisors on Ocean Policy81
 Other Needed Elements ...81

CHAPTER 5
ADVANCING A REGIONAL APPROACH ...86
 Addressing Issues Across Jurisdictional Lines86
 Facilitating Bottom-up Responses ...87
 National Support and Guidelines ...87
 Nature and Functions of Regional Ocean Councils90
 Building on Existing Regional Initiatives ...91
 Enhancing Federal Support for a Regional Approach92
 Federal Agency Coordination ..92
 Moving Toward Common Regional Boundaries92
 Meeting Regional Research and Information Needs94
 Developing Regional Ecosystem Assessments96

CHAPTER 6
COORDINATING MANAGEMENT IN FEDERAL WATERS98
 Meeting Growing Needs ...98
 Clarifying Offshore Responsibilities ...100
 Establishing a Coordinated Offshore Management Regime100
 A Fair Return for the Use of Offshore Resources102
 Employing Marine Protected Areas as a Management Tool103
CHAPTER 7
STRENGTHENING THE FEDERAL AGENCY STRUCTURE

Reorganizing to Support an Ecosystem-based Management Approach
Reviewing Previous Reorganization Proposals
Strengthening NOAA: Phase I
Consolidating Ocean and Coastal Programs: Phase II
Managing All Natural Resources in an Ecosystem-based Management Approach: Phase III

PART III
OCEAN STEWARDSHIP: THE IMPORTANCE OF EDUCATION AND PUBLIC AWARENESS

CHAPTER 8
PROMOTING LIFELONG OCEAN EDUCATION

Strengthening the Nation's Ocean Awareness
Ocean Stewardship
Science Literacy
Future Ocean Leaders
Crosscutting Themes
Building a Collaborative Ocean Education Network
Participants in Ocean Education
Coordinating Ocean Education
Funding and Assessment
Linking the Research and Education Communities
Incorporating Oceans into K-12 Education
Using Ocean-based Examples to Meet Education Standards
Bridging the Gap between Scientists and Educators
Investing in Higher Education and the Future Ocean Workforce
The Leadership Void
Drawing Students into the Field
Expanding Graduate Educational Opportunities
Workforce Needs
Specific Federal Responsibilities
Strength through Diversity
Bringing the Ocean and Coasts to All Americans
Multifaceted Approaches
Coordinating Messages
Broad Outreach
PART IV
LIVING ON THE EDGE: ECONOMIC GROWTH AND RESOURCE CONSERVATION ALONG THE COAST

CHAPTER 9
MANAGING COASTS AND THEIR WATERSHEDS ... 150
Attracting Crowds, Creating Opportunities .. 150
 Implications of Growth .. 150
Strengthening Coastal Planning and Management ... 152
 Multi-layered Decision Making ... 152
 Federal Area-based Coastal Programs .. 153
 Other Relevant Federal Programs .. 157
Linking Coastal and Watershed Management .. 157
Linking Coastal and Offshore Management .. 160
Increasing Understanding of Coastal Ecosystems .. 160

CHAPTER 10
GUARDING PEOPLE AND PROPERTY AGAINST NATURAL HAZARDS .. 162
Assessing the Growing Cost of Natural Hazards ... 162
Improving Federal Management of Hazards in Coastal Areas 163
 Changing Inappropriate Federal Incentives ... 163
 Improving Understanding ... 164
 The National Flood Insurance Program .. 166
Hazard Mitigation Planning ... 168

CHAPTER 11
CONSERVING AND RESTORING COASTAL HABITAT 170
Assessing the Threats to Coastal Habitat ... 170
Conserving Coastal Habitat ... 171
 Habitat Conservation Programs ... 171
Restoring Coastal Habitat .. 172
Improving Habitat Conservation and Restoration .. 176
Enhancing Information and Understanding .. 176
Protecting the Nation’s Wetlands: A Special Case ... 178

CHAPTER 12
MANAGING SEDIMENT AND SHORELINES .. 180
Understanding the Dual Nature of Sediment ... 180
Reviewing Federal Roles in Sediment Management 181
Altering Sediments through Human Intervention .. 182
 Changing Sediment Quantities .. 182
 Changing Sediment Quality ... 183
Developing Regional Strategies for Sediment Management 184
 Moving Toward Regional Sediment Management at USACE 185
Weighing the Costs and Benefits of Dredging ... 185
 Navigational Dredging ... 185
 Beneficial Uses of Dredged Material .. 187
Periodic Review and Modification ... 233
Design Based on User Input .. 234
Making Data Accessible and Useful ... 235

CHAPTER 16
LIMITING VESSEL POLLUTION AND IMPROVING VESSEL SAFETY 236
Assessing the Benefits and Risks of Vessel Activities 236
Strengthening Vessel Safety, Security, and Environmental Compliance 237
 A Culture of Compliance and Safety .. 237
 Flag State Oversight and Enforcement ... 238
 Port State Control .. 240
Reducing Vessel Pollution ... 241
 Waste Stream Discharges ... 241
 Air Emissions ... 244
 Oil Releases .. 245
Increasing Knowledge to Guide Change ... 248
 Improving Awareness of Ocean Activities .. 249

CHAPTER 17
PREVENTING THE SPREAD OF INVASIVE SPECIES 252
Acknowledging the Problem ... 252
Assessing Existing Approaches .. 253
 Federal Statutes ... 253
 State and Federal Programs .. 255
Identifying Major Pathways for Introduction of Non-native Species 256
 Ballast Water ... 256
 Global Trade in Marine Organisms ... 257
Making Prevention the First Line of Defense .. 257
 Ballast Water Management ... 257
 Controlling Other Pathways ... 258
Accelerating Detection and Response ... 259
Improving the Control of Invasive Species .. 260
 Coordinated Action .. 260
 International Partnerships .. 261
Research Needs ... 262

CHAPTER 18
REDUCING MARINE DEBRIS ... 264
Assessing the Sources and Consequences of Marine Debris 264
Addressing Marine Debris Nationally ... 265
 Existing Programs .. 265
 NOAA’s Role .. 266
 Expanding Marine Debris Efforts ... 267
Reducing Derelict Fishing Gear ... 269
 Ensuring Adequate Facilities for Disposal of Garbage from Ships 270
PART VI
Ocean Value and Vitality: Enhancing the Use and Protection of Ocean Resources

CHAPTER 19
Achieving Sustainable Fisheries ... 274
Contemplating Thirty Years of Fishery Management 274
Building Sustainable Fisheries Based on Sound Science 276
The Value of Science for Wise Management 276
Separating Scientific and Management Decisions 277
The Need for Independent Review ... 278
Using Default Measures to Ensure Progress 279
Making Research Relevant .. 280
Strengthening Fishery Governance .. 283
Clarifying Fishery Management Authority and Jurisdiction 283
Improving the Regional Fishery Management Councils 285
Ending the Race for Fish ... 287
Traditional Management Approaches 287
Dedicated Access Privileges .. 288
Reducing Overcapitalization of Fishing Fleets 290
Improving Fishery Enforcement .. 291
Fishery Enforcement Mechanisms ... 291
Enforcement Partnerships .. 292
Technology for Enforcement ... 293
Improving Enforceability as Part of the Management Process 294
Moving Toward an Ecosystem-based Management Approach 295
Linking Fisheries Management with other Regional Concerns 295
Essential Fish Habitat .. 297
Reducing Bycatch ... 298
Managing International Fisheries .. 299
The Status of International Fisheries 299
The Law of the Sea Framework ... 300
International Fishery Conservation Agreements 300
International Fisheries and Trade .. 303

CHAPTER 20
Protecting Marine Mammals and Endangered Marine Species 306
Assessing the Threats to Marine Populations 306
Marine Mammals ... 306
Endangered Species .. 307
Reviewing Authorities and Responsibilities 309
The Marine Mammal Protection Act .. 309
The Endangered Species Act .. 309
Identifying and Overcoming Gaps in Protection 310
Clarifying Jurisdiction and Authority 310
Cooperation with States .. 311
Unclear Permitting and Review Standards 311
The Meaning of Harassment in the MMPA 312
The Promise of Programmatic Permitting For Marine Mammals .. 312
Expanding Research and Education ... 314
Understanding Behavior and Human Impacts ... 314
Effects of Noise on Marine Mammals ... 315
Public Education and Outreach ... 316
Applying Ecosystem-based Management Principles 316
Domestic Action ... 316
International Coordination .. 318

CHAPTER 21
PRESERVING CORAL REEFS AND OTHER CORAL COMMUNITIES 320
Assessing the Status of Coral Ecosystems .. 320
The Distribution of Coral Ecosystems ... 320
The Value of Coral Ecosystems ... 321
Threats to Coral Ecosystems ... 322
Managing U.S. Coral Resources ... 323
Federal Agency Roles and Responsibilities .. 323
Interagency and Intergovernmental Coral Reef Management Initiatives ... 324
Improving the Management of U.S. Coral Resources 325
Promoting International Coral Reef Initiatives .. 326
Creating More Sustainable Harvesting Practices 327
Improving Understanding of Coral Ecosystems 327

CHAPTER 22
SETTING A COURSE FOR SUSTAINABLE MARINE AQUACULTURE 330
Acknowledging the Growing Significance of Marine Aquaculture 330
Addressing Environmental Impacts of Aquaculture 331
Dealing with Uncertainties in the Existing Management Structure 332
Marine Aquaculture in Offshore Areas .. 332
The Current Regulatory Conundrum ... 332
Developing a New Marine Aquaculture Management Framework 333
Coordinated Action .. 333
Implementation ... 334
Increasing the Knowledge Base .. 335
Promoting International Improvements and Cooperation 336

CHAPTER 23
CONNECTING THE OCEANS AND HUMAN HEALTH 338
Understanding the Links between the Oceans and Human Health 338
Maximizing the Beneficial Uses of Marine-derived Bioproducts 339
Specific Applications ... 340
Encouraging Interdisciplinary Marine Biomedical Research 341
Managing Marine Bioproduct Discovery and Development 343
Reducing the Negative Health Impacts of Marine Microorganisms 343
Harmful Algal Blooms ... 344
Marine Bacteria and Viruses .. 346
Contaminated Seafood .. 346
Implications of Global Climate Change ... 346
Progress through Research and Technology Development 347
Increasing Federal Coordination on Oceans and Human Health 348
Implementing Human Health Protections .. 348
CHAPTER 24
MANAGING OFFSHORE ENERGY AND OTHER MINERAL RESOURCES... 352

Exercising Jurisdiction over Nonliving Resources in Federal Waters… 352
Managing Offshore Oil and Gas Resources………………………………… 352
 From a Quiet Beginning to Prohibitions on Leasing……………………… 353
 The OCS Leasing, Exploration, and Development Process………………… 354
 Trends in Domestic Offshore Oil and Gas Production…………………….. 357
 Federal Revenues from Offshore Oil and Gas Leasing and Production…… 357
 State Involvement in OCS Oil and Gas Decision Making………………….. 361
 Environmental Issues Related to Offshore Oil and Gas Production……… 361
 Opportunities for Sharing Ocean Observation Information and Resources 364
Assessing the Potential of Offshore Methane Hydrates…………………… 364
Developing Offshore Renewable Energy Resources……………………… 365
 Offshore Wind Energy Development……………………………………… 365
 Wave Energy Conversion—Current and Tidal…………………………….. 366
 Ocean Thermal Energy Conversion…………………………………………. 367
 Comprehensive Management for Offshore Renewable Energy…………… 368
Managing Other Marine Minerals……………………………………………….. 368

PART VII
SCIENCE-BASED DECISIONS: ADVANCING OUR UNDERSTANDING OF THE OCEANS

CHAPTER 25
CREATING A NATIONAL STRATEGY FOR INCREASING SCIENTIFIC KNOWLEDGE… 374

Fortifying the Foundations of Ocean Understanding………………………… 374
 Components of Ocean Science and Technology…………………………… 374
 Federal Leadership in Ocean Science and Technology…………………….. 375
Reviving the Federal Investment………………………………………………… 376
Creating a National Strategy…………………………………………………… 377
Advancing Ocean and Coastal Research………………………………………... 378
 Climate Change………………………………………………………………. 378
 Marine Biodiversity…………………………………………………………. 379
 Regional Ecosystem Dynamics……………………………………………… 379
 Social and Economic Research……………………………………………… 379
 The National Sea Grant College Program…………………………………… 385
 Agency Strategies and Funding Mechanisms………………………………. 385
Building a National Ocean Exploration Program…………………………….. 386
 The Value of Ocean Exploration…………………………………………… 387
 Growing Calls for a National Program……………………………………….. 387
 Coordinating and Consolidating Marine Operations……………………….. 388
 Integrated National Maps and Assessments……………………………….. 389
 Federal Mapping and Charting Activities…………………………………. 389
Providing Useful Information to Congress……………………………………. 391
CHAPTER 26
ACHIEVING A SUSTAINED, INTEGRATED OCEAN OBSERVING SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Making the Case for an Integrated Ocean Observing System</td>
<td>394</td>
</tr>
<tr>
<td>Assessing Existing Observing Systems</td>
<td>395</td>
</tr>
<tr>
<td>Coastal and Ocean Observing Systems</td>
<td>395</td>
</tr>
<tr>
<td>Committing to Creation of the IOOS</td>
<td>396</td>
</tr>
<tr>
<td>Creating a Governance Structure for the IOOS</td>
<td>397</td>
</tr>
<tr>
<td>National Planning</td>
<td>397</td>
</tr>
<tr>
<td>Ocean.US</td>
<td>398</td>
</tr>
<tr>
<td>Regional Structure</td>
<td>398</td>
</tr>
<tr>
<td>Reaching Out to the User Community</td>
<td>399</td>
</tr>
<tr>
<td>Assembling the Elements of a Successful IOOS</td>
<td>400</td>
</tr>
<tr>
<td>Critical Environmental Variables</td>
<td>400</td>
</tr>
<tr>
<td>Converting Research into Operational Capabilities</td>
<td>402</td>
</tr>
<tr>
<td>Coordinating Civilian Satellite Observations</td>
<td>403</td>
</tr>
<tr>
<td>Developing Useful End Products Based on IOOS Data</td>
<td>405</td>
</tr>
<tr>
<td>Funding the National IOOS</td>
<td>406</td>
</tr>
<tr>
<td>System Cost Estimates</td>
<td>407</td>
</tr>
<tr>
<td>Strengthening Earth Observations through National and International Partnerships</td>
<td>409</td>
</tr>
<tr>
<td>Other U.S. Operational Observing Systems</td>
<td>409</td>
</tr>
<tr>
<td>Enhancing Global Cooperation</td>
<td>409</td>
</tr>
</tbody>
</table>

CHAPTER 27
ENHANCING OCEAN INFRASTRUCTURE AND TECHNOLOGY DEVELOPMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supporting Ocean and Coastal Activities with Modern Tools</td>
<td>412</td>
</tr>
<tr>
<td>Improving Infrastructure and Technology</td>
<td>412</td>
</tr>
<tr>
<td>Gaps in Infrastructure</td>
<td>413</td>
</tr>
<tr>
<td>Gaps in Technology Development</td>
<td>413</td>
</tr>
<tr>
<td>Maximizing Resources through Collaboration</td>
<td>414</td>
</tr>
<tr>
<td>A National Strategy</td>
<td>414</td>
</tr>
<tr>
<td>Periodic Reviews and Assessments</td>
<td>415</td>
</tr>
<tr>
<td>Funding the Modernization of Critically Needed Assets</td>
<td>416</td>
</tr>
<tr>
<td>Essential Science Infrastructure and Technology Components</td>
<td>416</td>
</tr>
<tr>
<td>Other Essential Infrastructure and Technology Components</td>
<td>421</td>
</tr>
<tr>
<td>Creating Virtual Marine Technology Centers</td>
<td>426</td>
</tr>
</tbody>
</table>

CHAPTER 28
MODERNIZING OCEAN DATA AND INFORMATION SYSTEMS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turning Oceans of Data into Useful Products</td>
<td>428</td>
</tr>
<tr>
<td>Reviewing the Data Management Structure</td>
<td>428</td>
</tr>
<tr>
<td>Types of Data Centers</td>
<td>429</td>
</tr>
<tr>
<td>Ocean and Coastal Data</td>
<td>431</td>
</tr>
<tr>
<td>Coping with the Flood of Incoming Data</td>
<td>432</td>
</tr>
<tr>
<td>Reinventing Data and Information Management</td>
<td>432</td>
</tr>
<tr>
<td>Interagency Planning</td>
<td>432</td>
</tr>
<tr>
<td>Access to Data and Information</td>
<td>435</td>
</tr>
<tr>
<td>Incorporating Data into the National Data Centers</td>
<td>437</td>
</tr>
<tr>
<td>Meeting the Challenges of a New Century</td>
<td>438</td>
</tr>
</tbody>
</table>
PART VIII
THE GLOBAL OCEAN:
U.S. PARTICIPATION IN INTERNATIONAL POLICY

CHAPTER 29
ADVANCING INTERNATIONAL OCEAN SCIENCE AND POLICY
Acting Globally to Safeguard the Oceans................................. 442
Reviewing the Evolution of the International Ocean Regime 443
Developing and Implementing International Policy.................. 443
Guiding Principles... 444
The Law of the Sea Convention... 444
Other Ocean-related International Agreements........................ 445
Collaboration for International Ocean Policy.......................... 449
Emerging International Management Challenges.................... 450
Scientific Input to U.S. Policy Makers....................................... 452
Enhancing International Ocean Science.................................... 452
International Ocean Science Programs.................................... 453
The Global Ocean Observing System...................................... 453
U.S. Scientific Activities Abroad... 454
Building International Capacity in Ocean Science and Management........... 454

PART IX
MOVING AHEAD: IMPLEMENTING A NEW NATIONAL OCEAN POLICY

CHAPTER 30
FUNDING NEEDS AND POSSIBLE SOURCES
Investing in Change... 458
Acknowledging the Cost of Taking Action................................. 459
Deferred Costs.. 462
Costs Beyond the Scope of the Commission's Report................. 463
Itemizing Major Funding Areas... 463
The National Ocean Policy Framework.................................... 463
Ocean Education... 464
Ocean Science and Exploration.. 464
Monitoring, Observing, and Mapping...................................... 465
Other Ocean and Coastal Management Challenges.................. 466
Recognizing the Important Roles of Nonfederal Authorities....... 466
Dedicating Revenue from Ocean Uses for Improved Ocean Management.................. 467
Existing and Emerging Uses.. 467
Revenues for Ocean and Coastal Management: The Ocean Policy Trust Fund........ 468
Understanding the Changing Ocean and Coastal Budget.............. 469

CHAPTER 31
SUMMARY OF RECOMMENDATIONS
Context for the Recommendations.. 472
Guiding Principles... 472
Creating a Strong Role for States.. 473
The Need for Congressional Leadership.................................... 474
EXTERNAL APPENDICES

Printed as Separate Documents:
Available Electronically on CD or at www.oceancommission.gov

SPECIAL ADDENDUM

GOVERNORS’ COMMENTS ON THE PRELIMINARY REPORT

APPENDIX 1

TESTIMONY BEFORE THE U.S. COMMISSION ON OCEAN POLICY
SYNTHESIS INDEXED BY POLICY TOPIC

APPENDIX 2

TESTIMONY BEFORE THE U.S. COMMISSION ON OCEAN POLICY
SUMMARY INDEXED BY PRESENTER

APPENDIX 3

NATIONAL MARINE EDUCATORS ASSOCIATION MEMBERSHIP PROFILE

APPENDIX 4

U.S. OCEAN-RELATED ACADEMIC INFRASTRUCTURE

APPENDIX 5

INVENTORY OF U.S. OCEAN AND COASTAL FACILITIES

APPENDIX 6

REVIEW OF U.S. OCEAN AND COASTAL LAW:
THE EVOLUTION OF OCEAN GOVERNANCE OVER THREE DECADES
LIST OF FIGURES AND TABLES

Figure 1.1 The Value of the Oceans ... 31
Figure 1.2 The Value of the Coasts ... 32
Figure 1.3 The Coasts: From the Nearshore to Coastal Watersheds 35
Figure 1.4 The Shift from Goods to Services in the Ocean Economy 36
Figure 1.5 Population Density Peaks Near the Shore 43
Figure 2.1 Invited Panelists Represent All Sectors of the Ocean Community 58
Figure 3.1 Large Marine Ecosystems Correspond to Natural Features 64
Figure 3.2 The Foundations of a New National Ocean Policy 68
Figure P.1 Lines of U.S. Authority in Offshore Waters 71
Figure 4.1 Ocean and Coastal Activities Are Conducted by
Many Federal Departments and Agencies .. 78
Figure 4.2 Proposed Structure for Coordination of Federal Ocean Activities 83
Figure 5.1 Alignment of Federal Regions Is Essential for Communication ... 94
Figure 6.1 Coordination Is Essential in Busy Offshore Waters 99
Figure 7.1 Proposals to Reorganize Federal Ocean Management 109
Table 7.1 Thirty Years of Proposals to Reorganize Federal Management
of Ocean and Coastal Resources .. 116
Figure 8.1 Proposed Structure for the Coordination of Federal Ocean
Education Activities .. 126
Figure 8.2 U.S. Students Fall Behind in Science .. 131
Figure 8.3 Environment-based Education Boosts Overall Academic Achievement 131
Figure 10.1 The Growing Cost of Natural Disasters 163
Figure 11.1 Dramatic Coastal Land Loss in Louisiana 174
Figure 12.1 Dams Impede Sediment Destined for the Coast 182
Table 13.1 The Leading Role of the United States in International Trade ... 193
Figure 13.1 Ports Are the Primary Gateway for International Trade 194
Figure 13.2 Goods Traveling through U.S. Ports Are Transported Nationwide 195
Figure 14.1 Report Card on Regional Coastal Conditions 205
Figure 14.2 Land-based Nutrients Can Cause Death on the Seafloor 206
Figure 14.3 Changes in Funding for Water Pollution Controls 208
Figure 14.4 Controlling Nonpoint Source Pollution Is Key to Cleaner Waters 213
Figure 14.5 Thirty States Contribute to the “Dead Zone” in the Gulf of Mexico 216
Figure 14.6 Looking Skyward: Accounting for Airshed Deposition 223
Figure 15.1 Watershed Monitoring Has Been Reduced Near the Coasts 230
Figure 16.1 Most Cruise Ship Travel Originates in U.S. Waters 242
Figure 16.2 The Oil Pollution Act Curbs Spills in U.S. Waters 247
Figure 17.1 Great Lakes States Take Lead in Implementing
Aquatic Invasive Species Management Plans .. 254
Figure 17.2 Addressing Aquatic Invasive Species Regionally 255
Figure 18.1 Trash at the Beach Comes from Many Sources 265
Figure 19.1 Fishery Litigation Grows as Interests Clash 276
Figure 19.2 U.S. Fisheries Are Managed at the Regional Level 283
Figure 19.3 Migratory Fish Require Coordination Across Multiple Jurisdictions 284
Figure 20.1 Sea Lion Populations in Danger ... 317
Figure 21.1 Tropical Waters Are Home to the Majority of Known Reefs 321
Figure 21.2 Deep, Cold-water Coral Reefs Found Throughout U.S. Waters 322
Figure 22.1 The United States Imports More Seafood Than It Exports 331
Table 23.1 The Bounty of the Sea .. 342
List of Boxes

Box 1.1 Defining Coastal Areas...34
Box 1.2 The “Fourth Seacoast”—The Great Lakes38
Box 2.1 Public Meetings of the U.S. Commission on Ocean Policy57
Box P1 Acknowledging Change: The Need to Update Federal Laws73
Box 5.1 Regional Approaches at Work ..88
Box 5.2 Nature and Functions of Regional Ocean Councils91
Box 5.3 Moving Toward Improved Federal and Stakeholder Coordination in the Great Lakes Region ...93
Box 6.1 Swimming through Hoops: Establishing an Offshore Aquaculture Facility ..101
Box 6.2 Sunken Treasure: Our Underwater Cultural Heritage102
Box 7.1 Improving Ocean and Coastal Management by Enhancing NOAA’s Capacity ...111
Box 7.2 Federal Ocean and Coastal Activities in Agencies other than NOAA113
Box 7.3 Historical Precedent for Presidential Reorganization of the Executive Branch ...115
Box 8.1 The Need for Qualified Science Teachers133
Box 8.2 COOL Professional Development for Teachers134
Box 8.3 Today’s Kids ... Tomorrow’s Ocean Professionals135
Box 8.4 The Ocean Information Gap ..142
Box 8.5 What Is Informal Education? ..143
Box 8.6 NOAA’s National Marine Sanctuaries Program as a Vehicle for Public Education ...144
Box 8.7 Equal Opportunity Educators ..145
Box 9.1 Coastal Activities Are Big Business ...151
Box 9.2 The Smart Growth Movement ...152
Box 9.3 What Is a Coastal Watershed? ..154
Box 9.4 Balancing Federal Ocean Activities with State Coastal Management Programs: The Federal Consistency Tool ..158
Box 10.1 Hurricanes Wreak Havoc Along the Coast164
Box 10.2 New Orleans at Risk ...165
Box 11.1 Examples of Large-scale Coastal Habitat Restoration Efforts174
Box 11.2 A Community Habitat Restoration Effort: Friends of Heeia State Park177
Box 12.1 Sediment: Friend or Foe ...181
Box 12.2 The Legacy of Sediment Contamination183
Box 12.3 Beach Nourishment: One Use for Dredged Sediment186
Box 13.1 Federal Members of the Interagency Committee for the Marine Transportation System ...199
Box 13.2 Nonfederal Member Organizations of the Marine Transportation System National Advisory Council ..199
Box 14.1 Nutrient Pollution in Coastal Waters ..206
Box 14.2 The Impact of Farm Nutrients on the Marine Environment216
Box 15.1 Ocean and Coastal Monitoring Needs ..227
Box 15.2 Keeping Up With New Contaminants234
Box 17.1 What Is an Invasive Species? ..253
Box 17.2 Federal Departments and Agencies with Roles in Invasive Species Management ...260
Box 18.1 Abandoned Fishing Nets Catch a Wave to Hawaii270
Box 19.1 Dedicated Access Privileges: A Better Description289
Box 20.1 Making a Case for Ecosystem-based Management: The Steller Sea Lion

Box 23.1 Special Focus on Microbial Diversity

Box 24.1 Offshore Liquefied Natural Gas Ports May Be on the Horizon

Box 24.2 The Federal Consistency Provision and Offshore Oil and Gas Development

Box 24.3 A Mighty Wind Blows in Cape Cod

Box 25.1 Examples of Ocean and Coastal Science Needs

Box 25.2 Primary Federal Agencies that Conduct Science-based Marine Operations

Box 25.3 Selected Ocean and Coastal Reports from the Former Congressional Office of Technology Assessment

Box 26.1 Components of the Integrated Ocean Observing System

Box 26.2 Signatories to the Ocean.US Memorandum of Agreement

Box 26.3 The National Weather Service: An Investment That Paid Off

Box 26.4 An Investment with Big Returns: The Economic Value of Ocean Observations

Box 28.1 Data Management Terminology

Box 29.1 Selected International Bodies with Ocean-related Responsibilities

Box 29.2 U.S. Involvement in International Capacity Building Efforts
PHOTOGRAPH IDENTIFICATION AND CREDITS

Bass Harbor lightouse, ME, Fotosearch ... 28
Sunbathers on the beach, Corbis ... 30
Ship’s wheel and maps, Corbis ... 48
Driftwood and beach, Photolink ... 60
Satellite photograph of Boston, MA, Corbis ... 74
Bridge in Newport, RI, Fotosearch ... 76
Waves crashing on the shore, Photolink .. 86
Fishing boat, Corbis ... 98
Storm clouds over the ocean, Photolink .. 108
Man and children net fishing, Wonderfile .. 120
Boy examining aquatic organisms, Corbis ... 122
Fort Lauderdale, FL, Wonderfile ... 148
Sailboats in front of Boston skyline, Photolink ... 150
Hurricane damage near the shore, NOAA Office of Oceanic and Atmospheric Research .. 162
Sunset and reeds, Photolink .. 170
A heavily silted river enters the ocean near San Juan, PR, NOAA Photo Library 180
Cranes at shipyard loading and unloading cargo, Fotosearch 192
Coastal waters, Corbis .. 202
Sewage outfall, Corbis .. 204
Polluted stream, Corbis .. 226
Coast Guard helicopter assists sinking vessel, Photolink .. 236
Inside of a 2-inch pipe clogged with zebra mussels, Don Schloesser, Great Lakes Science Center, National Biological Services ... 252
Trash and debris washed up on a beach, Photolink ... 264
Pink fish near crinoid on reef, Corbis ... 272
Fishermen haul in their catch, NOAA Photo Library .. 274
Leopard seal, Photolink ... 306
Blue starfish on coral reef, Corbis ... 320
Fish farms in Ago Bay, Japan, Corbis .. 330
A red-tide event off the coast of San Diego, CA, Peter J.S. Franks, SIO 338
Ocean Confidence oil rig, Diamond Offshore Drilling Company 352
Scientist collecting samples from Antarctic waters, Scripps Institution of Oceanography .. 372
Sample collecting device being lowered from a research vessel, Scripps Institution of Oceanography ... 374
False-color satellite image showing Chlorophyll A concentration, 1997–2002,
The SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE 394
DSV Alvin underwater exploration vehicle, NOAA Photo Library 412
Space Environment Center, Boulder, CO, NOAA Office of Oceanic and Atmospheric Research .. 428
Planet Earth, Corbis ... 440
Flags of the world, Corbis .. 442
School of Bluelined Snapper fish, Corbis ... 456
Aerial view of Seattle, NOAA Photo Library .. 458
Jellyfish, NOAA Office of Exploration ... 472
Green turtle, Corbis ... 524
America is a nation intrinsically connected to and immensely reliant on the ocean. All citizens—whether they reside in the country’s farmlands or mountains, in its cities or along the coast—affect and are affected by the sea. Our grocery stores and restaurants are stocked with seafood and our docks are bustling with seaborne cargo. Millions of visitors annually flock to the nation’s shores, creating jobs and contributing substantially to the U.S. economy through one of the country’s largest and most rapidly growing economic sectors: tourism and recreation.

The offshore ocean area under U.S. jurisdiction is larger than its total land mass, providing a vast expanse for commerce, trade, energy and mineral resources, and a buffer for security. Born of the sea are clouds that bring life-sustaining water to our fields and aquifers, and drifting microscopic plants that generate much of the oxygen we breathe. Energy from beneath the seabed helps fuel our economy and sustain our high quality of life. The oceans host great biological diversity with vast medical potential and are a frontier for exciting exploration and effective education. The importance of our oceans, coasts, and Great Lakes cannot be overstated; they are critical to the very existence and well-being of the nation and its people. Yet, as the 21st century dawns, it is clear that these invaluable and life-sustaining assets are vulnerable to the activities of humans.

Human ingenuity and ever-improving technologies have enabled us to exploit—and significantly alter—the ocean’s bounty to meet society’s escalating needs. Pollution runs off the land, degrading coastal waters and harming marine life. Many fish populations are declining and some of our ocean’s most majestic creatures have nearly disappeared. Along our coasts, habitats that are essential to fish and wildlife and provide valuable services to humanity continue to suffer significant losses. Non-native species are being introduced, both intentionally and accidentally, into distant areas, often resulting in significant economic costs, risks to human health, and ecological consequences that we are only beginning to comprehend.

Yet all is not lost. This is a moment of unprecedented opportunity. Today, as never before, we recognize the links among the land, air, oceans, and human activities. We have access to advanced technology and timely information on a wide variety of scales. We recognize the detrimental impacts wrought by human influences. The time has come for us to alter our course and set sail for a new vision for America, one in which the oceans, coasts, and Great Lakes are healthy and productive, and our use of their resources is both profitable and sustainable.

It has been thirty-five years since this nation’s management of the oceans, coasts, and Great Lakes was comprehensively reviewed. In that time, significant changes have occurred in how we use marine assets and in our understanding of the consequences of our actions. This report from the U.S. Commission on Ocean Policy provides a blueprint for change in the 21st century, with recommendations for creation of an effective national ocean policy that ensures sustainable use and protection of our oceans, coasts, and Great Lakes for today and far into the future.
The Value of the Oceans and Coasts

America’s oceans, coasts, and Great Lakes provide tremendous value to our economy. Based on estimates in 2000, ocean-related activities directly contributed more than $117 billion to American prosperity and supported well over two million jobs. By including coastal activities, the numbers become even more impressive; more than $1 trillion, or one-tenth of the nation’s annual gross domestic product, is generated within the relatively narrow strip of land immediately adjacent to the coast that we call the nearshore zone (Figure ES.1). When the economies throughout coastal watershed counties are considered, the contribution swells to over $4.5 trillion, fully half of the nation’s gross domestic product, accounting for some 60 million jobs.

The United States uses the sea as a highway for transporting goods and people and as a source of energy and potentially lifesaving drugs. Annually, the nation’s ports handle more than $700 billion in merchandise, while the cruise industry and its passengers account for another $12 billion in spending. More than thirteen million jobs are connected to maritime trade. With offshore oil and gas operations expanding into ever deeper waters, annual production is now valued at $25–$40 billion, and yearly bonus bid and royalty payments contribute approximately $5 billion to the U.S. Treasury. Ocean exploration has also led to a growing and potentially multi-billion dollar industry in marine-based bioproducts and pharmaceuticals.

Fisheries are another important source of economic revenue and jobs and provide a critical supply of healthy protein. They also constitute an important cultural heritage for fishing communities. The commercial fishing industry’s total annual value exceeds $28 billion, with the recreational saltwater fishing industry valued at around $20 billion, and the annual U.S. retail trade in ornamental fish worth another $3 billion.

Every year, hundreds of millions of people visit America’s coasts to enjoy the oceans, spending billions of dollars and directly supporting millions of jobs. Nationwide, retail expenditures on recreational boating alone exceeded $30 billion in 2002. In fact, tourism and recreation is one of the nation’s fastest-growing business sectors, enriching economies and supporting jobs in communities virtually everywhere along the shores of the United States and its territories. Over half of the U.S. population lives in coastal watersheds,
and more than 37 million people and 19 million homes have been added to coastal areas during the last three decades, driving up real estate values and requiring ever greater support services.

These concrete, quantifiable contributions are just one measure of the value of the nation’s oceans, coasts, and Great Lakes. There are many even more important attributes that cannot be given a price tag, such as global climate control, life support, cultural heritage, and the aesthetic value of the ocean with its intrinsic power to relax, rejuvenate, and inspire.

Trouble in Paradise

Unfortunately, our use and enjoyment of the ocean and its resources have come with costs, and we are only now discovering the full extent of the consequences of our actions. In 2001, 23 percent of the nation’s estuarine areas were considered impaired for swimming, fishing, or supporting marine species. In 2003, there were more than 18,000 days of closings and advisories at ocean and Great Lakes beaches, most due to the presence of bacteria associated with fecal contamination. Across the globe, marine toxins afflict more than 90,000 people annually and are responsible for an estimated 62 percent of all seafood-related illnesses. Harmful algal blooms appear to be occurring more frequently in our coastal waters and non-native species are increasingly invading marine ecosystems. Experts estimate that 25 to 30 percent of the world’s major fish stocks are overexploited, and many U.S. fisheries are experiencing serious difficulties. Since the Pilgrims first arrived at Plymouth Rock, over half of our fresh and saltwater wetlands—more than 110 million acres—have been lost.

Coastal waters are one of the nation’s greatest assets, yet they are being bombarded with pollutants from a variety of sources. While progress has been made in reducing point sources of pollution, nonpoint source pollution has increased and is the primary cause of nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination, and other problems that plague coastal waters. Nonpoint source pollution occurs when rainfall and snowmelt wash pollutants such as fertilizers, pesticides, bacteria, viruses, pet waste, sediments, oil, chemicals, and litter into our rivers and coastal waters. Other pollutants, such as mercury and some organic chemicals, can be carried vast distances through the atmosphere before settling into ocean waters.

Our failure to properly manage the human activities that affect the nation’s oceans, coasts, and Great Lakes is compromising their ecological integrity, diminishing our ability to fully realize their potential, costing us jobs and revenue, threatening human health, and putting our future at risk.

The Work of the U.S. Commission on Ocean Policy

Congress clearly recognized both the promise of the oceans and the threats to them when it passed the Oceans Act of 2000, calling for establishment of a Commission on Ocean Policy to establish findings and develop recommendations for a coordinated and comprehensive national ocean policy. Pursuant to that Act, the President appointed sixteen Commission members drawn from diverse backgrounds, including individuals nominated by the leadership in the United States Senate and House of Representatives.

The Commission held sixteen public meetings around the country and conducted eighteen regional site visits, receiving testimony, both oral and written, from hundreds of people. Overall, the Commission heard from some 447 witnesses, including over 275 invited presentations and an additional 172 comments from the public, resulting in nearly 1,900 pages of testimony.
The message from both experts and the public alike was clear: our oceans, coasts, and Great Lakes are in trouble and major changes are urgently needed in the way we manage them. The Commission learned about new scientific findings that demonstrate the complexity and interconnectedness of natural systems. It also confirmed that our management approaches have not been updated to reflect this complexity, with responsibilities remaining dispersed among a confusing array of agencies at the federal, state, and local levels. Managers, decision makers, and the public cried out for improved and timely access to reliable data and solid scientific information that have been translated into useful results and products. Another steady theme heard around the country was the plea for additional federal support, citing decades of underinvestment in the study, exploration, protection, and management of our oceans, coasts, and Great Lakes. Finally, the point was made that we must enhance ocean-related education so that all citizens recognize the role of the oceans, coasts, and Great Lakes in their own lives and the impacts they themselves have on these environments.

Following extensive consideration, and deliberation of a broad array of potential solutions, the Commission presented a preliminary report in early 2004. Comments were solicited from state and territorial governors, tribal leaders, and the public; the response was overwhelming. Thoughtful, constructive feedback was received from thirty-seven governors (including 33 of the 34 coastal state governors), five tribal leaders, and a multitude of other organizations and individuals—over one thousand pages in all. Commenters were nearly unanimous in praising the report, agreeing that our oceans are in trouble, and supporting the call for action to rectify the situation. Where governors and others offered corrections or suggestions for improvement, the Commission paid close attention and made changes as needed.

This final report lays out the Commission's conclusions and detailed recommendations for reform—reform that needs to start now, while it is still possible to reverse distressing declines, seize exciting opportunities, and sustain the oceans and their valuable assets for future generations.

A Vision and Strategy for the 21st Century and Beyond

The Commission began by envisioning a desirable future. In this future, the oceans, coasts, and Great Lakes are clean, safe, prospering, and sustainably managed. They contribute significantly to the economy, supporting multiple, beneficial uses such as food production, development of energy and mineral resources, recreation and tourism, transportation of goods and people, and the discovery of novel medicines, while preserving a high level of biodiversity and a wide range of critical natural habitats.

In this future, the coasts are attractive places to live, work, and play, with clean water and beaches, easy public access, sustainable and strong economies, safe bustling harbors and ports, adequate roads and services, and special protection for sensitive habitats and threatened species. Beach closings, toxic algal blooms, proliferation of invasive species, and vanishing native species are rare. Better land-use planning and improved predictions of severe weather and other natural hazards save lives and money.

In this future, the management of our impacts on the oceans, coasts, and Great Lakes has also changed. Management boundaries correspond with ecosystem regions, and policies consider interactions among all ecosystem components. In the face of scientific uncertainty, managers balance competing considerations and proceed with caution. Ocean governance is effective, participatory, and well coordinated among government agencies, the private sector, and the public.

The Commission envisions a time when the importance of reliable data and sound science is widely recognized and strong support is provided for physical, biological, social,
and economic research, as well as ocean exploration. The nation invests in the needed scientific tools and technologies, including ample, well-equipped surface and underwater research vessels, reliable, sustained satellites, state-of-the-art computing facilities, and innovative sensors that can withstand harsh ocean conditions. A widespread network of observing and monitoring stations provides a steady stream of data, and scientific findings are translated into practical information and products for decision makers, vessel operators, educators, and the public.

In this hoped-for future, better education is a cornerstone of national ocean policy, with the United States once again joining the top ranks in math, science, and technology achievement. An audacious program to explore unknown reaches of the ocean inspires and engages people of all ages. An ample, diverse, well-trained, and motivated workforce is available to study the oceans, set wise policies, develop and apply technological advances, and engineer new solutions. An effective team of educators works closely with scientists to learn and teach about the oceans—its value, beauty, and critical role on the planet. And, as a result of lifelong education, all citizens are better stewards of the nation’s resources and marine environment.

Finally, the Commission’s vision sees the United States as an exemplary leader and full partner globally, eagerly exchanging science, engineering, technology, and policy expertise with others, particularly those in developing countries, to facilitate the achievement of sustainable ocean management on an international level.

While progress has been made in a number of areas, the nation’s existing system for managing our oceans, coasts, and Great Lakes is simply unable to effectively implement the appropriate guiding principles (see next page) and realize a positive long-term vision.

The Commission recommends moving toward an ecosystem-based management approach by focusing on three cross-cutting themes: (1) a new, coordinated national ocean policy framework to improve decision making; (2) cutting edge ocean data and science translated into high-quality information for managers; and (3) lifelong ocean-related education to create well-informed citizens with a strong stewardship ethic. These themes are woven throughout the report, appearing again and again in chapters dealing with a wide variety of ocean challenges.

A New National Ocean Policy Framework

To improve decision making, promote effective coordination, and move toward an ecosystem-based management approach, a new National Ocean Policy Framework is needed. While this framework is intended to produce strong, national leadership, it is also designed to support and enhance the critical roles of state, territorial, tribal, and local decision makers.

Improved National Coordination and Leadership

At the federal level, eleven of fifteen cabinet-level departments and four independent agencies play important roles in the development of ocean and coastal policy. These agencies interact with one another and with state, territorial, tribal, and local authorities in sometimes haphazard ways. Improved communication and coordination would greatly enhance the effectiveness of the nation’s ocean policy.

Within the Executive Office of the President, three entities have some responsibilities relevant to oceans: the Office of Science and Technology Policy addresses government-wide science and technology issues and includes an ocean subcommittee; the Council on Environmental Quality (CEQ) oversees broad federal environmental efforts and implementation of the National Environmental Policy Act; and the National Security Council’s
Guiding Principles

The Commission believes its vision for the future is both practical and attainable. To achieve it, however, an overarching set of principles should guide national ocean policy.

- **Sustainability**: Ocean policy should be designed to meet the needs of the present generation without compromising the ability of future generations to meet their needs.
- **Stewardship**: The principle of stewardship applies both to the government and to every citizen. The U.S. government holds ocean and coastal resources in the public trust—a special responsibility that necessitates balancing different uses of those resources for the continued benefit of all Americans. Just as important, every member of the public should recognize the value of the oceans and coasts, supporting appropriate policies and acting responsibly while minimizing negative environmental impacts.
- **Ocean–Land–Atmosphere Connections**: Ocean policies should be based on the recognition that the oceans, land, and atmosphere are inextricably intertwined and that actions that affect one Earth system component are likely to affect another.
- **Ecosystem-based Management**: U.S. ocean and coastal resources should be managed to reflect the relationships among all ecosystem components, including humans and nonhuman species and the environments in which they live. Applying this principle will require defining relevant geographic management areas based on ecosystem, rather than political, boundaries.
- **Multiple Use Management**: The many potentially beneficial uses of ocean and coastal resources should be acknowledged and managed in a way that balances competing uses while preserving and protecting the overall integrity of the ocean and coastal environments.
- **Preservation of Marine Biodiversity**: Downward trends in marine biodiversity should be reversed where they exist, with a desired end of maintaining or recovering natural levels of biological diversity and ecosystem services.
- **Best Available Science and Information**: Ocean policy decisions should be based on the best available understanding of the natural, social, and economic processes that affect ocean and coastal environments. Decision makers should be able to obtain and understand quality science and information in a way that facilitates successful management of ocean and coastal resources.
- **Adaptive Management**: Ocean management programs should be designed to meet clear goals and provide new information to continually improve the scientific basis for future management. Periodic reevaluation of the goals and effectiveness of management measures, and incorporation of new information in implementing future management, are essential.
- **Understandable Laws and Clear Decisions**: Laws governing uses of ocean and coastal resources should be clear, coordinated, and accessible to the nation’s citizens to facilitate compliance. Policy decisions and the reasoning behind them should also be clear and available to all interested parties.
- **Participatory Governance**: Governance of ocean uses should ensure widespread participation by all citizens on issues that affect them.
- **Timeliness**: Ocean governance systems should operate with as much efficiency and predictability as possible.
- **Accountability**: Decision makers and members of the public should be accountable for the actions they take that affect ocean and coastal resources.
- **International Responsibility**: The United States should act cooperatively with other nations in developing and implementing international ocean policy, reflecting the deep connections between U.S. interests and the global ocean.
Global Environment Policy Coordinating Committee includes a subcommittee to deal with international ocean issues. But there is no multi-issue, interagency mechanism to guide, oversee, and coordinate all aspects of ocean and coastal science and policy.

As part of a new National Ocean Policy Framework, the Commission recommends that Congress establish a National Ocean Council (NOC) within the Executive Office of the President, chaired by an Assistant to the President and composed of cabinet secretaries of departments and administrators of independent agencies with relevant ocean- and coastal-related responsibilities (Figure ES.2). The NOC should provide high-level attention to ocean, coastal, and Great Lakes issues, develop and guide the implementation of

![Figure ES.2 Proposed Structure for Coordination of Federal Ocean Activities](image-url)

Shown here are the institutional components that should be established in the Executive Office of the President (EOP) to improve federal leadership and coordination of the nation’s oceans and coasts. This diagram also illustrates the organizational relationship between these new components and existing units in the EOP.
appropriate national policies, and coordinate the many federal departments and agencies with ocean and coastal responsibilities. The Assistant to the President should also advise OMB and the agencies on appropriate funding levels for important ocean- and coastal-related activities, and prepare a biennial report as mandated by Section 5 of the Oceans Act of 2000. A Committee on Ocean Science, Education, Technology, and Operations and a Committee on Ocean Resource Management should be created under the NOC to support its coordination and planning functions.

A President’s Council of Advisors on Ocean Policy, consisting of representatives from state, territorial, tribal, and local governments and academic, public interest, and private sector organizations, should also be established to ensure a formal structure for nonfederal input to the NOC and the President on ocean and coastal policy matters.

A small Office of Ocean Policy should provide staff support to all the bodies discussed above. Pending congressional action, the Commission recommends that the President put this structure in place through an executive order.

An Enhanced Regional Approach

Ensuring full state, territorial, tribal, and local participation in ocean policy development and implementation is a critical element of the new National Ocean Policy Framework. Many of the nation’s most pressing ocean and coastal issues are local or regional in nature and their resolution requires the active involvement of state and local policy makers, as well as a wide range of stakeholders.

One of the priority tasks for the new National Ocean Council should be to develop and promote a flexible, voluntary process that groups of states could use to establish regional ocean councils. These regional ocean councils would then serve as focal points for discussion, cooperation, and coordination. They would improve the nation’s ability to respond to issues that cross jurisdictional boundaries and would help policy makers address the large-scale connections and conflicts among watershed, coastal, and offshore uses. To complement and support this effort, the President should direct all federal agencies with ocean-related functions to immediately improve their regional coordination, moving over time to adopt a common regional structure (Figure ES.3).

Figure ES.3 Alignment of Federal Regions Is Essential for Communication

![Figure showing alignment of federal regions](image)

Shown above are the existing regional management areas for three federal agencies. Because these areas do not coincide, it is difficult for the agencies to coordinate and communicate about issues of common concern at the regional level. Furthermore, this lack of coordination impedes their ability to effectively interact with regional, state, territorial, tribal, and local entities on a regional basis.
One pervasive problem for state and local managers is lack of sufficient, reliable information on which to base decisions. The Commission recommends that governors within a region identify an appropriate organization to create a regional ocean information program. Such programs will identify user-driven regional priorities for research, data, and science-based information products and help meet those needs by enhancing existing resources and promoting education, training, and outreach in support of improved ocean and coastal management.

Coordinated Governance of Offshore Waters

The nation's vast offshore ocean areas are becoming an increasingly appealing place to pursue economic activities (Figure ES.4). Well-established institutional frameworks exist for longstanding ocean uses, such as fishing and energy extraction; however, authorities governing new activities, such as the placement of wind farms or aquaculture facilities, need to be clarified. A comprehensive offshore management regime is needed that enables us to realize the ocean's potential while safeguarding human and ecosystem health, minimizing conflicts among users, and fulfilling the government's obligation to manage the sea in a way that maximizes long-term benefits for all the nation's citizens.

The National Ocean Council, supported by congressional action where necessary, should ensure that each current or foreseeable activity in federal waters is administered by a lead federal agency. Well-developed laws or authorities that cover existing programs would not be supplanted, but the lead agency would be expected to continue and enhance coordination among all other involved federal partners. For emerging ocean activities whose management is ill defined, dispersed, or essentially non-existent, the National Ocean Council and Congress, working with affected stakeholders, should ensure that the lead agency provides strong coordination, while working toward a more comprehensive governance structure.

Figure ES.4 Coordination Is Essential in Busy Offshore Waters

Like many offshore areas of the nation, the waters off a small portion of the New England coast are home to a number of existing and proposed activities. In addition to the uses shown above, many offshore areas also contain dredging projects, marine protected areas, fishery closures, recreational activities, artificial reefs, and in certain coastal regions, oil and gas development. User conflicts can and do arise when incompatible activities take place in the same area. A comprehensive offshore management regime is needed for the balanced coordination of all offshore uses.

Source: Minerals Management Service, Washington, DC.
Based on an improved understanding of offshore areas and their resources, the federal government should work with appropriate state and local authorities to ensure that the many different activities within a given area are compatible, in keeping with an ecosystem-based management approach. As the pressure for offshore uses grows, and before serious conflicts arise, it is critical that the National Ocean Council review the complete array of single-purpose offshore programs with the goal of achieving coordination among them.

Ultimately, a streamlined program for each activity should be combined with a comprehensive offshore management regime that considers all uses, addresses the cumulative impacts of multiple activities, and coordinates the many authorities with interests in offshore waters. The National Ocean Council, President's Council of Advisors on Ocean Policy, federal agencies, regional ocean councils, and states will all have roles to play in realizing more coordinated, participatory management of offshore ocean activities.

In considering the coordination of ocean activities, marine protected areas provide one valuable tool for achieving more ecosystem-based management of both nearshore and offshore areas. Such areas can be created for many different reasons including: enhancement of living marine resources; protection of habitats, endangered species, and marine biological diversity; or preservation of historically or culturally important submerged archeological resources. Marine protected areas may also provide scientific, recreational, and educational benefits. The level of protection and types of activities allowed can vary greatly depending on the goals of the protected area.

With its multiple use, ecosystem-based perspective, the National Ocean Council should oversee the development of a flexible process—one that is adaptive and based on the best available science—to design, implement, and assess marine protected areas. Regional ocean councils, or other appropriate entities, can provide a forum for engaging all stakeholders in this process.

A Strengthened Federal Agency Structure

Improved coordination through a National Ocean Council is necessary, but not sufficient to bring about the depth of change needed. Some restructuring of existing federal agencies will be needed to make government less redundant, more flexible, more responsive to the needs of states and stakeholders, and better suited to an ecosystem-based management approach. Because of the significant hurdles involved, a phased approach is suggested.

The National Oceanic and Atmospheric Administration (NOAA) is the nation’s primary ocean agency. Although it has made significant progress in many areas, there is widespread agreement that the agency could manage its activities more effectively. In addition, many of the recommendations in this report call for NOAA to handle additional responsibilities. A stronger, more effective, science-based and service-oriented ocean agency is needed—one that works with others to achieve better management of oceans and coasts through an ecosystem-based approach.

As an initial step in a phased approach, Congress should pass an organic act that codifies the existence of NOAA. This will strengthen the agency and help ensure that its structure is consistent with three primary functions: management; assessment, prediction, and operations; and research and education. To support the move toward a more ecosystem-based management approach within and among federal agencies, the Office of Management and Budget (OMB) should review NOAA’s budget within its natural resource programs directorate, rather than the general government programs directorate. This change would make it easier to reconcile NOAA’s budget with those of the other major resource-oriented departments and agencies, all of which are reviewed as natural resource programs at OMB.

As a second step in the phased approach, all federal agencies with ocean-related responsibilities should be reviewed and strengthened and overlapping programs should be considered for consolidation. Programmatic overlaps can be positive, providing useful
checks and balances as agencies bring different perspectives and experiences to the table. However, they can also diffuse responsibility, introduce unnecessary redundancy, raise administrative costs, and interfere with the development of a comprehensive management regime. The Commission recommends that program consolidation be pursued in areas such as area-based ocean and coastal resource management, invasive species, marine mammals, aquaculture, and satellite-based Earth observing. The Assistant to the President, with advice from the National Ocean Council and the President's Council of Advisors on Ocean Policy, should review other federal ocean, coastal, and atmospheric programs, and recommend additional opportunities for consolidation.

Ultimately, our growing understanding of ecosystems and the inextricable links among the sea, land, air, and all living things, points to the need for more fundamental reorganization of the federal government. Consolidation of all natural resource functions, including those involving oceans and coasts, would enable federal agencies to move toward true ecosystem-based management.

Sound Science and Information for Wise Decisions

An effective national ocean policy should be based on unbiased, credible, and up-to-date scientific information. Unfortunately, the oceans remain one of the least explored and most poorly understood environments on the planet, despite some tantalizing discoveries over the last century.

Sustained investments will be required to: support research and exploration; provide an adequate infrastructure for data collection, science, and management; and translate new scientific findings into useful and timely information products for managers, educators, and the public. This is especially true as we move toward an ecosystem-based management approach that imposes new responsibilities on managers and requires improved understanding of physical, biological, social, and economic forces.

Investing in Science and Exploration

Over the past two decades, with our oceans, coasts, and Great Lakes under siege, federal investment in ocean research has stagnated while other fields have grown. As a result, ocean science funding has fallen from 7 percent of the total federal research budget twenty-five years ago to just 3.5 percent today. This lagging support in the United States, combined with growing foreign capability, has lessened the nation's pre-eminence in ocean research, exploration, and technology development. Chronic under-investment has also left much of our ocean-related infrastructure in woefully poor condition.

The current annual federal investment in marine science is well below the level necessary to adequately meet the nation's needs for coastal and ocean information. The Commission urges Congress to double the federal ocean and coastal research budget over the next five years, including a national program of social science and economic research to examine the human dimensions and economic value of the nation's marine resources. In addition, a dedicated ocean exploration program should be launched to unlock the mysteries of the deep by discovering new ecosystems, natural resources, and archaeological treasures.

A renewed U.S. commitment to ocean science and technology will require not only substantially increased funding, but also improved strategic planning, closer interagency coordination, robust technology and infrastructure, and 21st century data management systems. The Commission recommends: creation of a national strategy for ocean research that will guide individual agencies' ten-year science plans; enhancement and maintenance of the nation's ocean and coastal infrastructure; and development of new technologies, with more rapid transition of experimental technologies into operational applications.
Launching a New Era of Data Collection

The Integrated Ocean Observing System
About 150 years ago, this nation set out to create a comprehensive weather forecasting and warning network. Today it is hard to imagine living without constantly updated and increasingly accurate weather reports. Now it is time to fully incorporate the oceans in this observational and forecasting capability. A sustained, national Integrated Ocean Observing System (IOOS) will provide invaluable economic, societal, and environmental benefits, including improved warnings of coastal and health hazards, more efficient use of living and nonliving resources, safer marine operations, and a better understanding of climate change. Our information needs are growing and the challenges we face along our coasts and in our oceans are escalating. The nation needs to substantially advance its ability to observe, monitor, and forecast ocean and coastal conditions, and contribute to global Earth observing capabilities (Figure ES.5).

The Commission recommends that the Federal government, through the National Ocean Council, make the development and implementation of the IOOS a high priority, to be organized through a formalized Ocean.US office. The United States simply cannot achieve the levels of understanding and predictive capability needed, or generate the information required by a wide range of users, without the IOOS. While implementation of the IOOS will require significant, sustained funding, estimates suggest that an operational IOOS will save the United States billions of dollars annually through enhanced weather forecasts, improved resource management, and safer, more efficient marine operations.

The IOOS must meet the needs of a broad suite of users, from scientists to the general public. To maximize its benefits, resource managers at federal, regional, state, and local levels will need to explain their information needs and provide guidance on the most useful outputs and products. The regional observing systems, overseen by Regional Associations, will provide a visible avenue for all users to provide input to the national IOOS.

The National Monitoring Network
Despite the growing threats to ocean, coastal, and Great Lakes waters, there is no national monitoring network in place to assess their status, track changes over time, help identify causes and impacts, or determine the success of management efforts. Increased monitoring is needed not only along the nation’s coasts, but also inland where pollutants often originate, traveling downstream and ultimately affecting coastal waters. A national monitoring network is essential to support the move toward an ecosystem-based management approach that considers the impacts of human activities within the context of the broader biological and physical environment. NOAA, EPA, and USGS should lead an effort to develop a national monitoring network that coordinates and expands existing efforts by federal, state, local, and private entities.
Because of the inherent overlap between inland, coastal, and open-ocean waters, NOAA should ensure that the national monitoring network includes adequate coverage in both coastal areas and the upland reaches that affect them, and that it is closely linked with the IOOS. User communities should participate fully in developing the network, and the data collected should be made available in useful formats to managers and stakeholders so they can make continual progress toward ecosystem-based management goals. The design and implementation of the national monitoring network will require not only federal coordination, but also significant input from states and regional entities.

Turning Data into Useful Information

The data generated from increased research, enhanced monitoring networks, and new observing systems will be essential in improving our management of ocean and coastal resources. However, two major challenges face today's data managers: the sheer volume of incoming data, which strains storage and assimilation capabilities, and the demand for timely access to the data in a variety of formats by user communities. Meeting these challenges will require a concerted effort to modernize the current data management system and will require greatly improved interagency planning and coordination. The Commission recommends the creation of several new programs and partnerships to achieve these goals.

First, Congress should amend the National Oceanographic Partnership Act to establish Ocean.IT, a new federal interagency mechanism to oversee ocean and coastal data management. This interagency group will enhance coordination, harmonize future software and hardware acquisitions and upgrades, and oversee strategic planning and funding. Building partnerships with the private sector and academia should also be a major goal of Ocean.IT.

Second, NOAA and the U.S. Navy should establish an ocean and coastal information management and communications partnership to generate information products relevant to national, regional, state, and local operational needs. Building upon the Navy's model for operational oceanography, this partnership would rapidly advance U.S. coastal and ocean analyses and forecasting capabilities by drawing on the distinct, yet complementary capabilities of each organization and using all available physical, biological, chemical, and socioeconomic data.

The Commission recommends the creation of two additional programs that will aid in the creation and dissemination of information: multi-stakeholder regional ocean information programs to develop and disseminate useful information products on a regional basis; and accelerated coastal and ocean mapping and charting, coordinated through the Federal Geographic Data Committee.

Education: A Foundation for the Future

Testing results suggest that, after getting off to a good start in elementary school, by the time U.S. students graduate from high school their achievement in math and science falls well below the international average (Figure ES.6). More specifically, a 1999 study revealed that just 32 percent of the nation’s adults grasp simple environmental concepts and even fewer understand more complex issues, such as ecosystem decline, loss of biodiversity, or watershed degradation. It is not widely understood that nonpoint source pollution threatens the health of coastal waters, or that mercury in fish comes from human activities via the atmosphere. From excess application of fertilizers, pesticides, and herbicides on lawns, to the trash washed off city streets into rivers and coastal waters, ordinary activities contribute significantly to the degradation of the marine environment, but without an informed and educated citizenry, it will be difficult to achieve a collective commitment to stewardship, sustained investment, and more effective policies.
A new national ocean policy should include a strong commitment to education to reverse scientific and environmental illiteracy, create a strong, diverse workforce, produce informed decision makers, and develop a national stewardship ethic for the oceans, coasts, and Great Lakes. The Commission recommends that all ocean-related agencies take responsibility for promoting education and outreach as an integral part of their missions. Ocean education at all levels, both formal and informal, should be enhanced with targeted projects and continual assessments and improvement.

A national ocean education office, Ocean.ED, should be created under the National Ocean Council to promote nationwide improvements in ocean education. As an interagency office, Ocean.ED should develop a coordinated national strategy and work in partnership with state and local governments and with K–12, university level, and informal educators. The National Science Foundation Centers for Ocean Science Education Excellence provide one outstanding model that should be expanded. Other recommendations include increased funding for training and fellowships, targeted efforts to increase participation by under-represented groups, and closer interaction between scientists and educators. All ocean-related agencies must explore innovative ways to engage people of all ages in learning and stewardship, using the excitement of ocean science and exploration as a catalyst.

Specific Management Challenges

Building on the foundation of improved governance, new scientific information, and enhanced education, the Commission’s report covers the full breadth of topics included in its charge from Congress. As a result, it includes over 200 recommendations that span the gamut of ocean and coastal issues, ranging from upstream areas to the depths of the sea, from practical problem solving to broad guidance for ocean policy.

Several important issues pose particular challenges and are highlighted in the following sections. The full report addresses these topics and a number of others in much greater depth.

Managing Coasts and Their Watersheds

While coastal watershed counties comprise less than 25 percent of the land area in the United States, they are home to more than 52 percent of the total U.S. population. On average, some 3,600 people a day are moving to coastal counties, suggesting that by 2015 coastal populations will reach a total of 165 million. With another 180 million people visiting the coast each year, the pressure on our oceans, coasts, and Great Lakes will become ever more intense and the need for effective management greater (Figure ES.7).

Population growth and tourism bring many benefits to coastal communities and the nation, including new jobs, businesses, and enhanced educational opportunities. The great popularity of these areas, however, also puts more people and property at risk from
EXECUTIVE SUMMARY

coastal hazards, reduces and fragments fish and wildlife habitat, alters sediment and water flows, and contributes to coastal water pollution. Fortunately, we are gaining a much-improved understanding of human influences on coastal ecosystems, whether they originate locally, regionally, or in watersheds hundreds of miles upstream.

Without question, management of the nation's coastal zone has made great strides, but further improvements are urgently needed, with an emphasis on ecosystem-based, watershed approaches that consider environmental, economic, and social concerns. The Commission recommends that federal area-based coastal programs be consolidated and federal laws be modified to improve coastal resource protection and sustainable use. Congress should reauthorize and boost support for the Coastal Zone Management Act, strengthening the management capabilities of coastal states and enabling them to incorporate a watershed focus. The Coastal Zone Management Act, Clean Water Act, and other federal laws should be amended to provide financial, technical, and institutional support for watershed initiatives.

At the highest level, the National Ocean Council should develop national goals and direct changes to better link coastal and watershed management and minimize impacts asso-

As shown by 2000 U.S. Census figures, population density is generally highest in coastal areas, including counties surrounding the Great Lakes. Population growth and increasing population density in coastal counties reflect the attraction of the coast but also result in increased environmental impacts on coastal ecosystems.

associated with coastal population and housing growth. The President's Council of Advisors on Ocean Policy can serve as a forum through which nonfederal entities have an opportunity to provide critically needed input to help guide this change. Regional ocean councils can also provide a mechanism for coordinating coastal and watershed management.

Guarding People and Property against Natural Hazards

Conservative estimates of damages from natural hazards, looking only at direct costs such as those for structural replacement and repair, put nationwide losses at more than $50 billion a year. Some experts believe this figure represents only half or less of the true costs. More accurate figures are unavailable because the United States does not consistently collect and compile such data, let alone focus specifically on losses in coastal areas or costs associated with damage to natural environments.

Many federal agencies have explicit operational responsibilities related to hazards management, while others provide technical information or deliver disaster assistance. The nation’s lead agencies for natural hazards planning, response, recovery, and mitigation are the Federal Emergency Management Agency (FEMA) and the U.S. Army Corps of Engineers (USACE). These agencies implement programs that specifically target the reduction and management of risks from natural hazards.

Opportunities for improving Federal natural hazards management include: modifying federal infrastructure policies that encourage inappropriate development in hazard-prone areas; augmenting hazards information collection, analysis, and dissemination; refining the National Flood Insurance Program (NFIP); and undertaking effective and universal state and local hazards mitigation planning.

Conserving and Restoring Coastal Habitat

The diverse habitats that comprise the ocean and coastal environment provide tangible benefits such as filtering pollutants from runoff, buffering coastal communities against the effects of storms, and providing a basis for booming recreation and tourism industries. These habitats also supply spawning grounds, nurseries, shelter, and food for marine life, including a disproportionate number of endangered or commercially important species.

As more people come to the coast to live, work, and visit, coastal habitats are increasingly stressed and damaged. Over the past several decades the nation has lost millions of acres of wetlands, seen the destruction of seagrass and kelp beds, and faced a loss of significant mangrove forests. Cost-effective conservation and restoration programs should be expanded according to a national strategy that sets goals and priorities, enhances the effectiveness and coordination of individual efforts, and periodically evaluates progress. Many habitat conservation and restoration projects have been successful, but continued progress will depend on sustained funding, improved government leadership and coordination, enhanced scientific research and monitoring, better education and outreach, and solid stakeholder support.

Managing Sediment and Shorelines

From a human perspective, sediment has a dual nature—desirable in some locations and unwanted in others—making its management particularly challenging. The natural flow of sediment over land and through waterways is important for sustaining coastal habitats and maintaining beaches. Too little sediment can lead to declining habitats, diminishing wetlands and eroding beaches. However, excess or contaminated sediment can block shipping channels, destroy habitats, poison the food chain, and endanger lives. Navigational dredging, infrastructure projects, farming, forestry, urban development, industrial opera-
tions, and many other necessary and beneficial human activities can interfere with natural sediment processes, adversely affecting the interests of other stakeholders and the environment.

The nation must overcome several challenges to improve its management of sediment. The natural processes that create, move, and deposit sediment operate on regional scales, while today’s management regime generally addresses discrete locations—a single beach, wetland, or port—and rarely addresses broader upstream or coastal activities that affect sediment processes. To complicate matters further, the policies that control sediment dredging, transport, and quality fall under the jurisdiction of an assortment of programs within multiple agencies at all levels of government. Finally, our understanding of natural sediment processes, and how human activities affect sediment movement, is still limited.

A national sediment management strategy is needed that balances ecological and economic needs according to an ecosystem-based management approach. Such a strategy should consider sediment on a multi-project, regional, watershed basis, and should involve all relevant parties. Participation in watershed management efforts by federal, state, and local entities, along with key stakeholders such as coastal planners and port managers, is an important step in diminishing upland sources of excess or contaminated sediment. Scientifically sound methods for characterizing contaminated sediment, combined with innovative technologies for dredging, treatment, and disposal of this material, will also be critical.

Supporting Marine Commerce and Transportation

Global trade is an essential and growing component of the nation’s economy, accounting for nearly 7 percent of the gross domestic product. The vast majority of our import-export goods pass through the nation’s extensive marine transportation system (Figure ES.8). To meet current demands and prepare for expected growth in the future, this system will require maintenance, improvement, and significant expansion.

A first step in the process will be better coordination, planning, and allocation of resources at the federal level. As part of a national move toward an ecosystem-based management approach, the efficient, safe, and secure movement of cargo and passengers should be well coordinated with other ocean and coastal uses and activities, and with efforts to protect the marine environment.

Specific recommendations include giving the Department of Transportation (DOT) lead responsibility within the federal government for oversight of the marine transportation system, including regular assessments of its status and future needs. DOT should develop an integrated national freight transportation strategy that strengthens the links between ports and other modes of transportation to support continued growth of international and domestic trade. In developing a national freight transportation strategy, DOT should work closely with the U.S. Department of Homeland Security and FEMA to incorporate port security and other emergency preparedness requirements.
To ensure good coordination, the Interagency Committee for the Marine Transportation System should be strengthened, codified, and placed under the oversight of the National Ocean Council. Because marine transportation is primarily a nonfederal activity, the Marine Transportation System National Advisory Council should also be maintained to provide a venue for outside input to the federal government on relevant issues.

Addressing Coastal Water Pollution

Coastal and ocean water quality is threatened by multiple sources of pollution, including point, nonpoint, and atmospheric sources, vessels, invasive species, and trash being washed onto beaches and into the ocean. Addressing these many sources requires development of an ecosystem-based and watershed management approach that draws on a variety of management tools. Because water contamination problems are complex and pervasive, their solution will require substantial investments of federal resources and greatly enhanced coordination both among federal agencies (primarily EPA, NOAA, USDA, and USACE) and between the federal government and managers at state, territorial, tribal, and local levels, in addition to watershed groups, nongovernmental organizations, private stakeholders, and the academic and research communities.

Over the last few decades, great strides have been made in reducing water pollution from point sources, although further improvements can be realized through increased funding, strengthened enforcement, and promotion of innovative approaches, such as market-based incentives. Persistently troublesome point sources of pollution, including wastewater treatment plants, sewer system overflows, septic systems, industrial facilities, and animal feeding operations, must continue to be addressed.

But the widespread and growing problem of nonpoint source pollution (Figure ES.9) has not seen similar success. Significant reduction of such pollution in all impaired coastal watersheds should be established as a national goal with measurable objectives set to meet water quality standards. Federal nonpoint source pollution programs should be better coordinated so they are mutually supportive. Because agricultural runoff contributes substantially to such pollution, USDA should align its conservation programs, technical assistance, and funding with EPA and NOAA programs for reducing nonpoint source pollution. State and local governments can also play central roles through better land-use planning and stormwater management.

Pollution reduction efforts should include the aggressive use of state revolving loan funds, implementation of incentives to reward good practices, and improved monitoring to assess compliance and overall progress. Congress should also amend the Clean Water Act to authorize federal financial disincentives to discourage activities that degrade water quality and to provide federal authority to act if a state chronically fails to make progress in controlling nonpoint sources.

Given the natural functioning of hydrologic systems, watersheds are often the appropriate geographic unit within which to address water-related problems. Collaborative watershed groups have had particular success in addressing nonpoint source pollution. The federal government should strengthen collaborative watershed groups by providing them with adequate technical, institutional, and financial support.

Figure ES.9 Controlling Nonpoint Source Pollution Is Key to Cleaner Waters

Combination of Point and Nonpoint Sources

Point Sources Only

Nonpoint Sources Only

Nonpoint source pollution is a factor in 90 percent of all incidents where water quality is determined to be below the standards set for specific activities, such as recreation, water supply, aquatic life, or agriculture.

Because contaminants can travel long distances through the atmosphere and be deposited far from their origin, EPA and states should also develop and implement regional and national strategies for controlling this source of water pollution, building upon efforts such as the EPA Air-Water Interface Work Plan. In addition, the United States should participate in a vigorous international research program on the sources and impacts of atmospheric deposition and play a leadership role in negotiating international solutions.

Limiting Vessel Pollution and Improving Vessel Safety

Ships carry more than 95 percent of the nation’s overseas cargo, but their operations also present safety, security, and environmental risks. To minimize these risks, the Commission recommends that the U.S. Coast Guard work with industry partners and enhance incentive programs to encourage voluntary commitments from vessel owners and operators to build a workplace ethic that values safety, security, and environmental protection as central components of everyday vessel operations. These voluntary measures should be complemented by effective oversight and monitoring, whether conducted by the Coast Guard or third-party audit firms, and backed up by consistent enforcement efforts, including performance-based vessel inspections.

The United States should also work with other nations, through the International Maritime Organization, to enhance flag state oversight and enforcement. Initiatives should include expeditious promulgation of a code outlining flag state responsibilities and development of a mandatory external audit regime to evaluate flag state performance and identify areas where additional technical assistance is needed.

Control over vessels entering U.S. ports should be improved by ensuring that the Coast Guard has sufficient resources to sustain and strengthen its performance-based inspection program for marine safety and environmental protection, while also meeting its enhanced security responsibilities. In addition, the Coast Guard should work at the regional and international levels to increase effective coordination and vessel information sharing among concerned port states.

A number of other important vessel-related priorities are discussed in the report, including the need for a uniform national regime to deal with cruise ship waste streams and reduction of recreational vessel pollution.

Preventing the Spread of Invasive Species

The introduction of non-native organisms into ports, coastal areas, and watersheds is causing harm to marine ecosystems around the world resulting in millions of dollars in costs for monitoring, control, and remediation. The most effective weapon against invasive species is prevention. To control the introduction of invasive species through ships’ ballast water, a major pathway, the U.S. Coast Guard’s national ballast water management program should: incorporate sound science in the development of biologically meaningful, mandatory, and enforceable ballast water treatment standards; develop new treatment technologies, revising the standards as needed to incorporate these technologies; and allow for full consultation with EPA.

To address introduction pathways other than ballast water, such as ships’ hulls, anchors, navigational buoys, drilling platforms, fishing activities, the aquarium trade, aquaculture, and floating marine debris, the Departments of Agriculture, Commerce, the Interior, and Homeland Security should more actively monitor and prevent the importation of potentially invasive aquatic species. Because prevention will never be entirely effective, the Commission also recommends the development of a national plan for early detection of invasive species and a system for prompt notification and rapid response.

The National Ocean Council, working with the Aquatic Nuisance Species Task Force and the National Invasive Species Council, should review and streamline the current pro-
liferation of federal and state programs for managing invasive species and should coordinate education and outreach efforts to increase public awareness about the importance of prevention. In the long run, a rigorous program of research, technology development, and monitoring will be needed to understand and effectively prevent aquatic species invasions.

Reducing Marine Debris

Marine debris refers to the enormous amount of trash, abandoned fishing gear, and other waste that can be found drifting around the global ocean and washing up along its coastlines, posing serious threats to wildlife, habitats, and human health and safety. Approximately 80 percent of this debris originates on land, either washed along in runoff, blown by winds, or intentionally dumped from shore, while 20 percent comes from offshore platforms and vessels, including fishing boats.

The Commission recommends that NOAA, as the nation’s primary ocean and coastal management agency, reestablish its defunct marine debris program to build on and complement EPA’s modest program. NOAA and EPA should expand their marine debris efforts, taking advantage of each agency’s strengths by pursuing public outreach and education; partnerships with local governments, community groups, and industry; and strengthened research and monitoring efforts.

An interagency committee under the National Ocean Council should coordinate federal marine debris programs and take maximum advantage of the significant efforts conducted by private citizens, state and local governments, and nongovernmental organizations.

The United States should also remain active on the international level. An immediate priority is the development of an international plan of action to address derelict fishing gear on the high seas.

Achieving Sustainable Fisheries

Over the last thirty years, the fishing industry has evolved from being largely unmanaged, with seemingly boundless opportunities, to one that is highly regulated and struggling to remain viable in some places. While the current regime has many positive features, such as an emphasis on local participation, the pairing of science and management, and regional flexibility, it has also allowed overexploitation of many fish stocks, degradation of habitats, and negative impacts on many ecosystems and fishing communities.

The Commission’s recommendations to improve fishery management can be grouped into six areas: re-emphasizing the role of science in the management process; strengthening the Regional Fishery Management Council (RFMC) system and clarifying jurisdictions; expanding the use of dedicated access privileges; improving enforcement; adopting an ecosystem-based management approach; and strengthening international management.

To strengthen the link between strong science and sustainable fishery management, RFMCs should be required to rely on the peer-reviewed advice of their Scientific and Statistical Committees (SSCs), particularly in setting harvest levels. In particular, an RFMC should not be allowed to approve any measure that exceeds the allowable biological catch recommended by its SSC. Because of their importance in the process, SSC members should be nominated by the RFMCs but appointed by the Administrator of NOAA, and their credentials and potential conflicts of interest should be vetted by an external organization. An expanded research program is needed that involves fishermen where possible and is responsive to managers’ requirements.

Several recommendations are made concerning the composition, responsibilities, and jurisdiction of the various federal and interstate fishery management entities. In particular, membership on the RFMCs needs to be diversified and new members should receive consistent training in the often arcane vocabulary and policies involved in U.S. fishery management.
To reverse existing incentives that create an unsustainable “race for the fish,” fishery managers should explore the adoption of dedicated access privileges to promote conservation and help reduce overcapitalization. Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to affirm that RFMCs are authorized to institute dedicated access privileges, subject to meeting national guidelines, and every federal, interstate, and state fishery management body should consider the potential benefits of adopting such programs. In addition, Congress should address overcapitalization directly by revising federal programs that subsidize this practice, as well as working with NOAA to develop programs that permanently reduce overcapitalization in fisheries.

Fishery enforcement should be continually strengthened through the adoption of better technologies, such as Vessel Monitoring Systems, better cooperation among federal and state agencies, and enhanced support for the infrastructure, personnel, and programs that make enforcement possible.

Consistent with one of the major themes of this report, fishery management needs to move toward a more ecosystem-based approach to improve its effectiveness and reduce conflicts between socioeconomic forces and biological sustainability. An ecosystem-based management approach will be particularly helpful in protecting essential fish habitat and reducing the impacts of bycatch.

Finally, the U.S. should work with other countries on worldwide adoption and enforcement of international agreements that promote sustainable fishery practices, in particular the United Nations Fish Stocks Agreement and the U.N. Food and Agriculture Organization’s Compliance Agreement and Code of Conduct for Responsible Fisheries. The United States should also continue to press for the inclusion of environmental objectives—particularly those specified in international environmental agreements—as legitimate elements of trade policy.

Protecting Marine Mammals and Endangered Marine Species

The Marine Mammal Protection Act and the Endangered Species Act are landmark laws that have protected marine mammals, sea turtles, seabirds, and other populations at risk since their passage. However, both Acts need to be updated to support the move toward a more ecosystem-based approach.

As in so many other areas of ocean policy, immediate clarification and coordination of federal agency policies is needed. The Commission recommends that Congress consolidate the jurisdiction for marine mammals within NOAA, and that the National Ocean Council improve coordination between NOAA and the U.S. Fish and Wildlife Service in implementation of the Endangered Species Act, particularly for anadromous species or where land-based activities have significant impacts on marine species. Congress should also amend the Marine Mammal Protection Act to require NOAA to specify categories of activities that are allowed without a permit, those that require a permit, and those that are strictly prohibited. The permitting process itself should be streamlined by using programmatic permitting where possible. The definition of harassment in the Marine Mammal Protection Act should also be revised to cover only activities that meaningfully disrupt behaviors that are significant to the survival and reproduction of marine mammals.

The Commission recommends an expanded research, technology, and engineering program, coordinated through the National Ocean Council, to examine and mitigate the effects of human activities—including fishing, pollution, and climate change—on marine mammals, seabirds, sea turtles and all other marine endangered species. In addition, Congress should expand federal funding for research into ocean acoustics and the potential impacts of noise on marine mammals and other species.
Preserving Coral Reefs and Other Coral Communities

Coral communities are among the oldest and most diverse ecosystems on the planet, rivaling tropical rainforests in biodiversity and potential economic value. Unfortunately, like the rainforests, the world's coral reefs are increasingly showing signs of serious decline, with pristine reefs becoming rare and up to one-third of the world's reefs severely damaged according to some estimates.

A strengthened Coral Reef Task Force, under the oversight of the National Ocean Council, should promote immediate actions to reverse the impacts on tropical coral communities from pollution (with EPA and USDA in the lead) and from fishing (with NOAA in the lead). NOAA should be assigned as the lead agency for assessing and protecting the nation's relatively unexplored cold water coral communities, including dedicated research on their distribution and abundance and strategies to reduce major threats to their survival.

Congress should enact a Coral Protection and Management Act that provides direct authorities to protect and manage corals, and creates a framework for research and for cooperation with international efforts. This legislation should include: mapping, monitoring, and research programs to fill critical information gaps; liability provisions for damages to coral reefs, similar to those in the National Marine Sanctuaries Act; outreach activities to educate the public about coral conservation and reduce human impacts; and mechanisms for U.S. involvement in bilateral, regional, and international coral reef programs, particularly through the sharing of scientific, technical, and management expertise.

In many places, harvesting methods continue to damage reefs and overexploit ornamental species. As the world's largest importer of ornamental coral reef resources, the United States has a particular responsibility to help eliminate destructive harvesting practices and ensure the sustainable use of reef resources. The nation should develop standards for the importation of coral species to balance legitimate trade with protection of the world's coral reefs and to ensure that U.S. citizens do not unknowingly promote unsustainable practices.

Setting a Course for Sustainable Marine Aquaculture

Marine aquaculture has the potential to supply a significant part of the ever increasing domestic and global demand for seafood. However, two major concerns must be addressed: environmental problems associated with some aquaculture operations, particularly net-pen facilities, and a confusing, inconsistent array of state and federal regulations that hinder private sector investment.

The Commission recommends that Congress amend the National Aquaculture Act to designate NOAA as the lead federal agency for implementing a national policy on environmentally and economically sustainable marine aquaculture. Through a new Office of Sustainable Marine Aquaculture, NOAA should develop a single, multi-agency federal permitting process for the industry that ensures that aquaculture facilities meet all applicable environmental standards and protects the sustainability and diversity of wild stocks.

Additional investments in research, demonstration projects, and technical assistance can help the industry address environmental issues, conduct risk assessments, develop improved technology, select appropriate species, and create best management practices.

Connecting the Oceans and Human Health

Over the last several decades, scientific studies have demonstrated that the health of humans and the oceans are inextricably linked. Human inputs such as point and nonpoint source pollution adversely affect the health of coastal ecosystems, resulting in conditions which in turn affect human health.
Sewage effluent and stormwater discharges can contaminate water and marine organisms, leading to outbreaks of viral and bacterial diseases with serious medical consequences, and curtailing beach and ocean recreation. Chemicals like polychlorinated biphenyls (PCBs) and toxic metals like mercury enter the oceans from rivers and from atmospheric deposition. Once there, they accumulate in finfish and shellfish, posing potentially serious long-term health threats to consumers. Excessive nutrient inputs from nonpoint source pollution can lead to harmful algal blooms that are toxic to fish and humans and can result in oxygen-depleted “dead zones” that kill marine organisms and decimate recreational and commercial fishing. Global climate change may also result in the spread of human diseases such as cholera and malaria via the marine environment.

On a brighter note, a growing number of important medical treatments and biotechnologies are now based on chemicals that originate from marine organisms. Marine bioproducts with anti-inflammatory and cancer fighting properties are just a few examples of the promising medical advances found in the oceans. A more focused program of exploration and bioprospecting holds great promise for similar discoveries in the future.

Despite these threats and opportunities, our knowledge of the links between the oceans and human health is in its infancy and remains inadequate to make the science-based decisions that are needed. To expand this knowledge base, Congress should establish a major initiative on the oceans and human health. Existing programs at NOAA, NSF, and the National Institute of Environmental Health Sciences should be coordinated under this initiative, with additional input from EPA and FDA.

Managing Offshore Energy and Other Mineral Resources

Oil and gas development on the outer Continental Shelf (OCS) supplies over a quarter of the nation’s domestic oil and gas reserves, and contributes thousands of jobs and billions of dollars to the economy. Although controversial in many locations, the process for oil and gas leasing and production is well developed, reasonably comprehensive, and could serve as a model for implementing offshore renewable energy projects within the context of a coordinated offshore management regime.

To maintain a strong link between ocean uses and ocean management, the Commission recommends dedicating federal revenues from OCS energy leasing and production to ensuring the sustainability of ocean and coastal resources. A portion of these funds should be given to coastal states, with larger shares going to OCS producing states to help address the environmental and economic consequences of energy production.

In addition to oil and gas, other offshore energy sources are being explored. The National Ocean Council (NOC), working with the U.S. Department of Energy and others, should determine whether methane hydrates can contribute significantly to meeting the nation’s long-term energy needs and, if so, what level of investment in research and development is warranted. Renewable energy sources should also be considered as part of a coordinated offshore management regime. Congress, with input from the NOC, should enact legislation to streamline the licensing of renewable energy facilities in U.S. waters, relying on an open, transparent process that accounts for state, local, and public concerns. The legislation should include the principle that the ocean is a public resource and that the U.S. Treasury should receive a fair return from its use.

Advancing International Ocean Science and Policy

The United States has historically been a world leader in international ocean policy, participating actively in the development of international agreements that govern the planet’s ocean areas and resources. That leadership must now be reaffirmed and reinvigorated by acceding to the United Nations Convention on the Law of the Sea, enhancing the partici-
pation of all ocean-related federal agencies in international discussions and negotiations, and taking a leading role in building international capacity in ocean science and management, particularly in developing countries.

The United States can advance its own interests and contribute to the health of the world’s oceans by first ensuring that U.S. domestic policies and actions embody exemplary standards of wise, sustainable ocean management. The new National Ocean Policy Framework will be instrumental in setting this positive tone for the international community. Many additional recommendations for action at the international level are presented throughout the report in the context of specific ocean and coastal management issues, such as international fisheries, global transportation of air pollutants, trade in corals and other living marine resources, the worldwide spread of marine debris, and many others.

Implementing a New National Ocean Policy

There are over 200 recommendations in the Commission’s report, each one calling on specific responsible parties to spearhead its implementation and be accountable for its progress. A large number of recommendations are directed at Congress, the leadership of the executive branch, and federal agencies, as shown in Chapter 31.

Although the Commission has generally targeted few recommendations specifically at state or local governments, it recognizes that a significant enhancement of the ocean and coastal partnership between the federal government and nonfederal governmental and nongovernmental stakeholders is one of the foundations of the new national ocean policy. These entities will have critically important roles to play in the establishment of regional ocean councils, and in areas such as coastal development, water quality, education, natural hazards planning, fishery management, habitat conservation, and much more. Strong state participation is also needed in the design and implementation of regional ocean observing systems and their integration into the national IOOS, as well as in other research and monitoring activities.

A Worthwhile Investment

Implementation of the recommendations in this report will lead to tangible, measurable improvements in U.S. ocean policy and in the health of our oceans, coasts, and Great Lakes. However, significant change cannot be achieved without adequate investments—of time, money, and political will. A summary of costs is presented in Chapter 30, and a detailed breakdown of the cost of each recommendation is provided in Appendix G. The Commission estimates the total additional cost for initiatives outlined in this report at approximately $1.5 billion in the first year and $3.9 billion per year after full implementation. The payoff from these investments will be substantial for the United States and its citizens, benefiting our economy, health, environment, quality of life, and security.

Long Term Support: The Ocean Policy Trust Fund

As noted previously, almost $5 trillion dollars, or one half of the nation’s annual gross domestic product, is generated each year within coastal watershed counties. That enormous economic contribution is now being threatened by the degradation of our oceans, coasts, and Great Lakes. Modest levels of additional funding will reap significant dividends by supporting management strategies that restore and sustain our ocean and coastal resources and maximize their long-term value.

Despite pressing needs, the Commission is mindful of the intense budgetary constraints that exist at both federal and state levels—and is sensitive to the hardships associated with unfunded mandates, whether imposed on state governments or federal agencies. To cover
Critical Actions Recommended by the U.S. Commission on Ocean Policy

The following key recommendations provide the foundation for a comprehensive national ocean policy that will lead to significant improvements in ocean and coastal management.

Improved Governance
- Establish a National Ocean Council in the Executive Office of the President, chaired by an Assistant to the President.
- Create a non-federal President’s Council of Advisors on Ocean Policy.
- Improve the federal agency structure by strengthening NOAA and consolidating federal agency programs according to a phased approach.
- Develop a flexible, voluntary process for creating regional ocean councils, facilitated and supported by the National Ocean Council.
- Create a coordinated management regime for activities in federal offshore waters.

Sound Science for Wise Decisions
- Double the nation’s investment in ocean research, launch a new area of ocean exploration, and create the advanced technologies and modern infrastructure needed to support them.
- Implement the national Integrated Ocean Observing System and a national monitoring network.

Education—A Foundation for the Future
- Improve ocean-related education through coordinated and effective formal and informal efforts.

Specific Management Challenges
- Strengthen coastal and watershed management and the links between them.
- Set measurable goals for reducing water pollution, particularly from nonpoint sources, and strengthen incentives, technical assistance, enforcement, and other management tools to achieve those goals.
- Reform fisheries management by separating assessment and allocation, improving the Regional Fishery Management Council system, and exploring the use of dedicated access privileges.

Implementation
- Establish an Ocean Policy Trust Fund, based on unallocated revenues from offshore oil and gas development and new offshore activities, that is dedicated to supporting improved ocean and coastal management at federal and state levels.

the cost of its recommendations, the Commission believes it is important to identify appropriate, dedicated sources of revenue. In this regard, the nexus between federal offshore activities and the management responsibilities they engender is obvious. Thus, the Commission proposes the creation of an Ocean Policy Trust Fund in the U.S. Treasury, composed of revenues generated from permitted activities in federal waters.

The Trust Fund would start out with OCS oil and gas revenues that are not already committed to the Land and Water Conservation Fund, the National Historic Preservation Fund, or to certain coastal states based on oil and gas production in the three nautical mile area seaward of their submerged lands. After those existing programs are funded in accordance with law, the remaining OCS monies would be deposited into the Trust Fund. New offshore activities, such as renewable energy, aquaculture, or bioprospecting, may
also produce revenues in time, and these should be added to the Fund. Establishment of, and distributions from, the Ocean Policy Trust Fund should be kept separate from any decisions about whether a particular offshore activity should be authorized and permitted.

Approximately $5 billion is generated annually from OCS oil and gas revenues. Protecting the three programs noted above would remove about $1 billion from that total. Thus, some $4 billion would remain available for the Ocean Policy Trust Fund each year under current projections. It is not possible to estimate the level of revenue that might accompany emerging activities in federal waters, nor to predict when this income could begin to flow, but the amounts may be significant in years to come.

Trust Fund monies should be used to support the additional research, education, and management responsibilities recommended for federal and state agencies and other appropriate coastal authorities, consistent with a coordinated and comprehensive national ocean policy. Such funds would be used to supplement—not replace—existing appropriations for ocean and coastal programs, and to fund new or expanded duties.

Call to Action

This report reflects the input of hundreds of Americans from across the nation, testimony from many of the world’s leading experts, and months of deliberation. The recommendations contained within can set the course toward a future in which our oceans, coasts, and Great Lakes are healthy, enjoyed, and treasured by all people, and America’s marine resources are restored and sustained for generations to come.

The opportunity is here and the time to act is now. A new national ocean policy can be implemented that balances ocean use with sustainability, is based on sound science and supported by excellent education, and is overseen by a coordinated system of governance with strong leadership at national and regional levels. It will take great political will, significant fiscal investment, and strong public support, but in the long run all of America will benefit from these changes.
PART I

OUR OCEANS: A NATIONAL ASSET

CHAPTER 1
Recognizing Ocean Assets and Challenges .. 30

CHAPTER 2
Understanding the Past to Shape a New National Ocean Policy .. 48

CHAPTER 3
Setting the Nation’s Sights .. 60
America’s oceans and coasts are priceless assets. Indispensable to life itself, they also contribute significantly to our prosperity and overall quality of life. Too often, however, we take these gifts for granted, underestimating their value and ignoring our impact on them. Then our use of the oceans becomes abuse, and the productive capacity of our marine resources is diminished.

The nation needs a comprehensive national ocean policy, implemented through an integrated and coordinated management structure that results in greater participation and collaboration in decision making. By rising to the challenge and addressing the many activities that are degrading the oceans and coasts, America can protect the marine environment while creating jobs, increasing revenues, enhancing security, protecting cultural heritage, expanding trade, and ensuring ample supplies of energy, minerals, healthy food, and life-saving drugs.

Evaluating the Vast Wealth of U.S. Oceans and Coasts

America is a nation surrounded by and reliant on the oceans. From the fisherman in Maine, to the homemaker in Oregon, to the businessperson in Miami, and even the farmer in Iowa, every American influences and is influenced by the sea. Our grocery stores are stocked with fish, our docks bustle with waterborne cargo, and millions of tourists visit our coastal communities each year, creating jobs and pumping dollars into our economy. Born of the ocean are clouds that bring life-sustaining rain to our fields and reservoirs, microscopic plankton that generate the oxygen we breathe, energy resources that fuel industry and sustain our standard of living, and a diversity of biological species that is unmatched on land. Careful stewardship of our ocean and coastal resources is imperative to conserve and enhance the financial, ecological, and aesthetic benefits we have come to rely upon and enjoy.

Economic and Employment Value

America’s oceans and coasts are big business. The United States has jurisdiction over 3.4 million square nautical miles of ocean territory in its exclusive economic zone—larger...
than the combined land area of all fifty states. Millions of families depend on paychecks earned directly or indirectly from the value of the sea, including the magnetic pull of the nation's coasts and beaches. However, our understanding of the full economic value of these resources is far from complete. In contrast to sectors like agriculture on which the federal government spends more than $100 million a year for economic research, we do not make a serious effort to analyze and quantify the material contributions of our oceans and coasts. Standard government data are not designed to measure the complex ocean economy. They also ignore the intangible values associated with healthy ecosystems, including clean water, safe seafood, healthy habitats, and desirable living and recreational environments. This lack of basic information has prevented Americans from fully understanding and appreciating the economic importance of our oceans and coasts.

To better inform the public and policy makers, the U.S. Commission on Ocean Policy partnered with the National Ocean Economics Project to produce an economic study, “Living Near... And Making A Living From... The Nation's Coasts And Oceans” (Appendix C). This study pulls together information from a wide range of sources and clearly shows that our oceans and coasts are among our nation's most vital economic assets. In so doing, it distinguishes between the ocean economy, the portion of the economy that relies directly on ocean attributes, and the coastal economy, which includes all economic activity that takes place on or near the coast, whether or not that activity has a direct link to the sea.

In 2000, the ocean economy contributed more than $117 billion to American prosperity and supported well over two million jobs. Roughly three-quarters of the jobs and half the economic value were produced by ocean-related tourism and recreation (Figure 1.1). For comparison, ocean-related employment was almost 1 1/2 times larger than agricultural employment in 2000, and total economic output was 2 1/2 times larger than that of the farm sector.

The level of overall economic activity within coastal areas is even higher (Figure 1.2). More than $1 trillion, or one-tenth, of the nation's annual gross domestic product (GDP) is generated within nearshore areas, the relatively narrow strip of land immediately adjacent to the coast. Looking at all coastal watershed counties, the contribution swells to over $4.5 trillion, half of the nation's GDP. (For definitions of the different coastal zones, see Box 1.1.) The contribution to employment is equally impressive, with sixteen million jobs in nearshore areas and sixty million in coastal watershed counties. (See Appendix C for additional details.)

Even these remarkable numbers do not fully capture the economic contributions of oceans and coastal industries. More than thirteen million jobs are related to trade transported by the network of inland waterways and ports that support U.S. waterborne commerce. The oceans provide tremendous value to our national economy. Annually, the nation's ports handle more than $700 billion in goods, and the cruise industry and its passengers account for $12 billion in spending. The commercial fishing industry's total value exceeds $28 billion annually, with the recreational saltwater fishing industry valued at around $20 billion, and the annual U.S. retail trade in ornamental fish worth another

![Figure 1.1 The Value of the Oceans](image-url)
Nationwide retail expenditures on recreational boating exceeded $30 billion in 2002. Governments at all levels, universities, and corporations provide many other jobs in ocean-related fields ranging from management and law enforcement to pollution prevention and research.

Our oceans and coasts are among the chief pillars of our nation’s wealth and economic well-being. Yet our lack of full understanding of the complexity of marine ecosystems, and our failure to properly manage the human activities that affect them, are compromising the health of these systems and diminishing our ability to fully realize their potential.

Marine Transportation and Ports

The quality of life in America, among the best in the world, is made possible partly through access to goods and markets from around the globe. Our ports are endowed with modern maritime facilities and deep-water channels. Over the next two decades, overseas trade via U.S. ports, including the Great Lakes, is expected to double in volume; for some ports and types of trade, this increase will be even greater. The expanding ferry and cruise line industries continue to provide economically valuable means of transportation for work and leisure. Marine transportation and ports also play a central role in national security as U.S. harbors and ports are major points of entry to our country.

Marine Fisheries

Sustainable sources of fish and shellfish are critical to the United States as a source of healthy food, financial revenue, and jobs. Americans consume more than 4 billion pounds of seafood at home or in restaurants and cafeterias every year. This represents about $54 billion in consumer expenditures. As the population grows and problems such as heart disease and obesity continue to plague our nation, the desire and need for a relatively low-fat source of protein will rise. If every person in America followed the American Heart Association’s recommendation to eat at least two servings of fish per week, the United States would need an additional 1½ billion pounds of seafood each year.
Worldwide, fish are even more important as a source of protein. More than three billion people derive at least one-fifth of their needed protein from freshwater and saltwater fish, and in some parts of the world, fish provide the sole source of animal protein. The aquaculture industry, which has become the fastest growing sector of the world food economy, now supplies more than 25 percent of the globe’s seafood consumption.11,12

In addition to their dietary value, fish are fundamental to the economy, culture, and heritage of many coastal communities in the United States. Fishing has deep cultural, even spiritual, roots in many seafaring cities and villages where it has provided both a vocation and recreation for hundreds of years.

Offshore Energy, Minerals, and Emerging Uses

Valuable oil and mineral resources are found off our shores and in the seabed; they fuel our cars and our economy, provide materials for construction and shoreline protection, and offer exciting opportunities for the future. Currently, about 30 percent of the nation’s oil supplies and 25 percent of its natural gas supplies are produced from offshore areas.13 These energy supplies also provide a major source of revenue and tens of thousands of jobs. Since the start of the offshore oil and gas program, the U.S. Department of the Interior has distributed an estimated $145 billion to various conservation funds and the U.S. Treasury from bonus bid and royalty payments related to ocean energy.14

While advances in technology are enabling the offshore industry to drill deeper, cleaner, and more efficiently, increasing energy demands coupled with environmental concerns have spurred efforts to find alternative sources of power. Modern technology is creating the opportunity to use wind, waves, currents, and ocean temperature gradients to produce renewable, clean energy in favorable settings. Extensive gas hydrates in the seabed also hold promise as a potential—though not yet economically and environmentally feasible—source of energy.

In addition to energy, our offshore waters and the underlying seabed are also rich sources of non-petroleum minerals. As easily accessible sand resources are depleted, offshore areas along the Atlantic and Gulf coasts will be used increasingly to provide such resources to restore and protect coastal communities, beaches, and habitat. Minerals, such as phosphates, polymetallic sulfides, and deposits that form around high-temperature vents, may also have commercial value some day if technical and economic barriers to their extraction can be overcome.

Interest in the ocean goes beyond the traditional resource industries. The telecommunications industry’s investment in submerged cables will continue as international communication needs expand. There is also growing interest in other offshore uses including aquaculture, carbon dioxide sequestration, artificial reefs, conservation areas, research and observation facilities, and natural gas offloading stations.

Human Health and Biodiversity

The ocean provides the largest living space on Earth and is home to millions of known species, with millions more yet to be discovered. An expedition to previously unexplored waters typically leads to the discovery of dozens of new species. Within this vast biological storehouse, there exists a treasure trove of potentially useful organisms and chemicals that provide the foundation for a budding multibillion-dollar marine biotechnology industry.

Over the past two decades, thousands of marine biochemicals have been identified. Many have potential commercial uses, especially in the fields of health care and nutrition. For example, a chemical originally derived from a sea sponge is now the basis of an antiviral medicine and two anti-cancer drugs. Blood drawn from the horseshoe crab is used to detect potentially harmful toxins in drugs, medical devices, and water. A synthetic drug
Box 1.1 Defining Coastal Areas

The coast is a widely used term encompassing numerous geographic subregions within the broad area where the land meets the sea. Areas of the coast identified in this and other chapters include coastal states, the coastal zone, coastal watershed counties, and the nearshore (Figure 1.3). Some of these terms are defined in law, some agreed to by conventional usage, and others delineated specifically for use in this report.

Coastal States
This report uses the definition of a coastal state established by the Coastal Zone Management Act (CZMA). Under the CZMA, coastal state includes any state or territory of the United States in, or bordering on, the Atlantic, Pacific, or Arctic Ocean, the Gulf of Mexico, Long Island Sound, or one or more of the Great Lakes, as well as Puerto Rico, the U.S. Virgin Islands, Guam, the Commonwealth of the Northern Mariana Islands and the Trust Territories of the Pacific Islands, and American Samoa. A total of thirty-five coastal states and territories fall under this definition.

Coastal Zone Counties
The term coastal zone counties refers to all counties that fall at least partly within a state’s coastal zone, as defined under the CZMA. Under the CZMA, the coastal zone of most states with a federally-approved coastal management program extends on its seaward side to 3 nautical miles offshore (the coastal zones of Texas and the west coast of Florida extend to 9 nautical miles, while those of Great Lakes states bordering Canada extend to the international boundary). The inland extent is determined by each participating state to include the upland region needed to manage activities with a direct and significant impact on coastal waters. Based on this definition, some states have designated their entire land area as the coastal zone, while others have specified certain political jurisdictions, distinct natural features, or geographic boundaries. (Note: Although Illinois does not participate in the CZMA program, Cook and Lake Counties on Lake Michigan are considered coastal counties for the purposes of this report.)

Coastal Watershed Counties
Since approximately 1990, the National Oceanic and Atmospheric Administration has used a specific methodology, also adopted by the U.S. Bureau of the Census after 1992, to define coastal watershed counties. The methodology combines the Census Bureau’s delineation of counties and the U.S. Geological Survey’s mapping of watersheds, identifying those counties with at least 15 percent of their land area in a coastal watershed. Based on this methodology, the United States has 673 coastal watershed counties: 285 along the Atlantic Ocean; 142 in the Gulf of Mexico region; 87 bordering the Pacific Ocean; and 159 fronting the Great Lakes.

The Nearshore
To allow for more detailed analyses of economic conditions in the region closest to the coastline, this report defines the nearshore as postal zip code areas that touch the shoreline of the oceans, Great Lakes, and major bays and estuaries.

that copies the molecular structure of a salmon gland extract is one of the new treatments available to fight osteoporosis. And coral, mollusk, and echinoderm skeletons are being tested as orthopedic and cosmetic surgical implants.

Scientists are also growing marine organisms in the laboratory and using them as models for physiological research. For example, they are using the damselfish to study cancer tumors, the sea hare and squid to investigate the nervous system, and the toadfish to investigate the effects of liver failure on the brain. In addition, bacteria and other organisms living in extreme deep-sea environments hold promise for the bioremediation of oil spills and other wastes.

Remarkably, in this first decade of the 21st century, about 95 percent of the world’s ocean area remains unexplored. We have barely begun to comprehend the full richness and value of the diverse resources residing beneath the surface of the sea.

Tourism and Recreation

Every year, hundreds of millions of American and international visitors flock to the nation’s coasts to enjoy the many pleasures the ocean affords, while spending billions of dollars and directly supporting more than a million and a half jobs. Millions of other tourists take to the sea aboard cruise ships, and still more visit the nation’s aquariums, nautical museums, and seaside communities to learn about the oceans and their history.

Tourism and recreation constitute by far the fastest growing sector of the ocean economy (Figure 1.4), extending virtually everywhere along the coasts of the continental United States, southeast Alaska, Hawaii, and our island territories and commonwealths. This rapid growth will surely continue as incomes rise, more Americans retire, and leisure time expands.

While there is no national program to calculate the economic value of the oceans and coasts, several recent studies highlight the contributions of beach-related activities to the economy. In southern California, visitors spent in excess of $1 billion at the beaches of Orange and Los Angeles Counties during the summer of 2000.\(^{15}\) The annual value of Great Lakes beach visits may be as high as $1.65 billion.\(^{16}\) And in Hawaii, coral reefs are a major source of recreational benefits, generating an estimated $360 million per year.\(^{17}\)

The real value of ocean recreation, however, goes beyond the number of jobs created or amount of income produced—there are also immeasurable benefits to individuals and society in being able to enjoy a day at the beach or in the water.
Coastal Real Estate

It is no secret that people are attracted to our coasts. They want to buy property and raise their families near the ocean, and visit it during vacations and on the weekends. They want to fish, sail, swim, listen to the waves crashing, and gaze upon the watery horizon at sunset. Coastal cities are major economic assets, supporting working ports and harbors and generating tourism. This has made areas close to the coast some of the most sought-after property in our nation. Coastal watershed counties comprise less than 25 percent of America’s land area, yet they are home to more than 50 percent of our population (Appendix C). Nine of our country’s ten largest cities are located in coastal watershed counties. Waterfront properties often sell or rent for several times the value of similar properties just a short distance inland. Even a decade ago, eighteen of the twenty wealthiest U.S. counties (ranked by per capita income) were coastal counties.

Nonmarket Values

Many of the most valuable contributions of our oceans and coasts are not readily measured by traditional market-based accounting. Most dramatically, of course, we need the oceans to live and breathe. Other ocean assets, such as functioning coastal habitats, contribute to the health of our environment and the sustainability of commercial and recreational resources. Still others assist in what our nation’s founders referred to as the “pursuit of happiness.” In addition, the cultural importance of the ocean and its resources to indigenous populations living along the coasts and in island states and territories should not be underemphasized. It may not be possible to assign a dollar value to all the functions of the sea, but it is necessary to bear each in mind when determining priorities for marine management and protection.
Life Support and Climate Control
The oceans provided the cradle from which all life evolved. They sustain life through evaporation which fills the atmosphere with vapor, producing clouds and rain to grow crops, fill reservoirs, and recharge underground aquifers.

The oceans can absorb over a thousand times more heat than the atmosphere, storing and transporting it around the globe. They also hold sixty-five times more carbon than the atmosphere and twenty times more than terrestrial biomass, a critical factor in counter-acting the excess carbon dioxide emitted by human activities. Ocean carbon is used by the sea’s immense population of phytoplankton to produce oxygen for our atmosphere. The oceans’ dominant role in the cycling of water, heat, and carbon on the planet has profound, and poorly understood, impacts on global climate.

Marine Habitat
Wetlands, estuaries, barrier islands, seagrass and kelp beds, coral reefs, and other coastal habitats, are vital to the health of marine and estuarine ecosystems. They protect the shoreline, maintain and improve water quality, and supply habitat and food for migratory and resident animals. An estimated 95 percent of commercial fish and 85 percent of sport fish spend a portion of their lives in coastal wetlands and estuarine habitats.

Tropical coral reefs cover only about one-fifth of 1 percent of ocean area and yet provide a home to one-third of all marine fish species and tens of thousands of other species. Coral reef fisheries yield 6 million metric tons of seafood annually, including one-quarter of fish production in developing countries. In addition to their immense ecological and direct economic benefits, healthy marine habitats offer highly valuable recreation and tourism opportunities and enhance the worth of coastal real estate.

Exploration, Inspiration, and Education
Throughout history, the oceans’ mysteries and our reliance on its resources have inspired great works of literature and art, spurred the human instinct to explore, and provided diverse forms of entertainment. Shipwrecks, prehistoric settlements, and other submerged sites document and preserve important historical and cultural events, while offering unique opportunities for both professional archeologists and recreational divers and for educating the public.

With only about 5 percent of the ocean having been explored, the sea also offers something rare on Earth today: the unknown. Only thirty years ago, no one contemplated the existence of vast biological communities living in the deep sea at hydrothermal vents or the associated mineral-rich flows that form towers more than 50 feet high. Today, we are just beginning to learn about the immense scope of microbial life within and below the seabed.

The ocean provides an exciting way to engage people of all ages in learning and inspire academic achievement in the nation’s schools. Using the oceans as a unifying theme, students can participate in research at sea, and teachers can connect mathematic and scientific principles with real-world problems, environmental issues, and the use of modern technology. Exposure to underwater historical resources provides teachers with a bridge to past cultures, offering unique opportunities to study history, sociology, and anthropology. From young to old, in formal and informal education, the ocean offers an unparalleled tool to improve the literacy and knowledge of our citizens. If we are sufficiently creative, we can produce an entire new generation of experts and cultivate a fresh appreciation and understanding that will deepen the stewardship ethic within our society.

International Leadership
Many nations border on, or have direct access to, the sea. All are affected by it. People everywhere have a stake in how well the oceans are managed, how wisely they are used, and how extensively they are explored and understood. For the United States, this means
The oceans provide an ideal vehicle for global leadership. From international security to ocean resource management, education, scientific research, and the development of ocean-related technology, the United States can gain respect by demonstrating exemplary policies and achievements at home and seeking to spread positive results through collaborative efforts around the world.

Undermining America’s Ocean and Coastal Assets

Human ingenuity and ever-improving technology have enabled us to harvest—and significantly alter—the ocean’s bounty. Our engineering skills have allowed us to redirect the course of rivers, deflect the impacts of waves, scoop up huge quantities of fish, and transform empty shorelines into crowded resort communities. Yet the cumulative effects of these actions threaten the long-term sustainability of our ocean and coastal resources. Through inattention, lack of information, and irresponsibility, we have depleted fisheries, despoiled recreational areas, degraded water quality, drained wetlands, endangered our own health, and deprived many of our citizens of jobs. If we are to adopt and implement an effective national ocean policy, we must first understand and acknowledge the full consequences of failing to take action.

Degraded Waters

Despite some progress, America’s ocean and coastal ecosystems continue to show signs of degradation, thereby compromising human health, damaging the economy, and harming marine life. Coastal and ocean water quality is threatened by multiple sources of pollution, including point, nonpoint, and atmospheric sources, vessel pollution, and trash washed onto beaches and into the ocean. In 2001, 23 percent of the nation’s estuarine areas were impaired for swimming, fishing, and supporting marine species. Meanwhile, pollution could jeopardize the safety of drinking water for millions of people living near or around the Great Lakes.

Box 1.2 The “Fourth Seacoast”—The Great Lakes

The Great Lakes system enjoys global prominence, containing some 6.5 quadrillion gallons of fresh surface water, a full 20 percent of the world’s supply and 95 percent of the United States’ supply. Its component parts—the five Great Lakes—are all among the fifteen largest freshwater lakes in the world. Collectively, the lakes and their connecting channels comprise the world’s largest body of fresh surface water. They lend not only geographic definition to the region, but help define the region’s distinctive socioeconomic, cultural, and quality of life attributes, as well.

An international resource shared by the United States and Canada, the system encompasses some 95,000 square miles of surface water and a drainage area of almost 200,000 square miles. Extending some 2,400 miles from its western-most shores to the Atlantic, the system is comparable in length to a trans-Atlantic crossing from the East Coast of the United States to Europe. Recognized in U.S. federal law as the nation’s “fourth seacoast,” the Great Lakes system includes well over 10,000 miles of coastline. The coastal reaches of all basin jurisdictions are population centers and the locus of intensive and diverse water-dependent economic activity. Almost 20 percent of the U.S. population and 40 percent of the Canadian population reside within the basin.
Excess Nutrients
The oversupply of nitrogen, phosphorus, and other nutrients in coastal ecosystems is one of our nation’s most widespread pollution problems. Runoff from agricultural land, animal feeding operations, and urban areas, along with discharges from wastewater treatment plants, storm sewers, and leaky septic systems, adds nutrients to waters that eventually enter the sea.

All told, more than eighty of our bays and estuaries show signs of nutrient overenrichment, including oxygen depletion, loss of seagrass beds, and toxic algal blooms.24 And not all of these excess nutrients come from local sources. The Gulf of Mexico’s “dead zone” is the result of cumulative drainage from the Mississippi–Atchafalaya River Basin, which includes all or parts of thirty states.25 In addition, atmospheric deposition from agriculture, power plants, industrial facilities, motor vehicles, and other often distant sources accounts for up to 40 percent of the nitrogen entering estuaries.26,27

Other Contaminants
A 2003 National Research Council report estimated that every year, more than 28 million gallons of oil from human activities enter North American waters. Land-based runoff accounts for well over half of this. Much smaller amounts of oil enter our waterways from tanker and barge spills and from recreational boats and personal watercraft.28

Pollution from sewage treatment plants has been reduced as the result of tighter regulation during the past thirty years, but concerns remain about the release of untreated human pathogens, pharmaceuticals, toxic substances, and chlorinated hydrocarbons. In 2003, more than 18,000 days of beach closings and swimming advisories were issued across the nation, often directly related to bacteria associated with fecal contamination from stormwater and sewer overflows. This represents a 50 percent increase in closures and advisories from 2002, continuing a rising trend that can be attributed to improved monitoring and more thorough reporting, and revealing the true extent of beachwater pollution.29 The consequences of such contamination cost many millions of dollars a year in decreased revenues from tourism and recreation and higher costs for health care.

Harmful Algal Blooms
For reasons not yet clearly understood, harmful algal blooms are occurring more frequently both within America’s waters and worldwide. The consequences are particularly destructive when the algae contain toxins.

Marine toxins afflict more than 90,000 people annually across the globe and are responsible for an estimated 62 percent of all seafood-related illnesses. In the United States, contaminated fish, shellfish, and other marine organisms are responsible for at least one in six food poisoning outbreaks with a known cause, and for 15 percent of the deaths associated with these incidents.30 In the last two decades, reports of gastrointestinal and neurological diseases associated with algal blooms and waterborne bacteria and viruses have increased.31 Though seafood poisonings are probably underreported, they also seem to be rising in incidence and geographic scope.32

Harmful algal blooms cost our nation an average of $49 million a year33 due to fisheries closures, loss of tourism and recreation, and increased health care and monitoring expenses.

Sediment Contamination
A study conducted at more than 2,000 sites representing over 70 percent of the nation’s total estuarine area (excluding Alaska) found that 99 percent of the sediments tested contained 5 or more toxic contaminants at detectable levels. More than 600 sites had contamination levels high enough to harm fish and other aquatic organisms.34 Because some
chemicals tend to bind to particles and thus accumulate in sediments, bottom-dwelling and bottom-feeding organisms are particularly at risk. As sediment-bound pollutants enter these organisms and move up through the food web, larger animals and humans are also affected. Excess sediments can also cause harm by smothering stationary, bottom-dwelling marine communities.

Compromised Resources

Fishery declines, degraded coastal habitats, and invasive species are compromising our ability to meet current and future demands for healthy and productive marine resources.

Fishery Declines

Experts estimate that 25 to 30 percent of the world’s major fish stocks are overexploited, and a recent report indicates that U.S. fisheries are experiencing similar difficulties. Of the nation’s 267 major fish stocks—representing 99 percent of all landings—roughly 20 percent are either already overfished, experiencing overfishing, or approaching an overfished condition. The same report indicates that there is inadequate information to make these status determinations for over 30 percent of the major fish stocks and virtually all of the over 640 minor fish stocks—most of which are not subject to commercial fishing pressure—limiting both our understanding of the overall state of the nation’s fisheries and of their role in the marine ecosystem.

Declining fish populations are the result of overfishing, the unintentional removal of non-targeted species (known as bycatch), habitat loss, pollution, climate changes, and uneven management. The cumulative impact of these factors is serious. As fishing boats turn to smaller, less valuable, and once discarded species, they are progressively “fishing down the food web,” thereby causing changes in the size, age structure, genetic makeup, and reproductive status of fish populations. This compromises the integrity of marine ecosystems, the ecological services they provide, and the resources upon which Americans rely.

Although U.S. fishery management has been successful in some regions, failures elsewhere have resulted in substantial social and economic costs. For example, the collapse of the North Atlantic cod fishery in the early 1990s resulted in the loss of an estimated 20,000 jobs and $349 million. In the Northwest, decreasing salmon populations have cost 72,000 jobs and more than $500 million. This tally does not begin to assess the social and psychological impacts these events have had on individuals, families, and communities for whom fishing has been a tradition for generations.

Questions also exist about how best to manage our growing marine aquaculture industry. This industry is vital to increase seafood supplies, but its potential impact on the ocean environment and wild populations of fish and shellfish present serious concerns. These include the discharge of wastes and chemicals, the spread of disease or genetic changes resulting from the escape of farmed species, the demand for wild-caught fish as aquaculture feed, and the appropriation of sensitive habitats to create aquaculture facilities.

Coastal Habitat Loss

Since the Pilgrims first arrived at Plymouth Rock, the lands that now comprise the United States have lost over half of their fresh and saltwater wetlands—more than 110 million acres. California has lost 91 percent of its wetlands since the 1780s. And Louisiana, which currently is home to 40 percent of the coastal wetlands in the lower 48 states, is losing 25–35 square miles of wetlands each year.

Pollution, subsidence, sea level rise, development, and the building of structures that alter sediment flow all contribute to the problem. With the loss of the nation’s wetlands, shorelines are becoming more vulnerable to erosion, saltwater is intruding into freshwater environments, flooding is on the rise, water quality is being degraded, and wildlife habitat is being fragmented or lost.
The nation is also losing thousands of acres of seagrass and miles of mangrove and kelp forests. More than 50 percent of the historical seagrass cover has been lost in Tampa Bay, 76 percent in the Mississippi Sound, and 90 percent in Galveston Bay. Extensive seagrass losses have also occurred in Puget Sound, San Francisco Bay, and along Florida’s coasts.

Coral reef habitats are also increasingly under siege. Recent research suggests that direct human disturbances and environmental change are two major causes of harm to coral reefs, although a host of other factors also contribute. Many reefs, particularly those within range of growing human populations, are under threat of destruction as evidenced by dramatic declines in Florida, the Caribbean, and parts of Hawaii. Coral reef declines are exacerbated by cumulative impacts, such as when overfishing, coral bleaching, and disease decrease a reef’s resilience. As the reefs disappear, so do the fish they harbor and the millions of dollars in jobs and economic revenue they provide.

Invasive Species

Across the nation and throughout the world, invasive species of plants and animals are being intentionally and unintentionally introduced into new ecosystems, often resulting in significant ecological and economic impacts. We know that over 500 non-native species have become established in coastal habitats of North America and that hundreds can be found in a single estuary. Asian and European shore crabs inhabit the coasts of New England and California, damaging valuable fisheries. A massive horde of zebra mussels has assaulted the Great Lakes, clogging power plant intakes and fouling hulls, pilings, and navigational buoys. And in the Chesapeake Bay, an alien pathogen has contributed to the decline of the native oyster population.

Many non-native marine animals and plants are introduced through the discharge of ships’ ballast water and holding tanks. At least 7,000 different species of marine life are transported around the world every day, and every hour some 2 million gallons of ballast water arrive in U.S. waters carrying at least a portion of this immense fleet of foreign organisms. Further contributors to the spread of invasive species include the aquarium trade, fishery-related activities, floating marine debris, boating, navigational buoys, and drilling platforms. Strains on coastal environments caused by other factors may make them even more vulnerable to the spread of non-native species.

The economic impact of invasive species can be substantial. From 1989 to 2000, zebra mussels alone caused between $750 million and $1 billion in losses to natural resources and damage to infrastructure in the Great Lakes. More than $2 million has been spent in California to control and monitor the spread of the Mediterranean green seaweed *Caulerpa taxifolia*, and more than $3 million has been spent investigating the impacts of Atlantic cordgrass on the Pacific Coast. Invasive species can also cause significant ecological damage by outcompeting native species, altering local food webs, and reducing the resources available for other organisms.

Conflicts Between Man and Nature

As population density has risen in coastal watersheds, so has environmental stress. Coastal planning and management policies implemented over the past thirty years have limited, but not prevented, harmful impacts—both incremental and cumulative—on the marine ecosystem.

Coastal Population Growth and Land Use

Contrary to popular perception, the coasts have experienced a relatively stable rate of population growth since 1970; coastal watershed counties representing 25 percent of the nation’s land area have continued to support approximately 52 percent of the U.S. population over the past three decades (Appendix C). Between 1970 and 2000, the population of

Living and coastal resources are threatened by pollution and human activities. We’ve seen collapses of fisheries and overfishing of many stocks. We are losing 20,000 acres of coastal wetlands each year. We are losing millions of acres of coral reefs each year worldwide. Increasing coastal development presents new stresses and greater vulnerability to extremes of weather and changes in sea level.

—The Honorable James Connaughton, Chairman, White House Council on Environmental Quality, testimony to the Commission, September 2001
coastal watershed counties grew by 37 million people (Appendix C) and is projected to increase by another 21 million by 2015.51 At that point, the U.S. coasts will have absorbed more than 58 million additional residents since 1970—more than 1.1 million a year. This steady influx of people into a relatively small area has already created coastal population densities that are on average two to three times higher than that of the nation as a whole (Figure 1.5).

The environmental impacts of rising population density in the coastal zone have been magnified by a relative shift in population and housing development away from expensive shoreline property and toward the upland reaches of coastal watersheds. This has had the effect of expanding environmental consequences over larger geographic areas and has eroded the health of ecosystems and resources throughout coastal watersheds.

Most development profoundly changes the landscape. Impervious materials such as concrete or asphalt typically cover 25–60 percent of the land surface in medium-density, single-family-home residential areas, and more than 90 percent in strip malls, urban areas, and other commercial sites.52 Research indicates that nearby water bodies can become seriously degraded when more than 10 percent of a watershed is covered by roads, parking lots, rooftops, and similar surfaces.53 A one-acre parking lot produces sixteen times the volume of runoff that comes from a one-acre meadow.54 Expanding coastal sprawl can also destroy natural habitats, thus compromising the environment's ability to provide food and refuge for wildlife or supply ecosystem services, such as maintaining water quality.

These concerns are exacerbated by the fact that land is being developed for housing at more than twice the rate of population growth.55 This is partly the result of a decline in the size of the average American household from 3.14 people in 1970 to 2.59 people in 2000.56 Nearshore areas also experience spurts of temporary population growth—from commuters, vacationers, day-tourists and others—creating a robust demand for seasonal housing. The result is pressure for development in nearshore areas accelerating at a rate far greater than might be expected based simply on population trends.

A less apparent, but still important contributor to developmental pressures is the increasing rate of overall economic growth that is occurring in nearshore areas. Although population and housing are moving upstream within coastal watersheds, economic growth has been occurring more rapidly—and more intensely—along the nearshore. This growth has tended to focus on the trade and service industries, which use more land per unit of output than other types of activity. Thus, it is important to understand the significance of the growing recreation and tourism industry and the relative impact its related businesses are having on the coast, in addition to managing coastal population growth.

Natural Hazards

As the nation’s shores become more densely populated, people and property are increasingly vulnerable to costly natural hazards. Before 1989, no single coastal storm had caused insured losses greater than $1 billion.57 Since then, at least ten storms have resulted in such losses, including Hurricane Andrew, with insured losses of $15.5 billion and total economic losses estimated at $30 billion (in 1992 dollars).58,59

Coastal erosion, storm surges, tsunamis, and sea level rise are serious threats to people living and working along the shore, particularly in low-lying areas. Roughly 1,500 homes and the land on which they are built are lost to erosion each year, with annual costs to coastal property owners expected to average $530 million over the next several decades.60 In some instances, American engineering capability has improved protection against natural hazards along the coast; in others, however, it has made us more vulnerable. The loss of wetlands and other shoreline vegetation increases susceptibility to erosion and flooding. The installation of seawalls, groins, and other coastal armoring structures can alter patterns of sediment and current flow, eventually accelerating erosion, rather than preventing it.
Climate Change

Average global temperatures have been rising over the last several decades. Scientists believe these changes are probably due primarily to the accumulation of greenhouse gases in Earth’s atmosphere from human activities, although natural variability may also be a contributing factor. The Intergovernmental Panel on Climate Change reports that the average near-surface temperature of the Earth increased by about 1°F between 1861 and 1990, but is expected to increase by another 2.5—10.4°F by the end of this century. As oceans warm, the global spread and incidence of human diseases, such as cholera and malaria, may also increase. Marine organisms that are sensitive to temperature must either alter their geographic distribution or face extinction. Already, changing ocean conditions in the North Pacific have altered ecosystem productivity and have been associated with poor ocean survival of young salmon and modifications in the composition of nearshore fish populations.
One of the most immediate phenomena associated with increasing global temperatures has been a change in average sea level, which is estimated to have risen by 4–8 inches during the 20th century. By 2100, sea level is projected to rise by another 4–35 inches. Although the exact amount and rate of the increase are uncertain, the fact that the ocean will continue to expand is widely accepted. As this occurs, low-lying coastal regions and island territories will be particularly vulnerable to flooding and storms. In the Pacific, for example, entire archipelagos have maximum elevations of only a few meters above sea level, leaving both human communities and natural ecosystems in danger. This vulnerability is compounded by the concentration of human activities along the water’s edge, the point of greatest risk. Many island jurisdictions are already facing problems associated with long-term sea-level rise, including saltwater contamination of fresh-water sources, coastal erosion, damage to natural barriers such as corals and mangroves, and loss of agricultural sites and infrastructure. For example, saltwater intrusion has rendered aquifers on the Marshall Islands unusable, and ocean waters regularly flood the airport. A steady increase in sea-level rise could cause whole islands to disappear.

Polar regions are also exhibiting dramatic signs of change due to rising temperatures, with thinning ice caps and melting glaciers. The average thickness of sea ice in the Arctic has decreased by approximately 4.25 feet from the late 1950s to the late 1990s. Alarming changes are occurring in Arctic permafrost, with potentially significant economic and ecological impacts. In the tropics, coral reef diseases and bleaching are occurring more frequently, and coral growth may be inhibited by increasing concentrations of dissolved carbon dioxide in the sea.

The transport and transformation of heat, carbon, and many other gases and chemicals in the ocean play a central role in controlling, moderating, and altering global climate. In fact, research into ancient climate cycles suggests that change can actually occur much more rapidly than once expected. Rather than the scenario of gradual surface temperature increases often envisioned for the next century, sudden shifts in polar ice and ocean circulation could result in drastic temperature changes occurring within a decade or less.

The specter of abrupt change, and a growing awareness of the impacts even gradual climate change can have on coastal development, ecosystems, and human health, call for a significant improvement in climate research, monitoring, assessment, and prediction capabilities. Understanding the role of the oceans in climate is an area in need of particular attention.

Acting Today for Tomorrow’s Generations

For centuries, Americans have been drawn to the sea. We have battled the tides, enjoyed the beaches, and harvested the bounty of our coasts. The oceans are among nature’s greatest gifts to us. The responsibility of our generation is to reclaim and renew that gift for ourselves, for our children, and—if we do the job right—for those whose footprints will mark the beaches from Maine to Hawaii long after ours have washed away.

The nation’s ocean and coastal assets are worth hundreds of billions of dollars to society and untold more to the Earth’s complex ecosystems and the many cultures whose heritage is directly tied to the sea. Although losses in some areas have been significant and continue, in other areas sound policy and sustained investments have slowed or reversed harmful trends. There is every reason to believe that wise actions taken today, based on the best available science, can restore what has been lost and create even greater benefits. But to achieve this, our nation’s leaders must take immediate steps to formulate a coherent, comprehensive, and effective national ocean policy. Implementation of the far-reaching recommendations offered throughout this report can halt the losses and help restore, protect, and enhance America’s ocean assets.
References

The phrase national ocean policy encompasses a vast array of issues, each of which requires policy makers to answer some key questions. What is the current situation? What goals does the nation wish to achieve? What rules, if any, should apply? And who will formulate and enforce those rules? Those in charge must also be prepared to justify their decisions to a wide variety of interested people and find a way to place decisions about particular uses of the oceans into a larger framework so the results will be coherent and enduring.

In considering how to craft an ocean framework for the future, the U.S. Commission on Ocean Policy reviewed the lessons of the past and listened closely to affected individuals around the country.

Ocean Policy from World War II to the Oceans Act of 2000

Volumes have been written about the intricacies of ocean policy and its development in the United States. The following sections offer a brief glimpse of this history, setting the stage for the work of the U.S. Commission on Ocean Policy.

Formative Years

U.S. ocean policy developed slowly and fairly consistently from the founding of the United States until the immediate aftermath of World War II. Since then, it has zigged and zagged in response to shifting public attitudes based on major events related to national security, the environment, and political philosophy. American policy—or more accurately the amalgamation of many policies—has been shaped by the nation’s unique status as both the world’s leading maritime power and the possessor of a long and rich shoreline, giving us a stake both in protecting freedom of navigation and in expanding the resource jurisdiction of coastal countries. Over time, our management of ocean issues has been roiled by conflicting interests of the federal and state governments, torn by tensions between short- and long-term needs, blurred by ideological disagreements, and complicated by the wide variety of uses we make of our vast and versatile—but also vulnerable—seas.

One ongoing challenge for policy makers has been to find the right balance between the exploitation of marine resources, whether living or nonliving, and the conservation of those resources and protection of the marine environment. Petroleum exploration, commercial fishing, and marine mammal protection are just three of the arenas where this
drama has played out. The United States has also shown a tendency to swing back and forth between internationalism and unilateralism—at times working with other countries to shape global rules, and at other times asserting the right to establish our own rules outside of, or in advance of, the global consensus.

The nation’s primary maritime concerns have been to preserve the right to free navigation while asserting jurisdiction over fishing and law enforcement in U.S. waters. In a letter from Secretary of State Thomas Jefferson to the governments of Britain and France in 1793, the United States officially claimed authority over a 3 nautical mile territorial sea. Over the next century and a half, the federal government’s role in the oceans was limited primarily to the activities of the U.S. Navy, the U.S. Coast Guard, and the Coast and Geodetic Survey, the promotion of the U.S. Merchant Marine, and diplomatic negotiations over access to the rich fishing grounds off the North Atlantic coast and the taking of fur seals in the North Pacific and Bering Sea.

Interestingly, the problem of depleted fish stocks, often assumed to be a recent development, is not new. In 1871, the federal government established the Office of the Commissioner of Fish and Fisheries to study the dilemma. Warnings have been issued and various remedies proposed periodically ever since. In 1882, the first U.S. research vessel built exclusively for fisheries and oceanographic research entered service, and for the next thirty-nine years the 234-foot USS Albatross plied waters around the globe.

It was not until after World War II that a process referred to as enclosure of the oceans began in earnest. In contrast to the traditional view of the oceans as belonging to everyone (and therefore to no one), a movement to extend the rights of coastal states gathered momentum. Among the factors driving this trend was competition for oil and gas. On September 28, 1945, President Truman issued a proclamation asserting control over the natural resources of the continental shelf beneath the high seas adjacent to the territorial waters of the United States. In 1947, the Supreme Court decision in United States v. California awarded the federal government jurisdiction over all U.S. ocean resources from the tidemark seaward. This judgment, highly unpopular in coastal regions, led to the passage of the Submerged Lands Act of 1953, which returned resource jurisdiction within the 3 nautical mile territorial sea to coastal states. A companion bill enacted in the same year, the Outer Continental Shelf Lands Act, authorized the Secretary of the Interior to lease federal areas of the continental shelf for oil and gas exploration and development.

From Sputnik to Stratton

On October 4, 1957, the Soviet Union launched Sputnik, the world’s first space satellite. This was one of several major events that would sharply alter the direction of U.S. ocean policy during the last half of the 20th century. The show of Soviet prowess shocked America, spurring national resolve. It seemed suddenly as if every arena of activity, from the construction of intercontinental ballistic missiles to the training of athletes for the Olympic high jump, had become a test of dueling national wills. The foremost areas of competition were technology and science.

In 1959, the National Research Council released a report that recommended doubling the federal government’s commitment to oceanography, building a new research fleet, and forging stronger partnerships with academic institutions.\(^1\) The recommendations served as the basis for ocean policy under President Kennedy and attracted strong support from such influential senators as Warren Magnuson of Washington who warned, in the spirit of the times, “Soviet Russia aspires to command the oceans and has mapped a shrewdly conceived plan, using science as a weapon to win her that supremacy.”\(^2\)

This era of scientific enthusiasm and advancement saw the Navy and the National Science Foundation (NSF) take on critical roles in developing U.S. ocean capabilities. The post-World War II period brought significant Navy investment in basic research into ocean processes, resulting in the development of most of today’s oceanographic instru-
ments. The Navy's ocean data holdings have been called the crown jewels of global oceanography, and its investment in operational ocean infrastructure has contributed greatly to U.S. ocean capability and influence in international ocean affairs. NSF came into existence at the end of World War II, largely due to the recognition that support for basic research was essential to national well-being. Since that time, NSF has increasingly become the leader in support for ocean research and related infrastructure. Through their investments in basic and applied research, operations, education, and infrastructure, NSF and the Navy helped create a robust and influential ocean research community in the United States.

In the 1960s, faith in the power of science was at its apogee. Said *Time* magazine:

> U.S. scientists and their colleagues in other free lands are indeed the true 20th century adventurers, the explorers of the unknown, the real intellectuals of the day, the leaders of mankind's greatest inquiry into the mysteries of matter, of the earth, the universe and of life itself. Their work shapes the life of every human presently inhabiting the planet, and will influence the destiny of generations to come.\(^3\)

In this context, the appetite for exploring the unknown was seemingly insatiable, applying not only to outer space but also to inner space—the mysterious depths of the sea. In addition to ongoing investments in ocean research by the Navy and NSF, in 1966 Congress created the National Sea Grant College Program (Sea Grant) within NSF, based on the long-established model of Land Grant colleges. After a modest beginning, Sea Grant evolved into a popular initiative within the marine science community and the public and became a prime source of support for research in marine-related subjects outside oceanography, including fisheries and law.

Support grew for the creation of an independent national ocean agency, a watery counterpart to the National Aeronautics and Space Administration. To prepare the way, Congress approved the Marine Resources and Engineering Development Act, signed by President Johnson on June 17, 1966. The Act included a declaration of U.S. policy, the formation of a national council chaired by the Vice President, and the establishment of a presidential Commission on Marine Science, Engineering and Resources. Julius Stratton, president emeritus of the Massachusetts Institute of Technology and chairman of the Ford Foundation, was named as chair of that Commission.

During the next two years, the Stratton Commission's fifteen members and four congressional advisers conducted hearings and held meetings in every coastal region of the country. In January 1969, the Commission issued its report, *Our Nation and the Sea*, containing 126 recommendations.\(^4\) The report had a catalytic impact for several reasons. It was the first truly comprehensive study of American ocean policy. It went beyond oceanography to examine a wide range of marine issues, including: the organization of the federal government; the role of the ocean in national security; the potential economic contributions of oil, gas, and other marine resources; the importance of protecting coastal and marine environments; and the need to promote American fisheries. Some recommendations were never realized (such as building offshore nuclear power plants), but others comprised the foundation for a new era in U.S. ocean policy, leading most directly to creation of the National Oceanic and Atmospheric Administration (NOAA) in 1970 and the enactment of the Coastal Zone Management Act (CZMA) in 1972.

The Stratton Commission called for the centralization of federal civilian ocean management efforts within a single new agency—envisioning a NOAA that would be independent and in charge of virtually every nonmilitary aspect of marine policy. This did not happen. The White House budget office opposed the establishment of an independent agency, the Secretary of Transportation was unwilling to give up the Coast Guard, and the
Maritime Administration remained separate. So when NOAA was born on July 9, 1970 (via Reorganization Plan #4), its prospects for thriving within the bureaucracy were slim. Lodged within the U.S. Department of Commerce, it lacked cabinet status, independence, a congressional charter, and control over many federal marine activities. NOAA did, however, become a center of federal ocean and atmospheric expertise, bringing together nine programs from five departments, including the Environmental Sciences Services Administration, the Bureau of Commercial Fisheries, and the Sea Grant program.

The impact of the Stratton Commission report was magnified by its timeliness. Once again, events were occurring that would guide the direction of ocean policy, this time toward greater environmental awareness. In 1966, seismic tests in the Georges Bank fishing grounds caused an explosion that halted fishing for three weeks and prompted calls for a ban on oil and gas activity in the area. In January 1969, Union Oil’s Platform A in the Santa Barbara Channel blew out, spilling some 3 million gallons of oil, killing marine life, and affecting more than 150 miles of shoreline. The images of soiled beaches, oil-soaked birds, and belly-up fish generated widespread public concern and contributed to the enactment of a law that would profoundly affect the approach of the federal government to natural resources of every description—the 1969 National Environmental Policy Act (NEPA).

Years of Activism

To an extent not seen before or since, the political climate between 1969 and 1980 was ripe for initiatives to expand the federal role in ocean and environmental management. The Stratton report had sounded the trumpet, calling upon “Congress and the President to develop a national ocean program worthy of a great sea nation.” Segments of the American public, aroused by the Santa Barbara oil spill and the inaugural Earth Day on April 22, 1970, lent support to a new generation of activist environmental organizations demanding federal action. Members of Congress, empowered by internal reforms that enlarged staffs and somewhat weakened the seniority system for selection of committee chairs, were eager to play a policy-making role. Internationally, the United Nations Conference on the Human Environment met in Stockholm in 1972, a milestone for the environmental movement. Both at home and overseas, the oceans were caught up in the larger pro-environment trend.

As a result, the stewardship ethic embodied by NEPA—the idea that the government should study, plan, and offer the opportunity for public comment before acting—was applied to the oceans. This principle was at the heart of the new law dealing with America’s increasingly populous coastal zone. The CZMA constituted a marriage of federal activism and states’ rights. Entirely voluntary, the program offered grants to states to help develop and implement coastal management plans tailored to local needs but reflecting broad national interests. To encourage states to enforce their plans, the federal government agreed to honor them as well. This pledge to make federal actions affecting the coastal zone consistent with state plans (referred to as the federal consistency provisions) was novel and would, at times, prove controversial.

Other major ocean-related legislation enacted during this period included measures to improve the nation’s water quality, regulate ocean dumping, designate marine sanctuaries, prohibit the taking of marine mammals, protect endangered species, license deep-water ports, promote aquaculture, and encourage the development of ocean thermal energy conversion as a renewable source of power. The most dramatic expansion of federal ocean activity, however, resulted from enactment of the Fishery Conservation and Management Act, later renamed the Magnuson–Stevens Fishery Conservation and Management Act. According to its terms, on March 1, 1977, American fisheries jurisdiction was extended from 12 to 200 nautical miles, an expansion in area roughly equal to the size of the continental United States. This action reflected a triumph of America’s interest in championing the rights of coastal nations to control resources over its interest in defending the maximum degree of freedom on the high seas.
The legislation was prompted by the anger of U.S. fishermen, especially in the North Atlantic and off Alaska, regarding the presence on their traditional fishing grounds of massive foreign factory trawlers scooping tons of fish from the sea. The trawlers, many from the Soviet Union, were able to operate at all hours, even in harsh weather, catching fish and freezing them on the spot. By the end of the 1960s, America had dropped from second to sixth in its share of world fishery catch and a substantial segment of the U.S. commercial fishing industry was in deep trouble. Compared to the large, modern, efficient Soviet trawlers, most U.S. vessels were small and inefficient. Although the U.S. Department of State urged Congress to delay action pending the outcome of global negotiations on the U.N. Convention on the Law of the Sea (LOS Convention), those discussions were going slowly, and the pressure to act became overwhelming.

The management scheme created by the Magnuson–Stevens Act was imaginative, yet complicated: Regional Fishery Management Councils were appointed and required to develop and submit plans for managing particular species to the Secretary of Commerce for approval. The intention was to harness regional expertise in the national interest, make full use of scientific data, and give the industry a voice in designing the means of its own regulation. The Coast Guard was tasked with achieving the law's main selling point—foreigner fishing fleets out, Americans in—and various measures were developed to encourage new investment in the U.S. fishing fleet. The explicit intent of the statute was to prevent overfishing, rebuild overfished stocks, and realize the full potential of the nation's fishery resources. Despite the challenge of persuading fiercely independent fishermen to accept restrictions on their activities, there was much optimism in the early years that the Magnuson–Stevens Act's ambitious goals would be met.

Meanwhile, policy makers were coping with another pressing concern: the Arab oil embargo triggered by the 1973 Middle East war had a direct impact on the lives of millions of Americans. Heating costs soared, and the simple act of filling up at the local gas station turned into a nightmare. The country's vulnerability to disruptions caused by dependence on uncertain supplies of foreign oil became a major economic and national security issue. In response, the Nixon administration proposed a massive expansion of outer Continental Shelf (OCS) oil and gas leasing to include frontier areas off the Atlantic, Gulf, and Pacific coasts. This proposal ran counter to the pro-environmental currents then circulating, and posed a challenge to lawmakers searching for a way to address ecological and energy supply concerns simultaneously. The result was the OCS Lands Act Amendments of 1978, the product of three years of bipartisan legislative effort, designed to encourage leasing subject to new planning requirements, more rigorous environmental standards, and measures to ensure that the views of state and local governments were taken into account.

The many ocean-related laws spawned during the 1970s addressed urgent needs, introduced creative management concepts, and multiplied the scope of federal responsibility. But they lacked an overarching vision critical to a coherent national ocean policy. NOAA was neither equipped nor authorized to set priorities across more than a small portion of the spectrum of marine activities, and most of the laws enacted were aimed at a single purpose or ocean use, and implemented with little reference to others.

The inherent difficulty of managing diverse activities over a vast geographic area, and the incremental manner in which the federal ocean regime was assembled, inevitably resulted in fragmentation. The three presidents who served between 1969 and 1981 did not provide strong policy direction on ocean issues. In the absence of such direction, neither the executive branch nor Congress was structured in a way that fostered a comprehensive approach to the oceans. No federal department could claim the lead, and crosscutting legislative initiatives were referred to multiple congressional committees where differing perspectives tended to cancel each other out. Notwithstanding the Stratton Commission's call for centralization, by 1980 federal responsibility for ocean-related programs was distributed among ten departments and eight independent agencies.
CHAPTER 2: UNDERSTANDING THE PAST TO SHAPE A NEW NATIONAL OCEAN POLICY

Contestation and Stalemate

The 1981 inauguration of President Reagan altered the direction of America’s approach to ocean and coastal issues. For the first time since the days of Presidents Kennedy and Johnson, the White House was the source of clear policy direction for the oceans. While the consensus in the 1970s had favored a larger federal role, the new administration wanted to reduce the size of government. While legislation approved in the 1970s called for a steady increase in investments to achieve marine-related goals, the Reagan philosophy called for cutbacks. While the mood of the 1970s leaned heavily in the direction of environmental protection, the new administration favored a minimum of restrictions on the private sector.

U.S. Department of the Interior (DOI) Secretary James Watt departed from the earlier practice of offering limited offshore areas for energy leases and, in 1982, introduced the concept of area-wide leasing, opening dramatically larger areas of the OCS simultaneously. As a result of Watt’s new policy, 275 million acres of the OCS were offered for lease in 1983-84, compared to a two-year average of less than 8.5 million acres in the immediately preceding ten year period. At the same time, the administration proposed to eliminate funding for the Sea Grant and Coastal Zone Management programs, reduce investments in oceanographic research, and privatize a number of functions carried out by NOAA. Congress responded to Secretary Watt’s proposals by including a provision in the 1982 DOI appropriations bill that prohibited it from leasing certain offshore areas. This practice of legislating moratoria soon took hold, leading eventually to 50 nautical mile no-leasing buffer zones along much of the Atlantic and Pacific coasts. President Reagan’s successors later removed almost all new areas from leasing consideration through 2012. As the OCS program gyrated from one extreme to the other, the balanced approach Congress sought when amending the OCS Lands Act in 1978 was never fully tested, despite the still-compelling need for secure energy supplies.

The Reagan administration also changed the tenor of American ocean policy internationally. Since 1958, efforts had been underway to negotiate an international agreement on the law of the sea, spelling out a global consensus on such matters as freedom of navigation, fisheries jurisdiction, continental shelf resources, and the width of the territorial sea. At the request of less developed nations, the third round of negotiations, begun in 1973, included consideration of an elaborate international regime to govern the mining of minerals from the deep seabed in areas outside the jurisdiction of any country. Advocates argued that minerals found beneath international waters should be considered part of the “common heritage of mankind,” thus subject to a system of controls on production, mandatory technology transfer provisions, and other regulatory requirements implemented by an international seabed institution. The Reagan administration, with support from many in both parties in Congress, argued that the deep seabed was a frontier area to which access for exploration and exploitation should be assured without the restrictions of what it deemed to be the anti-free market components of the pending regime. When the Law of the Sea negotiations concluded in 1982, the United States was one of four countries to vote against the resulting convention.

Despite this, the administration soon took a number of steps that recognized provisions in the convention. In 1983, President Reagan declared a 200 nautical mile exclusive economic zone (EEZ), changing what had been a continental shelf and fishery resource jurisdictional system into an exclusive regime governing access to all ocean and continental shelf resources, including the water column itself (though not impeding the right to free navigation). The Reagan EEZ Proclamation included an accompanying presidential statement that the United States would accept and act in accordance with the balance of interests reflected in the convention, except for the provisions on deep seabed mining. Finally, five years later, the United States officially extended its territorial sea from 3 to 12 nautical miles. The administration, however, did not offer any significant plans for exploring or exercising a new management role in these areas.
The architects of ocean-related programs in the 1970s built on the foundation of the Stratton Commission, creating a multidimensional framework for the management of America’s stake in the oceans. The Reagan administration saw much of that framework as unrelated to—or even interfering with—the core government functions of national defense and fostering free enterprise. The result was an ongoing clash that ratified the vision of neither side, producing a stalemate. The administration did not succeed in eliminating programs such as Sea Grant and Coastal Zone Management, but it was able to hold the line or reduce financial support for most of them. Funding for NOAA’s ocean research, for example, declined from $117.9 million in 1982 to $40.7 million in 1988. Many managers, earlier preoccupied with implementing their programs, spent much of the 1980s trying to save them.

Search for Coherence

Recent years have been characterized neither by the rapid growth in federal ocean activity characteristic of the 1970s, nor by the change in course that took place in the 1980s. The EXXON Valdez oil spill in Prince William Sound, occurring a few months after President George H.W. Bush took office in 1989, helped revive support for environmentally protective legislation. The spill led directly to enactment of the 1990 Oil Pollution Act, mandating double hulls for tankers entering U.S. ports by 2015 and setting liability standards for oil spills. That same year, amendments to the CZMA clarified that OCS lease sales are subject to the federal consistency provisions of the statute. Frustrated by the persistence of marine pollution, Congress continued to search for effective ways to reduce pollution from nonpoint sources, such as urban runoff and agriculture. Mounting alarm about the depletion of major groundfish stocks, despite two decades of management under the Magnuson–Stevens Act, led to the 1996 Sustainable Fisheries Act, designed to prevent overfishing.

On the world stage, the United Nations Conference on Environment and Development—the Earth Summit—held in Rio de Janeiro in 1992, made recommendations in seven program areas dealing with the conservation of marine and coastal resources. It also produced the United Nations Framework Agreement on Climate Change (ratified by the United States in 1992) and the Convention on Biological Diversity (which the United States has not ratified). In 1994, an agreement was reached addressing U.S. concerns on implementing the deep seabed mining provisions of the LOS Convention, and the Clinton administration sent the treaty to the Senate for advice and consent, where it still lingers, though it is in force internationally. (For a summary of many ocean-related international agreements, see Table 29.1.)

The dominant trend in U.S. ocean policy in the 1990s was a growing sense of dissatisfaction with the ad hoc approach. Much had changed since the Stratton Commission report was issued in 1969. New opportunities, such as offshore aquaculture and marine biotechnology, were being held back by the lack of appropriate management structures to guide development. Pressures on ocean and coastal areas continued to intensify and new threats loomed, such as sea-level rise and increased storm frequency attributed to global climate change, as well as puzzling and sometimes deadly algal blooms. The link between science and policy that had seemed so essential and exciting to the nation in the 1960s now suffered from insufficient investment and high-level neglect. On many key ocean issues, debate was leading not to consensus, but rather to heightened disagreements that could not be resolved under existing laws and arrangements, and often to litigation.

The sense of partial paralysis was strengthened by the existence through most of the decade of divided government, with different parties in control of the White House and Congress. None of the many centers of power was able to lead with sustained success. In search of coherence, panels assembled by the National Research Council, as well as expert groups brought together under other auspices, recommended a detailed study of the nation’s ocean-related laws, programs, activities, and needs.
Consensus for Change

Since the publication of the Stratton Commission’s report, seventeen Congresses and seven presidents have created, expanded, and remodeled the current framework of laws governing ocean and coastal management. At last count, more than 55 congressional committees and subcommittees (Appendix F) oversee some 20 federal agencies and permanent commissions in implementing at least 140 federal ocean-related statutes.

Recognition of the growing economic importance and ecological sensitivity of the oceans and coasts, our responsibility to future generations, and the inadequacies of the current management regime set the stage for enactment of the Oceans Act of 2000 (Appendix A), establishing the U.S. Commission on Ocean Policy. Although publicly financed, the Commission is fully independent and is charged with carrying out the first comprehensive review of marine-related issues and laws in more than thirty years to assist the nation in creating a truly effective and farsighted ocean policy. The timing of the Commission’s work overlapped with that of the privately funded and more narrowly focused Pew Oceans Commission, whose recommendations contributed to the growing dialogue on the need for such policy.5

In enacting the Oceans Act, Congress cited the pressing need for a coherent national system of ocean governance. Factors contributing to this need include rising coastal populations, increased competition for ocean space, demand for port facilities, the emergence of potential new ocean uses, the decline of vital commercial fishery stocks, unresolved debates over offshore energy and mineral development, the persistence of marine pollution, the contamination of seafood, the loss of coastal wetlands, and the prospect that enhanced knowledge of the oceans will improve our ability to comprehend the causes of climate variability and other not yet fully grasped environmental threats.

The Commission was established because the nation is not now sufficiently organized legally or administratively to make decisions, set priorities, resolve conflicts, and articulate clear and consistent policies that respond to the wealth of problems and opportunities ocean users face. In the words of the Senate Committee on Commerce, Science, and Transportation: “Today, people who work and live on the water, from fishermen to corporations, face a patchwork of confusing and sometimes contradictory federal and state authorities and regulations. No mechanism exists for establishing a common vision or set of objectives.”6

In September 2001, a major event again altered the lens through which America views ocean policy. Terrorist attacks on U.S. soil resulted in the placement of a higher priority on maritime security issues. That very month, the Commission’s initial organizational meeting was held. The Coast Guard was soon transferred to the new U.S. Department of Homeland Security. Meanwhile, partly as a result of the war on terror, constraints on the domestic discretionary part of the U.S. government’s budget raised new questions not only about what U.S. ocean policy should be, but also about what policy choices the nation can afford.

Launching the U.S. Commission on Ocean Policy

A Broad Mandate

The Commission was directed to address numerous challenging issues, ranging from the stewardship of fisheries and marine life to the status of knowledge about the marine environment, as well as the relationships among federal, state, and local governments and the private sector in carrying out ocean and coastal activities. The Oceans Act requires that the Commission suggest ways to reduce duplication, improve efficiency, enhance cooperation, and modify the structure of federal agencies involved in managing the oceans and coasts.

With input from the states, a science advisory panel, and the public, the Commission was instructed to prepare a report presenting recommendations to the President and
Congress on ocean and coastal issues for the purpose of developing a coordinated and comprehensive national ocean policy. The Oceans Act states that this national ocean policy should promote protection of life and property, responsible stewardship of ocean and coastal resources, protection of the marine environment and prevention of marine pollution, enhancement of marine commerce, expansion of human knowledge of the marine environment, investment in technologies to promote energy and food security, close cooperation among government agencies, and preservation of U.S. leadership in ocean and coastal activities. In developing its recommendations, the Commission was required to give equal consideration to environmental, technical feasibility, economic, and scientific factors.

Specifically, the Commission's report was required to include the following elements:
- An assessment of ocean facilities including vessels, people, laboratories, computers, and satellites (Appendix 5);
- A review of federal laws and regulations on U.S. ocean and coastal activities (Appendix 6);
- A review of the supply and demand for ocean and coastal resources;
- A review of the relationships among federal, state, and local governments and the private sector;
- A review of the opportunities for investment in new products and technologies;
- Recommendations for modifications to federal laws and the structure of federal agencies; and
- A review of the effectiveness of existing federal interagency policy coordination.

The Commission Members

In accordance with guidelines set forth in the Oceans Act, in July 2001 President George W. Bush appointed sixteen citizens knowledgeable in ocean and coastal activities to serve on the U.S. Commission on Ocean Policy. The President selected twelve members from lists submitted by the Senate Majority Leader, the Senate Minority Leader, the Speaker of the House of Representatives, and the Minority Leader of the House. The remaining four members were chosen directly by the President. The Commission members (listed at the front of this report) come from positions and diverse professional backgrounds in: federal, state, and local governments; private industry; and academic and research institutions involved in marine-related issues. Admiral James D. Watkins, USN (Retired), was elected chair by his fellow commissioners at the first Commission meeting.

How the Commission Did Its Work

This report was developed after careful consideration of materials gathered during public meetings, through public comment, from existing literature, and through input of science advisors and other noteworthy experts. The input received from all of these sources served to guide the development of this report.

Regional Meetings

Because of the vast scope of topics the Commission was required to address, it sought input from a wide range of experts across the country. After two initial organizing meetings in Washington, D.C., the Commission heard testimony on ocean and coastal issues in nine different areas around the United States during a series of regional meetings and related site visits (Box 2.1). The Commission was required to hold at least one public meeting in Alaska, the Northeast (including the Great Lakes), the Southeast (including the Caribbean), the Southwest (including Hawaii and the Pacific Territories), the Northwest, and the Gulf of Mexico. To obtain information from an even greater segment of U.S. marine-related interests, the commissioners held three additional regional meetings. The commissioners also learned about important regional issues through site visits.
The public meetings provided government agencies, nongovernmental organizations, industry, academia, and the public the opportunity to directly discuss ocean and coastal concerns with the Commission. Commissioners held dialogues with invited speakers and sought comments from members of the public to gain insight into issues and opportunities facing each region, and to solicit recommendations for Commission consideration. The regional meetings highlighted relevant case studies and regional models with potential national applicability.

Invited panelists were selected based on their expertise on the topics highlighted at each meeting, with a strong effort to maintain a balance of interests and gain perspectives from all sectors (Figure 2.1). Six additional public meetings were held in Washington, D.C.:

- **Washington, D.C.**
 - September 17–18, 2001: Public meeting
 - November 13–14, 2001: Public meeting

- **Southeast—Delaware to Georgia**
 - January 14, 2002: Regional site visits (Annapolis/Chesapeake Bay, MD; Charleston, SC)
 - January 15–16, 2002: Public meetings in Charleston, SC

- **Florida and the Caribbean**
 - February 21, 2002: Regional site visits (Puerto Rico; South Florida east coast; Tampa–Sarasota, FL)
 - February 22, 2002: Public meeting in St. Petersburg, FL

- **Gulf of Mexico—Alabama to Texas**
 - February 19, 2002: Regional site visit (Texas A&M University, TX)
 - March 6, 2002: Regional site visits (offshore New Orleans, LA; Stennis Space Center, MS)
 - March 7–8, 2002: Public meetings in New Orleans, LA

- **Southwest—California**
 - April 17, 2002: Regional site visits (San Diego and Monterey, CA)
 - April 18–19, 2002: Public meetings in San Pedro, CA

- **Hawaii and Pacific Islands**
 - May 13–14, 2002: Public meetings in Honolulu, HI

- **Northwest—Washington and Oregon**
 - March 20, 2002: Regional site visit (Portland, OR)
 - June 12, 2002: Regional site visits (Olympia and Seattle, WA)
 - June 13–14, 2002: Public meetings in Seattle, WA

- **Northeast—New Jersey to Maine**
 - July 23–24, 2002: Public meetings in Boston, MA

- **Alaska**
 - August 21–22, 2002: Public meetings in Anchorage, AK
 - August 23, 2002: Regional site visits (Dutch Harbor and Juneau, AK)

- **Great Lakes**
 - September 24–25, 2002: Public meetings in Chicago, IL

- **Washington, D.C.**
 - October 30, 2002: Public meeting

- **Washington, D.C.**
 - November 22, 2002: Public meeting

- **Washington, D.C.**
 - January 24, 2003: Public meeting

- **Washington, D.C.**
 - April 2–3, 2003: Public meetings

- **Washington, D.C.**
 - April 20, 2004: Release of the Preliminary Report

- **Washington, D.C.**
 - July 22, 2004: Public meeting and approval of the draft Final Report

The public meetings provided government agencies, nongovernmental organizations, industry, academia, and the public the opportunity to directly discuss ocean and coastal concerns with the Commission. Commissioners held dialogues with invited speakers and sought comments from members of the public to gain insight into issues and opportunities facing each region, and to solicit recommendations for Commission consideration. The regional meetings highlighted relevant case studies and regional models with potential national applicability.
AN OCEAN BLUEPRINT FOR THE 21ST CENTURY

D.C., after completion of the regional meetings. At the four immediately following the regional meetings, the commissioners presented and discussed the many policy options that served as the foundation for the Commission’s recommendations. Overall during its public meetings, the Commission heard from some 447 witnesses, including over 275 invited presentations and an additional 172 comments from the public, resulting in nearly 1,900 pages of testimony (Appendices 1 and 2).

Working Groups

During the first Commission meeting in September 2001, the commissioners agreed to establish four working groups in the areas of: Governance; Stewardship; Research, Education, and Marine Operations; and Investment and Implementation. These working groups were charged with reviewing and analyzing issues within their area and reporting their findings to the full Commission.

Based on extensive reviews of the testimony, public comments, background papers prepared by expert consultants, existing literature, and discussions with a broad cross-section of the marine-related community, the working groups identified key issues and outlined possible options for addressing them. The working groups shared their work with each other throughout the deliberative process to ensure thorough integration and coordination in developing the final Commission report and recommendations.

The Governance Working Group examined the roles of federal, state, and local governments as they relate to the oceans. It also assessed the management of the coastal zone and nonliving marine resources and provided options for improvement.

The Stewardship Working Group addressed living marine resources, pollution, and water quality issues and assessed the current status of ocean stewardship—the behavior of people with respect to the oceans—and incentives for responsible actions. The group concentrated on actions to achieve responsible and sustainable use of the ocean and its resources.

The Research, Education, and Marine Operations Working Group examined ocean and coastal research, exploration, air-ocean interaction research, education, marine operations, and related technology and facilities. This group analyzed the current status in these areas to assess their adequacy in achieving the national goals set forth in the Oceans Act.

Finally, the Investment and Implementation Working Group discussed the new investment and implementation strategies needed to carry out the Commission’s proposed ocean policy. This working group concentrated on identifying the federal structures, processes, and investments necessary to integrate, implement, and sustain the recommendations proposed by the other working groups.

Science Advisory Panel

The Oceans Act directed the Commission, with assistance from the National Academy of Sciences, to establish a multidisciplinary science advisory panel consisting of experts in living and nonliving marine resource issues from outside the federal government. The panel (listed at the front of this report) included many of the finest ocean science and marine policy practitioners and researchers in the nation and reflected the breadth of issues before the Commission. Panel members provided expert advice on a range of issues and reviewed draft materials to ensure the Commission’s report was based on the best scientific information available.
Other Sources of Information
Throughout its work, the Commission continuously sought advice from experts on specific issues of concern through formal seminars and conferences, informal meetings and discussions, and preparation of background reports. Striving to maintain communication with all interested parties and to gain knowledge from a range of sources, the Commission also encouraged members of the public to submit information for the official record throughout the Commission’s fact-finding and deliberative phases. An active Web site was maintained to facilitate public input.

As a result of the Commission’s outreach efforts, some 3,200 pages of information have been filed in the official Commission record. This vast wealth of accumulated information provided examples of successful approaches and formed the basis for the Commission’s recommendations.

The Preliminary Report and Governors’ Comments
Following extensive consideration, and deliberations on a broad array of potential solutions, the Commission released a preliminary report in April 2004. Although the Oceans Act only required the draft report be sent to coastal state governors, the Commission went further, soliciting feedback from all state and territorial governors, tribal leaders, and the public. The response was overwhelming. Thoughtful, constructive feedback was received from thirty-seven governors (including 33 of the 34 from coastal states), five tribal leaders, and a multitude of other organizations and individuals—over one thousand pages in all. Commenters were nearly unanimous in praising the report, agreeing that our oceans are in trouble, and supporting the call for action to rectify the situation. Where governors and others offered corrections or suggestions for improvement, the Commission paid close attention and made changes as needed.

The Result
This final report of the U.S. Commission on Ocean Policy, along with its extensive appendices, is the culmination of more than two and a half years of information gathering, discussion, deliberation, review, and refinement. It represents a consensus of the sixteen Commission members on the best course of action for this nation to realize a coordinated and comprehensive national ocean and coastal policy. Meaningful change will require a reorientation of political, economic, and social attitudes and behaviors. Such change is likely to take time, but it must begin now if we are to reverse a continuing decline in the health and economic vitality of ocean and coastal waters.

References
T he first step in any call for change should be to paint a picture of the desirable end result and specify the principles that will guide the changes. For U.S. ocean policy to improve, it must be based on a positive vision for the future, broad guiding principles, and translation of those principles into an effective governance system with working policies and programs.

In keeping with the latest scientific understanding about the world, management based on ecosystems rather than political boundaries should be at the heart of any new ocean policy framework. Success also depends on greatly improved public awareness of the relationship between the oceans and human existence, the connections among the land, air, and sea, the balance of benefits and costs inherent in using ocean and coastal resources, and the role of governments and citizens as ocean stewards.

Imagining a Brighter Future

T he potential benefits associated with oceans and coasts are vast; however, the problems we face in protecting them and realizing their full potential are numerous and complex. There is a growing awareness of the connectivity within and between ecosystems and the impacts of human activities on the marine environment. The need for change emerged as a compelling theme at each of the U.S. Commission on Ocean Policy’s public meetings—change not only in management and policies, but also in public awareness and education, and in the use of science and technology. However, before attempting to reform any system, it is important to identify the desired result. What would an improved ocean management system achieve? What would be its most important attributes? How would the oceans and coasts benefit from this improved system? What would the world look like after such reforms were realized?

In the desirable future, the oceans and coasts would be clean, safe, and sustainably managed. The oceans would contain a high level of biodiversity and contribute significantly to the economy, supporting multiple beneficial uses, including food production, development of energy and mineral resources, recreation, transportation of goods and people, and the discovery of novel life-saving drugs and other useful products. The coasts would be attractive places to live, work, and play, with clean water and beaches, easy
public access, vibrant economies, safe bustling harbors and ports, adequate roads and services, and special protection for sensitive habitats. Beach closings, toxic algal blooms, proliferation of invasive species, and vanishing native species would be rare. Better land use planning and improved predictions of severe weather and other natural hazards would save lives and money.

In the desirable future, management of the oceans and coasts would follow ecosystem boundaries, looking at interactions among all elements of the system, rather than addressing isolated areas or problems. In the face of scientific uncertainty, managers would balance competing considerations and proceed with caution. Ocean governance would be effective, participatory, and well coordinated among government agencies, the private sector, and the public.

An improved ocean governance framework would recognize the critical importance of good information and provide strong support for physical, biological, social, and economic research. Investments would be made in the tools and technologies needed to conduct this research: ample, well-equipped surface and underwater research vessels; reliable, sustained satellites; state-of-the-art computing facilities; and innovative sensors that withstand harsh ocean conditions. A widespread network of observing and monitoring stations would provide data for research, planning, marine operations, timely forecasts, and periodic assessments. Scientific findings and observations would be translated into practical information, maps, and products used by decision makers and the public.

Better education would be a key element of the desirable future, with the United States once again joining the top ranks in math, science, and technology achievement. An ample, well-trained, and motivated workforce would be available to study the oceans, set wise policies, apply technological advances, engineer new solutions, and teach the public about the value and beauty of the oceans and coasts throughout their lives. As a result of this lifelong education, people would understand the links among the sea, land, air, and human activities, and would be better stewards of the nation’s resources.

Finally, the United States would be a leader and full partner globally, sharing its science, engineering, technology, and policy expertise, particularly with developing countries, to facilitate the achievement of sustainable ocean management on a global level.

The Commission believes this vision is practical and achievable.

Building Ocean Policy on Sound Guiding Principles

To achieve the vision, national ocean policy should be guided by a set of overarching principles. Although existing ocean policies address specific issues or resources with varying degrees of success, there are no broad principles in place to guide the development and implementation of new policies, provide consistency among the universe of different policies, and assess the effectiveness of any particular policy. The fundamental principles that should guide ocean policy include the following:

- **Sustainability**: Ocean policy should be designed to meet the needs of the present generation without compromising the ability of future generations to meet their needs.
- **Stewardship**: The principle of stewardship applies both to the government and to every citizen. The U.S. government holds ocean and coastal resources in the public trust—a special responsibility that necessitates balancing different uses of those resources for the continued benefit of all Americans. Just as important, every member of the public should recognize the value of the oceans and coasts, supporting appropriate policies and acting responsibly while minimizing negative environmental impacts.
- **Ocean–Land–Atmosphere Connections**: Ocean policies should be based on the recognition that the oceans, land, and atmosphere are inextricably intertwined and that actions that affect one Earth system component are likely to affect another.
Ecosystem-based Management: U.S. ocean and coastal resources should be managed to reflect the relationships among all ecosystem components, including humans and nonhuman species and the environments in which they live. Applying this principle will require defining relevant geographic management areas based on ecosystem, rather than political, boundaries.

Multiple Use Management: The many potentially beneficial uses of ocean and coastal resources should be acknowledged and managed in a way that balances competing uses while preserving and protecting the overall integrity of the ocean and coastal environments.

Preservation of Marine Biodiversity: Downward trends in marine biodiversity should be reversed where they exist, with a desired end of maintaining or recovering natural levels of biological diversity and ecosystem services.

Best Available Science and Information: Ocean policy decisions should be based on the best available understanding of the natural, social, and economic processes that affect ocean and coastal environments. Decision makers should be able to obtain and understand quality science and information in a way that facilitates successful management of ocean and coastal resources.

Adaptive Management: Ocean management programs should be designed to meet clear goals and provide new information to continually improve the scientific basis for future management. Periodic reevaluation of the goals and effectiveness of management measures, and incorporation of new information in implementing future management, are essential.

Understandable Laws and Clear Decisions: Laws governing uses of ocean and coastal resources should be clear, coordinated, and accessible to the nation’s citizens to facilitate compliance. Policy decisions and the reasoning behind them should also be clear and available to all interested parties.

Participatory Governance: Governance of ocean uses should ensure widespread participation by all citizens on issues that affect them.

Timeliness: Ocean governance systems should operate with as much efficiency and predictability as possible.
• **Accountability:** Decision makers and members of the public should be accountable for the actions they take that affect ocean and coastal resources.

• **International Responsibility:** The United States should act cooperatively with other nations in developing and implementing international ocean policy, reflecting the deep connections between U.S. interests and the global ocean.

Translating Principles into Policy

While articulating a vision for the future and identifying fundamental principles are necessary first steps, these must then be translated into working policies and programs. Four concepts serve as guideposts for developing and implementing new ocean policies: ecosystem-based management; incorporation of scientific information in decision making; improved governance; and broad public education.

Ecosystem-based Management

Sound ocean policy requires managers to simultaneously consider the economic requirements of society, the need to protect the nation’s oceans and coasts, and the interplay among social, cultural, economic, and ecological factors. These factors are closely intertwined, just like the land, air, sea, and marine organisms. Activities that affect the oceans and coasts may take place far inland. For example, land-based sources of pollution, such as runoff from farms and city streets, are a significant source of the problems that plague marine ecosystems. Ocean policies cannot manage one activity, or one part of the system, without considering its connections with all the other parts. Thus, policies governing the use of U.S. ocean and coastal resources must become ecosystem-based, science-based, and adaptive.

Ecosystem-based management looks at all the links among living and nonliving resources, rather than considering single issues in isolation. This system of management considers human activities, their benefits, and their potential impacts within the context of the broader biological and physical environment. Instead of developing a management plan for one issue (such as a commercial fishery or an individual source of pollution), ecosystem-based management focuses on the multiple activities occurring within specific areas that are defined by ecosystem, rather than political, boundaries.

Defining New Management Boundaries

Splitting the natural world into clearly defined management units is a somewhat arbitrary process. Existing management boundaries primarily follow political lines. However, new scientific understanding of ecosystems makes it possible to design management areas that conform more closely to ecological units.

Since the 1960s, scientists have developed and refined the concept of “large marine ecosystems,” (LMEs). These regions divide the ocean into large functional units based on shared bathymetry, hydrography, productivity, and populations. LMEs encompass areas from river basins and estuaries to the outer edges of continental shelves and seaward margins of coastal current systems (Figure 3.1). Large marine ecosystems are not currently employed as management areas, although they were used in part to define the fishery management regions in the Magnuson–Stevens Fishery Conservation and Management Act. On land, watersheds have often been identified as appropriate ecosystem-based management units, particularly for issues related to hydrology and water pollution. Because of the connection between land-based activities and ocean conditions, an appropriate geographic boundary for ecosystem-based management of ocean areas might combine all or part of a large marine ecosystem with the watersheds that drain into it.
While determining appropriate new boundaries is necessary to move toward ecosystem-based management, it is also important to maintain sufficient flexibility to manage on both larger and smaller scales when necessary. For example, air pollution problems must be dealt with on national and even international levels, while certain water pollution issues may need to be addressed on a small-scale watershed level. Managers should be able to adapt to the scale of different activities and the ecosystems they affect.

Aligning Decision Making within Ecosystem Boundaries

The current political and issue-specific delineation of jurisdictional boundaries makes it difficult to address complex issues that affect many parts of the ecosystem. Economic development in a coastal area may fall under the jurisdiction of several local governments, and natural resource management under the jurisdiction of one or more states, while pollution control and environmental monitoring of the same area may be overseen by several federal agencies. Yet water, people, fish, marine mammals, and ships flow continually across these invisible institutional borders.

Ecosystem-based management can provide many benefits over the current structure. The coordination of efforts within a specific geographic area allows agencies to reduce duplication and maximize limited resources. It also provides an opportunity for addressing conflicts among management entities with different mandates. Less obvious, but equally important, ecosystem-based management may engender a greater sense of stewardship among government agencies, private interests, and the public by promoting identification and connection with a specific area.
Finally, ecosystem-based management makes it easier to assess and manage the cumulative impacts of many different activities. For example, the U.S. Army Corps of Engineers’ wetlands permitting program has been criticized for not evaluating cumulative impacts in its review of individual dredge-and-fill permits. A true ecosystem-based management approach would ameliorate this fragmented approach.

While ecosystem-based management is being attempted in some places on a limited basis, applying it broadly and successfully will take time and effort. In particular, the transition to such management will require explicit recognition of the uncertainty of current information and understanding. This uncertainty creates risks. One widely accepted guideline for managing in the face of uncertainty and risk is to adopt a precautionary and adaptive approach.

Precautionary and Adaptive Management

Scientific uncertainty has always been, and will probably always be, a reality of the management process. Because scientists cannot predict the behavior of humans or the environment with 100 percent accuracy, managers cannot be expected to manage with complete certainty. Nevertheless, scientists *can* provide managers with an estimate of the level of uncertainty associated with the information they are providing. Managers must incorporate this level of uncertainty into the decision-making process, support the research and data collection needed to reduce the uncertainties, and be prepared to adapt their decisions as the information improves.

The *precautionary principle* has been proposed by some parties as a touchstone for managers faced with uncertain scientific information. In its strictest formulation, the precautionary principle states that when the potentially adverse effects of a proposed activity are not fully understood, the activity should not be allowed to proceed. While this may appear sensible at first glance, its application could lead to extreme and often undesirable results. Because scientific information can never fully explain and predict all impacts, strict adoption of the precautionary principle would prevent most, if not all, activities from proceeding.

In contrast to the precautionary principle, the Commission recommends adoption of a more balanced *precautionary approach* that weighs the level of scientific uncertainty and the potential risk of damage as part of every management decision. Such an approach can be explained as follows:

Precautionary Approach: To ensure the sustainability of ecosystems for the benefit of future as well as current generations, decision makers should follow a balanced precautionary approach, applying judicious and responsible management practices based on the best available science and on proactive, rather than reactive, policies. Where threats of serious or irreversible damage exist, lack of full scientific certainty shall not be used as a justification for postponing action to prevent environmental degradation. Management plans and actions based on this precautionary approach should include scientific assessments, monitoring, mitigation measures to reduce environmental risk where needed, and periodic reviews of any restrictions and their scientific bases.

According to this approach, scientific uncertainty—by itself—should neither prevent protective measures from being implemented nor prevent uses of the ocean. Managers should review the best available science and weigh decisions in light of both the level of scientific uncertainty and the potential for damage. When the level of uncertainty is low and the likelihood of damage is also low, the decision to proceed is clearly supported. At the other extreme, when the level of uncertainty is high and the potential for irreversible...
damage is also high, managers should clearly not allow a proposed action to proceed. In the real world, managers will most likely face decisions between these two extremes, where the correct outcome will require balancing competing interests, using the best available information despite considerable uncertainty, and imposing some limits or mitigation measures to prevent environmental damage. After a decision is made, managers must continue to gather the information needed to reduce uncertainty, periodically assess the situation, and modify activities as appropriate.

Goals and Objectives for Ecosystem-based Management Plans
As with any major, complex undertaking, ecosystem-based management should be guided by clear, measurable goals and objectives. These goals should cover multiple uses and should be based on a combination of policy judgments, community values, and science. Although good science is essential for solving problems and scientists should advise managers about the consequences of various courses of action, science cannot determine the “best” outcome in the absence of clearly identified management goals. The setting of goals and objectives will depend on a blending of values and information.

Where multiple desirable but competing objectives exist, it is not possible to maximize each. For example, both recreational boating and marine aquaculture are potential uses of nearshore marine waters. Both provide benefits and costs to society, and both have impacts on the environment that can be lessened with proper planning. However, these activities can also conflict with each other: a large-scale aquaculture operation would prevent access by recreational boaters to certain waters. Science can inform managers of the potential positive or negative impacts of each activity but cannot ultimately determine whether to favor aquaculture or boating. Instead, a community judgment must be made, weighing the value of each activity against its potential impacts.

Ecosystem-based management will lead to better decisions that protect the environment while balancing multiple uses of ocean areas. Managers will need to work with the scientific community to develop the necessary information and understanding to support such complex decisions. But the critical process of setting goals to guide management will require active participation by many different stakeholders with divergent views. This will be difficult to achieve without changes to the existing governance system.

Biodiversity
One of the central goals for ecosystem-based management should be the explicit consideration of biodiversity on species, genetic, and ecosystem levels. While humans have always depended on particularly valued marine species for food, medicine, and other useful products, there has been a tendency to ignore species that do not have a clear, recognizable impact on society. However, it is now understood that every species makes some contribution to the structure and function of its ecosystem. Thus, an ecosystem’s survival may well be linked to the survival of all species that inhabit it.

Species diversity, or the number of species within an ecosystem, is one measure of biodiversity. However, biodiversity is also significant at larger and smaller scales. Within a single-species population, it is important to preserve genetic diversity—the bedrock of evolution. Maintaining genetic diversity is important for species to adapt to changing environmental conditions. It is also important to understand and protect ecosystem diversity, the number of different ecosystems and different kinds of ecosystems, on Earth.

Because scientists have tended to study specific habitats, such as coral reefs, mangroves, or wetlands, quantitative measures of marine biodiversity at larger scales are rare. Nevertheless, there is broad consensus that the biodiversity of life in the oceans is being affected by human activities. Studies indicate that in many marine and coastal locations, community composition has changed to conditions that are less valuable from ecological,
economic, and even cultural perspectives. There have been reductions in food and medicinal species and alterations of aesthetic and recreational values important to humans, including much greater abundance of less desirable species like toxic algae and bacteria.

Despite the importance of biodiversity to ecosystem functions and values, very little is known about how biodiversity arises, is maintained, and is affected by outside forces including climate variability and direct human impacts.

Science for Decision Making

Ecosystem-based management provides many potential benefits, but also imposes new responsibilities on managers. The need to collect good information and to improve understanding is perhaps foremost among these new responsibilities. Despite considerable progress over the last century, the oceans remain one of the least explored and most poorly understood environments on the planet.

Greater knowledge can enable policy makers and managers to make science-based decisions at the national, regional, state, and local levels. Existing research and monitoring programs, which tend to be agency- and issue-centric, should be reoriented to become ecosystem-based. This will help resolve the current mismatch between the size and complexity of marine ecosystems and the many fragmented research and monitoring programs for coastal and ocean ecosystems.

In addition to the need for better understanding, the nation lacks effective mechanisms for incorporating scientific information into decision-making processes in a timely manner. As knowledge improves, it must be actively incorporated into policy through an adaptive process. To make this policy translation effective, local, state, regional, and national managers need an avenue to communicate their information needs and priorities.

Better coordination can facilitate more efficient use of existing funds. However, to significantly improve U.S. management of oceans and coasts and make ecosystem-based management a reality, the nation will need to commit to greater investments in ocean science, engineering, exploration, observations, infrastructure, and data management. Increased investments will help restore the pre-eminence of U.S. ocean capabilities, which has eroded since the end of the Cold War.

Although multiple use conflicts are common in coastal and ocean environments, efforts to understand the social, cultural, and economic dimensions of ocean issues have received surprisingly little support. Because of this, studies of humans and their behavior—so critical to virtually every ecosystem—deserve special emphasis.

Climate Change

The causes and impacts of climate variability and climate change are among the most pressing scientific questions facing our nation and the planet. Changing atmospheric composition and global temperatures, due to natural variation and human activities, have the potential to significantly affect societies and environments on local, regional, and worldwide scales. Decision makers require reliable information on which to base both short- and long-term strategies for addressing these impacts. In addition, a growing awareness of the possibility of abrupt climate change (characterized by extreme climatic shifts over relatively short time periods) reinforces the need for enhanced prediction and response capabilities.

Although a solid body of knowledge exists on which to base immediate actions, continued improvements in understanding will help refine these strategies over time. Two areas in particular need of elucidation are the role of oceans in the global cycling of water, heat, and carbon, and the effects of changes in atmospheric chemistry and temperatures on marine ecosystems and biological processes themselves. For example, research shows that over the last 200 years the oceans have absorbed 48 percent of the carbon dioxide
emitted by human activities. This has resulted in elevated concentrations of carbon dioxide in ocean waters, impairing the ability of certain marine organisms to produce protective shells, with potentially profound impacts on marine productivity and biodiversity. Armed with expanded research findings in these areas and others, and with more comprehensive ocean observations, the nation’s leaders will be able to modify management strategies to more effectively predict and mitigate the potential impacts of climate change.

Effective Ocean Governance

National ocean policy can only be implemented if an effective governance system is in place. Many of the guiding principles defined in this chapter speak directly to this need. An effective governance system will be predictable, efficient, and accountable. Laws, policies, and programs must be well coordinated and easily understood by regulated parties and the public. A comprehensive framework should be in place that defines the appropriate roles for different levels of government, the private sector, and citizens, promoting effective partnerships for managing ocean and coastal resources. Equally important, decision makers and the public should be accountable for decisions and actions that affect the ocean and its resources.

Participation by a broad sector of the public is essential to a successful ocean governance system. Facing an array of complex problems and competing desires, interested parties must reach agreements on what actions are needed, which are of greatest priority, and how to implement decisions once they are made. Public input is critical to this decision-making process so that all interests are fairly represented and support is built from the ground up. Without a truly participatory form of ocean governance, dispute and litigation are inevitable. At the same time, clear roles, jurisdictions, and authorities must be delineated to avoid gridlock and allow progress.

Today, no federal entity has the mission to evaluate the vast array of federal actions affecting ocean and coastal resources and to advocate for more effective approaches, prioritized investment, improved agency coordination, and program consolidation where needed. Nor is there a coherent national policy for ocean management that guides the missions of various federal agencies. A more unified federal voice is also needed in discussing policy options with the many nonfederal stakeholders.

Not since the Stratton Commission in the 1960s has an opportunity such as this existed. One of the top priorities of this Commission is to instigate changes in ocean governance that will result in tangible improvements, today and for future generations.

Public Education

Education has provided the skilled and knowledgeable workforce that made America a world leader in technology, productivity, prosperity, and security. However, rampant illiteracy about science, mathematics, and the environment now threaten the future of America, its people, and the oceans on which we rely.
Testing results suggest that, after getting off to a good start in elementary school, by the time U.S. students graduate from high school their achievement in math and science falls well below the international average. Ocean-related topics offer an effective tool to keep students interested in science, increase their awareness of the natural world, and boost their academic achievement in many areas. In addition, the links between the marine environment and human experience make the oceans a powerful vehicle for teaching history, culture, economics, and other social sciences. Yet, teachers receive little guidance on how they might use exciting ocean subjects to engage students, while adhering to the national and state science and other education standards that prescribe their curricula.

A 1999 study indicated that just 32 percent of the nation’s adults grasp simple environmental concepts, and even fewer understand more complex issues, such as ecosystem decline, loss of biodiversity, or watershed degradation. It is not generally understood that nonpoint source pollution threatens the health of our coastal waters or that mercury in fish comes from human activities via the atmosphere. Few people understand the tangible value of the ocean to the nation or that their own actions can have an impact on that resource. From excess applications of fertilizers, pesticides, and herbicides on lawns, to the trash washed off city streets into rivers and coastal waters, ordinary activities can and do contribute significantly to the degradation of the marine environment. Instilling a stewardship ethic in the American public is an important element of a national ocean policy. Without an acknowledgement of the impacts associated with ordinary behavior and a willingness to take the necessary action—which may incur additional costs—achieving a collective commitment to more responsible lifestyles and new policies will be difficult.

Excellent lifelong education in marine affairs and sciences is essential to raising public awareness of the close connection between the oceans and humans, including our history and culture. This awareness will result in better public understanding of the connections among the ocean, land, and atmosphere, the potential benefits and costs inherent in resource use, and the roles of government and citizens as ocean stewards.

References

Although invisible to the naked eye, governments have carved the world’s oceans into many zones, based on both international and domestic laws. These zones are often complex, with overlapping legal authorities and agency responsibilities. Internationally, the closer one gets to the shore, the more authority a coastal nation has. Similarly, for domestic purposes, the closer one gets to the shore, the more control an individual U.S. state has.

This primer explains the ocean jurisdiction of the United States under international law, as well as the domestic distinction between federal and state waters (Figure P.1).

The Baseline (0 Miles)

For purposes of both international and domestic law, the boundary line dividing the land from the ocean is called the baseline. The baseline is determined according to principles described in the 1958 United Nations Convention on the Territorial Sea and the Contiguous Zone and the 1982 United Nations Convention on the Law of the Sea (LOS Convention), and is normally the low water line along the coast, as marked on charts officially recognized by the coastal nation. In the United States, the definition has been further refined based on federal court decisions; the U.S. baseline is the mean lower low water line along the coast, as shown on official U.S. nautical charts. The baseline is drawn across river mouths, the opening of bays, and along the outer points of complex coastlines. Water bodies inland of the baseline—such as bays, estuaries, rivers, and lakes—are considered “internal waters” subject to national sovereignty.

State Seaward Boundaries in the United States
(0 to 3 Nautical Miles; 0 to 9 Nautical Miles for Texas, Florida’s Gulf Coast, and Puerto Rico)

In the 1940s, several states claimed jurisdiction over mineral and other resources off their coasts. This was overturned in 1947, when the Supreme Court determined that states had no title to, or property interest in, these resources. In response, the Submerged Lands Act was enacted in 1953 giving coastal states jurisdiction over a region extending 3 nautical miles seaward from the baseline, commonly referred to as state waters. For historical reasons, Texas and the Gulf Coast of Florida are an exception, with state waters extending to 9 nautical miles offshore. (Note: A nautical mile is approximately 6,076 feet. All references hereafter in this Primer to miles are to nautical miles.) Subsequent legislation granted the U.S. Virgin Islands, Guam, and American Samoa jurisdiction out to 3 miles, while Puerto Rico has a 9-mile jurisdictional boundary.
The federal government retains the power to regulate commerce, navigation, power generation, national defense, and international affairs throughout state waters. However, states are given the authority to manage, develop, and lease resources throughout the water column and on and under the seafloor. (States have similar authorities on the land side of the baseline, usually up to the mean high tide line, an area known as state tidelands.)

In general, states must exercise their authority for the benefit of the public, consistent with the public trust doctrine. Under this doctrine, which has evolved from ancient Roman law and English common law, governments have an obligation to protect the interests of the general public (as opposed to the narrow interests of specific users or any particular group) in tidelands and in the water column and submerged lands below navigable waters. Public interests have traditionally included navigation, fishing, and commerce. In recent times, the public has also looked to the government to protect their interests in recreation, environmental protection, research, and preservation of scenic beauty and cultural heritage.
The Territorial Sea (0 to 12 Nautical Miles)

Under international law, every coastal nation has sovereignty over the air space, water column, seabed, and subsoil of its territorial sea, subject to certain rights of passage for foreign vessels and, in more limited circumstances, foreign aircraft.

For almost two hundred years, beginning with an assertion by Secretary of State Thomas Jefferson in 1793, the United States claimed a territorial sea out to 3 miles. In 1988, President Reagan proclaimed a 12-mile territorial sea for the United States, consistent with provisions in the LOS Convention. The proclamation extended the territorial sea only for purposes of international law, explicitly stating that there was no intention to alter domestic law.

The Contiguous Zone (12 to 24 Nautical Miles)

International law recognizes a contiguous zone outside the territorial sea of each coastal nation. Within its contiguous zone, a nation can assert limited authority related to customs, fiscal, immigration, and sanitary laws. In 1999, President Clinton proclaimed a U.S. contiguous zone from 12 to 24 miles offshore enhancing the U.S. Coast Guard’s authority to take enforcement actions against foreign flag vessels throughout this larger area.

The Exclusive Economic Zone (12 to 200 Nautical Miles)

The LOS Convention allows each coastal nation to establish an exclusive economic zone (EEZ) adjacent to its territorial sea, extending a maximum of 200 miles seaward from the baseline. Within its EEZ, the coastal nation has sovereign rights for the purpose of exploring, exploiting, conserving, and managing living and nonliving resources, whether found in ocean waters, the seabed, or subsoil. It also has jurisdiction over artificial islands or other structures with economic purposes.

In 1983, President Reagan proclaimed the U.S. EEZ, which currently occupies the area between 12 miles (the seaward limit of the territorial sea) and 200 miles offshore for international purposes. It also includes areas contiguous to its commonwealths, territories, and possessions. Consistent with international law and traditional high-seas freedoms, the U.S. does not generally assert control over surface or submarine vessel transit, aircraft overflight, or the laying of cables and pipelines on the ocean floor, nor does it assert jurisdiction over marine scientific research in the U.S. EEZ to the same extent that most coastal nations do. The United States requires advance consent for marine research, if and only if, any portion of the research is conducted within the U.S. territorial sea, involves the study of marine mammals, requires taking commercial quantities of marine resources, or involves contact with the U.S. continental shelf.

The Continental Shelf (12 to 200 Nautical Miles or Outer Edge of Continental Margin)

The legal concept of the continental shelf has evolved over the last sixty years. A 1945 proclamation by President Truman first asserted a U.S. claim to resources of its continental shelf. This proclamation set a precedent for other coastal nations to assert similar claims over resources far from their shores. The need to establish greater uniformity was one of the driving forces behind the 1958 United Nations Convention on the Continental Shelf. However, the 1958 Convention showed limited vision, defining the continental
The LOS Convention generally defines the continental shelf for purposes of international law as the seafloor and subsoil that extend beyond the territorial sea throughout the natural prolongation of a coastal nation’s land mass to the outer edge of the continental margin or to 200 miles from the baseline if the continental margin does not extend that far. The legal definition of the continental shelf thus overlaps geographically with the EEZ. Where a coastal nation can demonstrate that its continental margin extends beyond 200 miles, the LOS Convention has a complex process for asserting such claims internationally. The U.S. continental margin extends beyond 200 miles in numerous regions, including the Atlantic Coast, the Gulf of Mexico, the Bering Sea, and the Arctic Ocean. However, because the United States is not a party to the LOS Convention, it cannot assert its claims through LOS Convention mechanisms. (For more discussion on the LOS Convention, see Chapter 29.)

The High Seas (Areas Beyond National Jurisdictions)

International law has long considered areas of the ocean beyond national jurisdiction to be the high seas. On the high seas, all nations have certain traditional freedoms, including the freedom of surface and submerged navigation, the freedom to fly over the water, harvest fish, lay submarine cables and pipelines, conduct scientific research, and construct artificial islands and certain other installations. These freedoms are subject to certain qualifications, such as the duty to conserve living resources and to cooperate with other nations toward this end. In addition, a nation exercising its high seas freedoms must give due regard to the interests of other nations.

Originally defined as the area beyond the territorial seas of coastal nations, today the high seas are defined by the LOS Convention as the area seaward of the EEZs of those nations. Sixty percent of the world’s oceans remain in this zone, where the traditional freedom of the seas still prevails. Even on the high seas, the United States and other coastal nations have some limited ability to exercise governmental authority. For example, U.S. citizens on the high seas remain subject to U.S. law, as do individuals on U.S.-flagged vessels and aircraft.
PART 2

BLUEPRINT FOR CHANGE: A NEW NATIONAL OCEAN POLICY FRAMEWORK

CHAPTER 4
Enhancing Ocean Leadership and Coordination..............................76

CHAPTER 5
Advancing a Regional Approach..86

CHAPTER 6
Coordinating Management in Federal Waters...............................98

CHAPTER 7
Strengthening the Federal Agency Structure...............................108
CHAPTER 4

ENHANCING OCEAN LEADERSHIP AND COORDINATION

Some thirty-five years have passed since the Stratton Commission issued its influential report. The time has come again to consider significant improvements to the nation’s ocean and coastal governance system—improvements that build upon that Commission’s approach, while acknowledging societal and environmental changes and taking advantage of scientific and technological advances.

The U.S. Commission on Ocean Policy believes that an effective, integrated national ocean policy can be achieved through implementation of a new National Ocean Policy Framework. Each of the chapters in Part II focuses on one component of this framework: national coordination and leadership (Chapter 4); a regional approach (Chapter 5); improved governance of offshore waters (Chapter 6); and a streamlined federal agency structure (Chapter 7).

Making Improvements at the National Level

The previous chapters have illustrated many of the compelling reasons for addressing ocean and coastal issues in a new and improved fashion. There is a growing consensus about a number of ocean-related facts:

- The United States controls extensive resources in ocean and coastal areas that serve a wide range of national needs and are held in public trust.
- There are enormous opportunities for ocean science and technology to uncover new sources of energy, food, and drugs, and increase general understanding about the planet.
- Serious risks to living marine resources exist, and degraded ocean environments need to be returned to productivity.
- National security requires greater awareness, knowledge, and observation of ocean and coastal areas.
- Marine transportation needs to be enhanced to adequately handle growing demands from commerce and recreation.
- Improved understanding of the factors influencing global climate is needed, along with ideas for mitigating any adverse impacts.
Government agencies work on these and many other problems. However, a lack of communication, coordination, and a strong sense of partnership continues to inhibit effective action.

“Ocean issues” include virtually every aspect of the government’s duties, from promoting international commerce to protecting the environment, and from guarding national security to facilitating tourism and recreation. More than two-thirds of the fifteen existing cabinet-level departments, plus several independent agencies, play important roles in the development of ocean and coastal policy (Figure 4.1). Many individual programs within these departments and agencies administer specific initiatives that address varying, and sometimes overlapping, ocean and coastal issues. A few additional departments have a more limited role in ocean policy, usually through a single division, such as the U.S. Department of Justice’s Environment and Natural Resources Division.

A first step in enhancing the management of oceans and coasts, and a central part of the new National Ocean Policy Framework, is improving coordination among these many federal programs. A 1997 report by the National Research Council highlighted the need to harmonize ocean activities at the highest levels of government, with the objective of allowing federal agencies and the President to develop and carry out decisions within their authority.1 The Pew Oceans Commission also recognized the need to coordinate federal agency activities and address interagency disputes.2

Although a number of attempts have been made to achieve better coordination, none of them is adequate to cover the breadth of issues involved. Some coordinating mechanisms deal with particular topics, such as ocean research, coral reefs, or marine transportation. Other efforts are broader, but still fail to encompass the universe of responsibilities illustrated in Figure 4.1.

The importance of oceans to American society calls for greater visibility and leadership on ocean and coastal issues. Within the Executive Branch, only the White House can move past traditional conflicts among departments and agencies, make recommendations for broad federal agency reorganization, and provide guidance on funding priorities. Thus, the Executive Office of the President is the appropriate venue to provide high-level attention and coordination for an integrated national ocean policy.

There are three entities within the Executive Office of the President that have specific responsibilities involving, to some extent, oceans. The Office of Science and Technology Policy supports the National Science and Technology Council in addressing government-wide science and technology issues. Within this structure, a Joint Subcommittee on Oceans was recently established to coordinate national ocean science and technology policy. The Council on Environmental Quality (CEQ) coordinates broad federal environmental efforts, oversees implementation of the National Environmental Policy Act, and serves as the principal environmental policy advisor to the President. Finally, the National Security Council’s Global Environment Policy Coordinating Committee includes a subcommittee to address international ocean issues.

While these efforts are helpful in their designated areas of interest, they fall far short of a high-level interagency council with the ability to deal with all of the interconnected ocean and coastal challenges facing the nation, including not only science and technology, environmental, and international matters, but the many other economic, social, and technical issues specifically related to the management of marine resources. In effect, in the Executive Office of the President, the whole of the oceans is greater than the sum of the marine-related parts of existing institutions.

Although legislative action will be needed to codify the establishment of an ocean leadership body and ensure a national commitment to and long-term stability for ocean issues, immediate presidential action can facilitate an early start to the process.
The agencies and departments depicted have varying ocean and coastal responsibilities. Their number and diversity make it clear that coordination is essential to effectively manage the nation’s oceans and coasts.
Recommendation 4–1
Congress should establish a National Ocean Council (NOC) within the Executive Office of the President, and a nonfederal President's Council of Advisors on Ocean Policy to provide enhanced federal leadership and coordination for the ocean and coasts. While Congress works to establish these components in law, the President should begin immediately to implement an integrated national ocean policy by establishing the NOC and President's Council of Advisors on Ocean Policy through an executive order, and by designating an Assistant to the President to chair the NOC.

These recommendations are in line with developing international trends. The United States was a leader at the 2002 World Summit on Sustainable Development, which reiterated support for the principles developed at the 1992 Earth Summit in Rio de Janeiro, including a call for better coordination of environmental policy at the national level. Several nations, including Australia, Brazil, Canada, Korea, and the Netherlands, have initiated strong national-level coordination on ocean and coastal policy.

National Ocean Council
There is important historical precedent for a body such as the National Ocean Council. The Marine Science, Engineering and Resources Council, chaired by the Vice President, was established in 1966 by the same statute that created the Stratton Commission. That council was disbanded in the early 1970s after the National Oceanic and Atmospheric Administration (NOAA) was established. Since then, no interagency body has existed to coordinate multi-agency implementation of an integrated national ocean policy.

The National Ocean Council would oversee all existing and new ocean- and coastal-related interagency mechanisms and coordination efforts. The Council would not have operational duties; rather, it would have responsibility for planning and coordination, with support from a small staff and committees created to carry out specific functions.

Recommendation 4–2
The National Ocean Council (NOC) should provide high-level attention to ocean and coastal issues, develop appropriate national policies, and coordinate their implementation by the many federal departments and agencies with ocean and coastal responsibilities.

The NOC should be:
- chaired by an Assistant to the President.
- composed of cabinet secretaries of departments and directors of independent agencies with appropriate ocean- and coastal-related responsibilities. Heads of other relevant executive departments, agencies, commissions, quasi-official agencies and senior White House officials should be invited to attend meetings of the NOC when appropriate.

The NOC should carry out the following functions:
- develop broad principles (based on those outlined in Chapter 3) and national goals for governance of the nation's oceans and coasts, and periodically review and revise these goals.
- make recommendations to the President on developing and carrying out national ocean policy, including domestic implementation of international ocean agreements.
- coordinate and integrate activities of ocean-related federal agencies and provide incentives for meeting national goals.
- identify statutory and regulatory redundancies or omissions and develop strategies to resolve conflicts, fill gaps, and address new and emerging ocean issues for national and regional benefits.
- guide the effective use of science in ocean policy and ensure the availability of data and information for decision making at national and regional levels.
• develop and support partnerships among government agencies and nongovernmental organizations, the private sector, academia, and the public.
• expand education and outreach efforts by federal ocean and coastal agencies.
• work with a broad range of nonfederal stakeholders, governmental and nongovernmental, to develop a broad, flexible, and voluntary process for the establishment of regional ocean councils to help advance regional approaches.
• periodically assess the state of the nation’s oceans and coasts to measure the achievement of national ocean goals.

While the nation has made great strides in understanding the connections among the ocean, the atmosphere, and the rest of the living world, it has been less successful in applying this knowledge to the management of ocean and coastal resources. New ocean and coastal policies should avoid the common practice of managing one activity or one part of an ecosystem without considering the impacts on and influences of other parts, including its human inhabitants. Rather, ocean policies should promote an ecosystem-based management approach, placing human interests and activities squarely within the context of the larger environment.

Moving toward such an approach requires several steps: assessing the ecosystem, including human needs; minimizing any threats and promoting opportunities; monitoring the ecosystem to evaluate progress; and revising management measures as appropriate. As part of the move toward an ecosystem-based management approach, a precautionary approach (described in Chapter 3) should be incorporated into decision-making processes and adopted by the National Ocean Council in developing national standards for ecosystem-based management.

Recommendation 4–3
The National Ocean Council (NOC) should adopt the principle of ecosystem-based management and assist federal agencies in moving toward an ecosystem-based management approach. As part of this effort, the NOC should:

• coordinate the development of procedures for the practical application of the precautionary approach and adaptive management.
• encourage agencies to incorporate preservation of marine biodiversity in their management programs and support further study of biodiversity.

Assistant to the President

One role of the National Ocean Council is to resolve policy disputes and reach consensus among federal departments and agencies. To achieve this, the Council will need to be chaired by a high-level presidential appointee who is not part of any department or agency represented on the Council.

Recommendation 4–4
The President should designate an Assistant to the President to provide leadership and support for national ocean and coastal policy. The Assistant to the President should have the following responsibilities:

• chair the NOC.
• co-chair the President’s Council of Advisors on Ocean Policy.
• lead NOC efforts to coordinate federal agency actions related to oceans and coasts.
• make recommendations for federal agency reorganization as needed to improve ocean and coastal management.
• resolve interagency policy disputes on ocean and coastal issues.
• reach out to state, territorial, tribal, and local stakeholders and promote regional approaches to ocean and coastal management.
• consult with the Office of Management and Budget (OMB) director and NOC members to identify programs that contribute significantly to the national policy for oceans and coasts, advise OMB and the agencies on appropriate funding levels for ocean- and coastal-related activities, and prepare the biennial reports mandated by section 5 of the Oceans Act of 2000.

President’s Council of Advisors on Ocean Policy

In 1969, the Stratton Commission recommended establishment of a broadly representative, presidentially-appointed committee of nonfederal individuals to provide continuing advice in the development of a national marine program. In response, in 1971 Congress created the National Advisory Committee on Oceans and Atmosphere (NACOA). NACOA reported to the President and Congress, advised the Secretary of Commerce, and provided analyses, recommendations, annual reports, and special studies on virtually every aspect of ocean policy. NACOA ceased meeting in the late 1980s, due primarily to lack of political support. Nevertheless, the need it fulfilled is more imperative than ever. To adequately represent the full spectrum of national interests, the National Ocean Council and the Assistant to the President will need input from a variety of interested groups and individuals from outside the federal government.

Recommendation 4–5

The President’s Council of Advisors on Ocean Policy, a formal structure for input from nonfederal individuals and organizations, should advise the President on ocean and coastal policy matters.

The President’s Council of Advisors on Ocean Policy should be:
• composed of a representative selection of individuals appointed by the President, including governors of coastal states and other appropriate state, territorial, tribal and local government representatives, plus individuals from the private sector, research and education communities, nongovernmental organizations, watershed organizations, and other nonfederal bodies with ocean interests.
• comprised of members knowledgeable about and experienced in ocean and coastal issues.
• co-chaired by the chair of the National Ocean Council and a nonfederal member.

Other Needed Elements

Office of Ocean Policy

Because the National Ocean Council will be responsible for planning and coordination rather than operational duties, and because its cabinet-level members are unlikely to meet more than a few times a year, the support of a small staff and committees will be required to carry out its functions and associated daily activities. It is important for strong links to be maintained among the National Ocean Council, its committees, other relevant entities in the Executive Office of the President, as well as among other ocean-related advisory councils and commissions. (All the elements of the proposed national ocean coordinating structure are illustrated in Figure 4.2.)
Recommendation 4–6
Congress should establish an Office of Ocean Policy to support the Assistant to the President, the National Ocean Council (NOC), and the President’s Council of Advisors on Ocean Policy. To provide staff support immediately, the President should establish an Office of Ocean Policy through the executive order creating the NOC and the President’s Council of Advisors on Ocean Policy.

The Office of Ocean Policy should be:
- composed of a small staff that reports to the Assistant to the President.
- managed by an executive director responsible for daily staff activities.

Committee on Ocean Science, Education, Technology, and Operations
A committee under the National Ocean Council will be needed to assume the functions of the current National Ocean Research Leadership Council (NORLC), plus additional responsibilities. The NORLC is an important effort at government coordination in one area. It was established by Congress in 1997 as the decision-making body for the National Oceanographic Partnership Program (NOPP) to provide coordination and leadership of oceanographic research programs on the national level. In addition to the NORLC, NOPP includes a Program Office, an Ocean Research Advisory Panel, an Interagency Working Group, a Federal Oceanographic Facilities Committee, and an ocean observing office (Ocean.US).

NOPP has had difficulty fulfilling the original vision of the National Oceanographic Partnership Act, due largely to the NORLCs lack of authority to ensure active participation by federal agencies. By placing the NORLC under the National Ocean Council, renaming it as the Committee on Ocean Science, Education, Technology, and Operations (COSETO), and broadening its responsibilities to include coordination, planning, and oversight of operational programs and education activities in addition to research, it will become more visible and more effective.

Because the Office of Science and Technology Policy (OSTP) plays an important role in government-wide science and technology issues, it is logical for OSTP to work closely with the National Ocean Council on these issues. In particular, a strong connection between OSTP and COSETO will be essential for providing coordinated, high-level advice to the President. The tasks of the existing Joint Subcommittee on Oceans under the National Science and Technology Council, which focus on coordination of ocean science and technology issues in the executive branch, would be appropriately subsumed by COSETO.

Recommendation 4–7
Congress, working with the National Ocean Council (NOC), should amend the National Oceanographic Partnership Act to integrate ocean observing, operations, and education into its marine research mission. A strengthened and enhanced National Ocean Research Leadership Council (NORLC) should be redesignated as the Committee on Ocean Science, Education, Technology, and Operations (COSETO), under the oversight of the NOC.

In particular, amendments to the National Oceanographic Partnership Act should specify that the newly-named COSETO:
- reports to the NOC.
- is chaired by the director of the Office of Science and Technology Policy to ensure appropriate links to government-wide science and technology policy and equity among participating federal agencies.
- includes in its mandate coordination and planning of federal marine facilities and operations, federal oversight of the Integrated Ocean Observing System, and coordination of ocean-related education efforts, in addition to its existing research responsibilities.
- includes existing NORLC members plus the director of the National Institute of Environmental Health Sciences at the National Institutes of Health, the assistant
Figure 4.2 Proposed Structure for Coordination of Federal Ocean Activities

Shown here are the institutional components that should be established in the Executive Office of the President (EOP) to improve federal leadership and coordination of the nation’s oceans and coasts. This diagram also illustrates the organizational relationship between these new components and existing units in the EOP.

Secretary for Natural Resources and Environment at the Department of Agriculture, and the undersecretary for science at the Smithsonian Institution.

- subsumes the current tasks of the National Science and Technology Council’s Joint Subcommittee on Oceans.
- is supported by the Office of Ocean Policy.

Committee on Ocean Resource Management
In addition to COSETO, the National Ocean Council will need an equivalent working committee, the Committee on Ocean Resource Management (CORM), to coordinate federal
resource management decisions and policy. In general, interagency coordination ranges from simple exchanges of information on a voluntary ad hoc basis, to legally mandated coordination on specific issues such as climate, marine mammals, or habitat conservation.

Examples of formal coordination mechanisms on ocean-related issues include the Coral Reef Task Force, the Interagency Committee on the Marine Transportation System, Coastal America, and many others. Other formal coordinating bodies address broader issues with important ocean components, such as the National Invasive Species Council, the National Dredging Team, and the Joint Subcommittee on Aquaculture. Many of these efforts are discussed in greater detail elsewhere in this report, and most merit continued support. Indeed, additional task forces may be required to address new and emerging uses, such as the coordination of activities in federal waters. However, there is no high-level, cross-cutting oversight of these issue-specific efforts, limiting the federal government’s ability to consider cumulative impacts, avoid conflicting mandates, and implement an ecosystem-based management approach. Better coordination is needed among existing ocean and coastal interagency groups—whether formal or informal—as well as among the ocean components of interagency groups with broader mandates.

Because of the Council on Environmental Quality’s important role in environmental and resource management issues, this office, like the Office of Science and Technology Policy, should have a strong connection with the National Ocean Council.

Recommendation 4–8
The National Ocean Council (NOC) should establish a Committee on Ocean Resource Management to better integrate the resource management activities of ocean-related agencies. This committee should oversee and coordinate the work of existing ocean and coastal interagency groups and less formal efforts, recommend the creation of new topical task forces as needed, and coordinate with government-wide environmental and natural resource efforts that have important ocean components.

The Committee on Ocean Resource Management should:
- be chaired by the chair of the Council on Environmental Quality to ensure appropriate links to government-wide environmental policy and equity among participating federal agencies.
- include undersecretaries and assistant secretaries of departments and agencies that are members of the NOC.
- report to the NOC.
- be supported by the Office of Ocean Policy.

Ocean-related Advisory Councils or Commissions
In addition to the interagency coordinating groups discussed above, a number of independent ocean-related councils and commissions have been established by law (Appendix D). Some are no longer operational, such as NACOA, while others maintain active roles, like the Marine Mammal Commission. Strong connections will be needed between all existing bodies and the National Ocean Council.

Recommendation 4–9
The National Ocean Council (NOC) should review all existing ocean-related councils and commissions and make recommendations about their ongoing utility, reporting structure, and connections to the NOC.
References

Chapter 5

Advancing a Regional Approach

The nation’s ocean and coastal resources offer many opportunities for beneficial uses but are also affected by the cumulative impacts of human activities that span cities, counties, states, and sometimes nations. To move toward an ecosystem-based management approach, government should have the institutional capacity to respond to ocean and coastal issues in a coordinated fashion across jurisdictional boundaries.

The voluntary establishment of regional ocean councils, developed through a process supported by the National Ocean Council, would facilitate the development of regional goals and priorities and improve responses to regional issues. Improved coordination of federal agencies at the regional level would complement the establishment of regional ocean councils, improving the federal response to state and local needs while furthering national goals and priorities. The development and dissemination of regionally significant research and information is imperative to meet the information needs of managers and support ecosystem-based decisions.

Addressing Issues Across Jurisdictional Lines

In addition to improving coordination at the national level, as described in Chapter 4, an important component of the new National Ocean Policy Framework is the strengthening of regional approaches that allow decision makers to address pressing ocean and coastal issues on an ecosystem-based scale. Today’s governance systems are generally not designed to transcend traditional political boundaries. Governments rarely consider opportunities or impacts outside their immediate jurisdictional area, although these borders seldom correspond with ecosystem boundaries. In addition, individual agency mandates are often too narrow in scope, sector-based, and poorly coordinated to address regional issues. Finally, broadly accepted regional goals—social, economic, and environmental—are infrequently available to promote and gauge progress.

Despite these challenges, there are many instances where concern for the health of a particular ecosystem has motivated a wide range of participants to create new structures for addressing regional concerns. The declining health of the Chesapeake Bay triggered a
significant initiative by federal agencies, state and local governments, nongovernmental organizations, and other stakeholders to address the region’s water quality and living resource problems. In the Pacific Northwest, a similar mix of governmental and non-governmental entities came together to address the decline in endangered salmon stocks. Efforts to address the growing hypoxic zone in the Gulf of Mexico brought together several Gulf states, as well as states throughout the Mississippi River Basin. Water quality and quantity issues spurred the development of multiple regional initiatives among Great Lakes states and Canadian provinces. The United States and Canada are also partners in area-wide efforts to enhance environmental quality in the Gulf of Maine. Additionally, U.S. island states and territories are collaborating to develop strategies to protect and preserve coral reef ecosystems and address impacts due to climate change. Several examples of regional coordination are described in Box 5.1.

Regional efforts are usually initiated at the grassroots level in response to pressing, shared concerns. Ideally, these bottom-up efforts are complemented by federal support, creating conditions where all levels of decision making strive to move in concert toward common ecosystem goals. Partnerships developed at the regional level can take optimum advantage of the expertise, resources, and infrastructure found in federal, state, and local governments, as well as in industry, academia, and other nongovernmental entities.

There is a growing awareness that regional approaches can benefit each of the nation’s ocean and coastal regions. Focusing efforts within whole ecosystems, rather than arbitrary political boundaries, provides an opportunity for decision makers at all levels to coordinate their activities, reduce duplication of efforts, minimize conflicts, and maximize limited resources. It also promotes a sense of stewardship among government, private interests, and the public by encouraging a shared feeling of connection to a specific area.

Facilitating Bottom-Up Regional Responses

National Support and Guidelines

An important element of the proposed National Ocean Policy Framework is development of a voluntary process for a wide range of participants (including federal, state, territorial, tribal, and local leaders, and participants from the private sector, nongovernmental organizations, and academia) to establish regional ocean councils. Although the process should be implemented by those most directly involved, broad national guidelines can provide a measure of consistency and help ensure minimum standards for performance while allowing each region to tailor its approach to meet unique needs. A flexible approach is essential in view of the dramatic variations in environmental, political, social, and economic conditions across the country. With its broad mandate and high-level visibility, the National Ocean Council will be in a good position to encourage and facilitate the process of bringing participants together at the regional level.

Recommendation 5–1

The National Ocean Council should work with Congress, the President’s Council of Advisors on Ocean Policy, and state, territorial, tribal, and local leaders, including representatives from the private sector, nongovernmental organizations, and academia, to develop a flexible and voluntary process for the creation of regional ocean councils. States, working with relevant stakeholders, should use this process to establish regional ocean councils, with support from the National Ocean Council.
Different initiatives have taken different approaches to address pressing regional issues, although a hallmark of most efforts is the establishment of measurable goals and clear implementation strategies for achieving healthier regional ecosystems. Several types of organizational structures and functions have been tried, often tailored to the political and social climate of the individual region, but sometimes evolving on a haphazard basis, particularly at the outset. These initiatives are now at different stages of their development, learning what works best in their regions as they proceed. All have helped move the nation toward more ecosystem-based management approaches.

The Chesapeake Bay Program
The Chesapeake Bay ecosystem is a vast, 64,000 square-mile watershed that includes parts of New York, Pennsylvania, West Virginia, Delaware, Maryland, Virginia, and the entire District of Columbia. The initiative to restore the Bay began thirty years ago as an informal gathering of conservation leaders, citizens, and government officials to address nutrient over-enrichment, dwindling underwater Bay grasses, toxic pollution, and the reduction of fish, shellfish, and other wildlife populations. In 1983, the interstate Chesapeake Bay Agreement, which is the basis of the Chesapeake Bay Program, was signed, calling on participating states and the federal government to achieve specific ecosystem goals. Although the Agreement (most recently updated in 2000) is not binding, it represents a commitment by the members of the executive council, consisting of: the governors of the states of Maryland, Pennsylvania, and Virginia; the mayor of the District of Columbia; the chairman of the tri-state Chesapeake Bay Commission; and the administrator of the U.S. Environmental Protection Agency (representing fifteen federal agencies), to implement actions to achieve these goals.

The Delaware River Basin Commission
The drainage basin of the 326 mile-long Delaware River encompasses an almost 13,000 square mile area that includes portions of four states and stretches from its headwaters in the Catskill Mountains of New York to the mouth of the Delaware Bay. Growing concerns in the 1950s about water quality protection, water supply allocation, flood control, and other issues, created pressure for the establishment of a regional body with legal authority to manage the entire river system, regardless of political boundaries. In 1961, President Kennedy, together with the governors of Delaware, New Jersey, Pennsylvania, and New York, created an interstate-federal compact establishing the Delaware River Basin Commission and charging it with adopting and promoting coordinated policies for water management in the basin. The Commission has broad regulatory and planning authority and plays a critical role in coordinating among the multiple federal, state, local, and private entities that influence water resource management in the Basin. Commission members include the four basin state governors, who appoint high-ranking, knowledgeable commissioners from relevant state agencies, and a Presidentially-appointed federal representative from the U.S. Army Corps of Engineers. The Commission partners with the Delaware Estuary Program and other organizations, the private sector, and citizens to restore, maintain, and protect the Delaware Estuary.
The California Bay-Delta Authority (CALFED)
The San Francisco Bay-Delta estuary is the largest estuarine system on the West Coast. It is
dominated by the state’s two largest rivers, the Sacramento and the San Joaquin, which
together drain a watershed of about 39,000 square miles. To reverse nega-
tive trends in water quality, fish and wildlife populations, and the reliability
of water supplies—all exacerbated by the drought of the late eighties and
early nineties—an accord was signed between the state of California and
the federal government in 1994 to find solutions to long-standing regional
problems. The California Bay-Delta Authority, known as CALFED, began in
1995 as a mechanism for the region’s disparate agencies and authorities to
work collaboratively to develop and implement actions to achieve goals in
four main areas: ecosystem restoration; water supply reliability; and water
quality and levee system integrity. This effort includes enlisting local gov-
ernments and stakeholder support in the process. CALFED was initially
organized under a memorandum of understanding among its state and federal members,
relying on individual agencies to act pursuant to their existing authority. In 2002, legislation
was passed in California to create a single governing body for CALFED, giving it authority to
oversee work plans and coordinate funding spent by the state on water and environmental
projects. The authority will sunset in 2006 unless corresponding federal legislation is enacted
to authorize participation of appropriate federal agencies in the Authority.

The Gulf of Mexico Program
The Gulf of Mexico is bordered by five U.S. states, Mexico, and Cuba. The system encompasses
1.8 million square miles and is the receiving body for 66 percent of the rivers within the contin-
ental United States, including the Mississippi, the largest river system in
North America. In 1998, growing natural resource problems in the region
prompted the U.S. Environmental Protection Agency (EPA) to establish the
Gulf of Mexico Program, which brings federal and state environmental and
resource management programs together in partnership with a broad
coaalition of regional and local stakeholders to collaboratively improve the
health of the Gulf region while sustaining economic development. A policy
review board composed of governmental and nongovernmental leaders
from key sectors of five U.S. Gulf coast states (Alabama, Florida, Louisiana,
Mississippi, and Texas) provides the EPA Gulf of Mexico Program Office with
policy and management direction and guidance. The board is advised by a
citizens advisory committee, made up of representatives from the agricultural, tourism, envi-
nronmental, fisheries, and business communities, as well as a scientific and technical commit-
tee. Additional committees focus on specific issues of concern in the Gulf region such as
nutrients, habitat, public health, environmental monitoring, modeling, and research. This
non-regulatory program relies on the commitment of its partners to effectively carry out
regional goals and priorities.

Regional approaches at work in the Great Lakes region are profiled in Box 5.3.
Nature and Functions of Regional Ocean Councils

The purpose of the regional ocean councils is to facilitate more coordinated and collaborative approaches to realizing opportunities and addressing concerns in the region. The councils should develop regional goals and priorities and identify the best mechanism for responding to each issue. The councils should also work with the President's Council of Advisors on Ocean Policy to communicate regional needs at the national level and better address issues of national importance in the regions.

Although the specific structure and functions of a regional ocean council should be determined by participants in the region, the geographic scale, scope, and membership will need to be broad to enable them to realize their potential. The councils should address a wide range of issues, look at interactions among many activities, and consider influences from upstream to far offshore, and from the atmosphere down to the groundwater and seafloor. Council membership should be representative of every level of decision making in the region, drawing on the knowledge of all stakeholders, whether through formal membership on the council or through separate advisory bodies. The councils will also need to work with inland decision makers on issues such as nonpoint source pollution. Additionally, in certain regions, including the Great Lakes, New England, the Pacific Northwest, the Gulf of Mexico, and U.S. island territories, the councils may need to work closely with other nations.

The boundaries of regional ocean councils should encompass relatively large areas with similar ecosystem features. Large Marine Ecosystems (Figure 3.1), which helped define the Regional Fishery Management Council (RFMC) regions, may be used as a starting point, although these regions might not always be suitable. For example, more than one regional council may be necessary along the Pacific Coast and for island states and territories. A council for the Great Lakes region is also desirable. At a minimum, councils should encompass the area from the inland extent of coastal watersheds to the offshore boundary of the nation's exclusive economic zone.

The regional ocean councils are not intended to supplant any existing authorities, such as the RFMCs, state agencies, and tribal governments. Rather, the councils will work with these authorities to further regional goals, providing a mechanism for coordination on myriad regional issues. However, the structure and function of a council may evolve over time. For example, participants might choose to pursue more formal mechanisms for implementing decisions, such as interstate compacts, interagency agreements, or changes to regulatory requirements.

Regional ocean councils may be used to carry out a variety of other functions. They may designate ad hoc committees to examine discrete issues of regional concern, address sub-regional priorities, or mediate and resolve specific disputes. They can help facilitate required government approvals or permitting processes that involve several government agencies within the region. They may monitor and evaluate the state of the region and the effectiveness of management efforts. They will be important in engaging stakeholders in the design of marine protected areas. Finally, the councils can help ensure that offshore activities are planned and managed in an ecosystem context by providing input to the National Ocean Council and Congress as they establish an offshore management regime (as discussed in Chapter 6). Above and beyond all their specific functions, the regional councils will help build public awareness about ocean and coastal issues.

The creation of regional ocean councils will undoubtedly be challenging, particularly given that regions vary greatly in their level of coordination, interest, and expertise. Steps can be taken, however, to promote their development. In areas where readiness and enthusiasm for a regional approach is already strong, efforts to establish councils should be supported immediately. The first councils can then serve as pilot projects, enabling those involved to learn what works and serving as models for other regions.
Building on Existing Regional Initiatives

As noted above, problems in ocean and coastal areas around the nation have prompted a number of regional-scale responses (Box 5.1). These innovative initiatives have sought to overcome traditional political and institutional barriers that impede the goal of restoring the health and productivity of entire ecosystems. However, lacking formal mechanisms for responding to complex, cross-cutting issues, many of these initiatives have faced considerable obstacles in coordinating policies and management actions to address immediate concerns and plan for the future of ocean and coastal areas.

The experiences of current regional initiatives illustrate the advantages and challenges in pursuing such approaches. They also demonstrate different ways for the many layers of decision making in a region to work together on common goals. Often, coordination must be developed incrementally to knit together traditional decision-making responsibilities that are vested in dozens of entities. These initiatives also demonstrate that concern and persistence among local stakeholders are needed to drive change at higher institutional levels.

In some areas, existing initiatives can serve as excellent starting points for the creation of regional ocean councils. The councils can build on their experiences, while developing a broader and more comprehensive role. An existing regional initiative could be used as the nucleus for development of a regional ocean council, preventing duplication and establishment of new structures. However, to achieve the comprehensive regional mandate envisioned for the councils, existing initiatives may require changes to their geographic scale, scope, functions, and membership.

In all regions, a major responsibility of the regional ocean council will be to offer support to any existing regional initiatives, coordinate among them where necessary, and facilitate the creation of new forums for improving the management of specific issues. The councils can help ensure that regional initiatives are carried out in harmony with one another to achieve larger ecosystem goals.

Box 5.2 Nature and Functions of Regional Ocean Councils

The establishment of regional ocean councils is intended to be voluntary and flexible, guided by the needs and circumstances in each region. The councils, on their own, will not supplant existing laws or authorities, or alter state, territorial, or tribal sovereignty. However, as the councils evolve, participants may choose to pursue more formal mechanisms for implementing decisions, such as interstate compacts.

Regional ocean councils should have several basic characteristics:

- Their boundaries should be based approximately on those of Large Marine Ecosystems or other appropriate ecosystem-based areas. At a minimum, councils should encompass the area from the inland extent of coastal watersheds to the offshore boundary of the nation’s exclusive economic zone.
- They should address a wide range of ocean and coastal issues.
- Their membership should be broad and representative of all appropriate levels of government. Nongovernmental stakeholders also need to be represented, either through council membership or through an advisory body.

The councils should fulfill certain core functions:

- Facilitating coordinated and collaborative responses to regional issues.
- Developing regional goals and priorities.
- Communicating regional concerns to the National Ocean Council through the President’s Council of Advisors on Ocean Policy.
Enhancing Federal Support for a Regional Approach

Federal Agency Coordination

Federal agencies play an important role in the management of ocean and coastal resources by addressing issues of national significance, supporting state and local management efforts, and encouraging environmental stewardship among all citizens. Within each of the nation’s regions, federal policies and programs are carried out that affect common resources. Often, these activities overlap, conflict, or are inconsistent with one another, impeding efforts at all levels to effectively address regional concerns. For example, navigation projects, highway development, and other federal infrastructure activities often conflict with environmental protection goals. Several federal agencies oversee habitat protection and restoration programs, but in isolation from one another. Furthermore, federal regulations and permit requirements are typically applied on a project-by-project basis, without adequate consideration of the cumulative effect of these decisions on ocean and coastal ecosystems.

Federal agencies can support regional progress by immediately improving their own coordination at the regional level. Systematic collaboration will lead to better integration of federal policies, strategies, plans, programs, and other activities within the region. It will also help the agencies identify inconsistencies in agency mandates, policies, regulations, practices, or funding. The agencies can then communicate these and other regional concerns and priorities to the National Ocean Council, which may in turn recommend changes to existing laws, regulations, practices, and funding.

Equally important, regionally coordinated federal agencies will provide a visible point of contact for nonfederal entities, enhancing communication in both directions—federal agencies will be able to reach out to local and state governments and other stakeholders, while nonfederal groups will know where to convey regional priorities, issues of concern, and information needs to federal agencies. All interested parties will be able to exchange information more effectively, develop regional goals, and mitigate the cumulative impacts of activities in the region.

A regionally coordinated federal presence will provide an additional incentive for the formation of regional ocean councils that can serve as clear counterparts to work with the federal agencies. The recent creation of a Great Lakes Interagency Task Force is one attempt to improve federal coordination at the regional level (Box 5.3).

Recommendation 5–2

The President, through an executive order, should direct all federal agencies with ocean- and coastal-related functions to immediately improve their regional coordination and increase their outreach efforts to regional stakeholders.

To initiate this process, NOAA, EPA, USACE, DOI, and USDA should:

- collaborate with regional, state, territorial, tribal, and local governments, and nongovernmental parties to identify regional priorities and information needs.
- identify inconsistencies in agency mandates, policies, regulations, practices, or funding that prevent regional issues from being effectively addressed and communicate these to the National Ocean Council.
- improve coordination and communication among agencies, including the possible development of interagency protocols to guide regional decision making.
- coordinate funding and grants in a manner consistent with regional priorities.

Moving Toward Common Regional Boundaries

Many federal agencies already divide their nationwide operations and management responsibilities along regional lines. For example: the U.S. Environmental Protection
Agency (EPA) has ten regional offices throughout the nation, mapped along state lines; the U.S. Fish and Wildlife Service has seven regions, also following state lines but different from the EPA regions; and the U.S. Army Corps of Engineers is organized into eight regions defined by the boundaries of watersheds, not states (Figure 5.1). The structures and functions of regional offices also differ among agencies, with some possessing more independence and authority than others. In some cases, regional offices have not had strong ties to their agencies’ national management, and it is common for the regional office of one agency to operate in isolation from the corresponding regional offices of other agencies. The current structure hinders the ability of federal agencies with ocean- and coastal-related responsibilities to effectively interact on a regional basis with each other and with state, territorial, tribal, and local entities.

Box 5.3 Moving Toward Improved Federal and Stakeholder Coordination in the Great Lakes Region

The five Great Lakes and their related waterways span eight U.S. states and two Canadian provinces. They comprise the largest freshwater system in the world, containing 20 percent of the world’s freshwater and occupying a nearly 200,000 square-mile basin. The Great Lakes have been the focus of regional management for more than a century, originating from the need to avoid and resolve disputes over control of water levels and flows in the basin. The United States and Canada have also joined together in bilateral treaties and agreements to address shared concerns. Numerous regional intergovernmental organizations have been established to address basin-wide issues, many of which have binational representation. Examples include the International Joint Commission, Great Lakes Fishery Commission, Great Lakes Commission, Council of Great Lakes Governors, Great Lakes Cities Initiative, and the International Association of Great Lakes and St. Lawrence Mayors. There are also several non-governmental organizations, such as Great Lakes United, that are concerned with the health of the Great Lakes ecosystem.

A plethora of government programs help fund and implement environmental restoration and management activities throughout the Great Lakes region. A 2003 report by the U.S. General Accounting Office (GAO) found that there are over 140 such programs administered by federal agencies, and another 51 at the state level. Despite the abundance of regional initiatives and government programs, the GAO found a lack of coordination among the Great Lakes environmental strategies being used at the international, federal, and state levels. The lack of a coordinated strategy hinders progress toward establishing priorities, assessing progress, and applying ecosystem-based management throughout the Great Lakes basin.

Recent developments show promise for improving coordination among federal agencies and regional stakeholders in the Great Lakes. In May 2004, President Bush signed an executive order creating the Great Lakes Task Force. The Task Force will bring together ten federal agencies with responsibilities in the Great Lakes basin to better coordinate their policies and programs at both the national and regional levels. The executive order also calls on the federal agencies to collaborate with Canada, Great Lakes states, tribal, and local governments, communities, and other interests to address nationally significant environmental and resource management issues in the basin.

The executive order should benefit the many intergovernmental bodies in the basin by enabling more systematic collaboration and better integration at all levels. Establishment of the Task Force may also spur the development of a complementary process of collaboration among the existing intergovernmental bodies in the region to create a more unified regional voice in support of ecosystem-wide goals and priorities for the Great Lakes.

Recommendation 5–3

The President should form a task force of federal resource management agencies to develop a proposal for adoption and implementation of common federal regional boundaries. The task force should solicit input from state, territorial, tribal, and local representatives.

Any re-designation of federal regions should be closely coordinated with the ongoing process of establishing regional ocean councils. Although the regions may be of different sizes and their boundaries may not be identical, they should be complementary to facilitate smooth coordination.

Meeting Regional Research and Information Needs

Even with greatly improved coordination among regional stakeholders and federal agencies, the movement toward an ecosystem-based management approach will require greater knowledge about ocean and coastal ecosystems, including how human activities impact these systems. Decision makers at all levels, especially local managers, require this information to develop and apply appropriate management measures. Improved coordination among federal and nonfederal entities within a region will begin to help regional managers communicate their information needs to the institutions that fund and carry out research and data gathering efforts. Notwithstanding these improvements, enhanced investments will also be needed to provide managers with the best available science, information, tools, and technology on which to base their decisions.

Today, research targeted at regional concerns, such as the origins of nonpoint source pollution, the impacts of development on coastal habitat and water quality, socioeconomic trends in coastal areas, or the impacts of global-scale processes on local resources, is severely limited. Furthermore, the data that do exist are rarely translated into products that are useful to managers. As the National Research Council concluded in a 2002 report, *Bridging Boundaries through Regional Marine Research*, enhanced regional research and
data collection efforts are essential, as are efforts to solicit information needs from those that require this information to manage ocean and coastal ecosystems.¹ There are four essential regional information needs:

- Research.
- Data collection, monitoring, and observations.
- Development of useful information products.
- Outreach, education, training, and technical assistance for decision makers.

Ideally, efforts to meet these information needs should be carried out under the guidance of regional ocean councils. However, because the process to develop these councils is voluntary and may take time to implement, in the interim these efforts should be undertaken by some other entity, as determined by each region. The organization tasked with meeting these needs should draw on existing governmental and nongovernmental institutional capacity in the region and be guided primarily by the needs of the users in the region. Each region should also collaborate with others, as appropriate, to address issues that transcend regional boundaries.

Regions may have several options for establishing a program to improve regional ocean information development and dissemination. For example, the Regional Associations that are being organized throughout the country to administer the regional components of the national Integrated Ocean Observing System may have the capacity to take on these broader responsibilities. The National Sea Grant College Program is another potential vehicle for carrying out regional information tasks. Some regions have other existing science and information programs that could also be broadened or adapted to fill this need. However, an existing entity may need to revise its scope to include the four regional information responsibilities listed above and be driven primarily by the needs of end users. For example, a Regional Association would have to expand its mandate beyond observing activities. Likewise, the Sea Grant program would need to find a mechanism to transcend state and local interests. Whatever the implementing vehicle, a representative group of information providers and end users should oversee the development of regional information priorities, to be carried out through partnerships among existing governmental and nongovernmental institutions.

Recommendation 5–4

Pending the creation of a regional ocean council, the governors in each region should select a suitable entity to operate a regional ocean information program that carries out research, data collection, information product development, and outreach based on the needs and priorities of ocean and coastal decision makers.

The entity assigned to carry out the regional ocean information program should:

- include representation from federal agencies, state, territorial, tribal, and local decision makers, scientists, as well as experts in information exchange and outreach.
- communicate regional research and information priorities to federal agencies and others with ocean and coastal responsibilities to help guide their programs.
- maintain strong links with the regional ocean observing systems to help them fulfill regional data collection requirements while adhering to national Integrated Ocean Observing System requirements.

Although regions may want to experiment with different approaches for achieving the goals of the regional ocean information programs, the National Ocean Council can offer support. If the entity selected by the governors (or by a regional ocean council) develops a comprehensive plan for regional research, data collection, information product development, and outreach, based on regional needs and priorities, the plan could be submitted to the National Ocean Council to coordinate funding by relevant agencies. Proposals can then be solicited to implement elements of the plan, with grants awarded on a competitive basis.
Developing Regional Ecosystem Assessments

Assessments of the natural, cultural, and economic attributes of each region, including an inventory of the region’s environmental resources and demographic characteristics, would be extremely valuable to decision makers for a variety of different purposes. For example, these assessments could be used to establish baselines of ocean and coastal ecosystem health, enhancing the ability of decision makers to analyze the cumulative impacts of human activities on the ecosystem. Enhanced regional research and information activities would contribute greatly to the creation of these assessments, as would the wealth of information developed by states.

Recommendation 5–5

The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (EPA), working with other appropriate federal and regional entities, should coordinate the development of regional ecosystem assessments, to be updated periodically. As part of this process, NOAA and EPA should:

- incorporate data and information developed at the state and local levels, including resource assessments developed by state coastal management programs.
- coordinate with the organization responsible for improving regional ocean information collection and dissemination activities to make optimum use of regional information.
- collaborate closely with regional ocean councils.

Regional ecosystem assessments would also improve the process mandated under the National Environmental Policy Act (NEPA) that requires federal agencies to prepare Environmental Impact Statements (EISs) for proposed major activities. Currently, each agency must conduct an individual assessment of the state of the environment to determine the impact of a proposed activity or related set of activities. The existence of a single, scientifically-based regional ecosystem assessment that is updated periodically would reduce duplication of effort and help ensure that every EIS is based on similar, comprehensive, and timely information about the region.

Assessments are also important to evaluate the cumulative impacts over time of many proposed activities. Although guidelines developed by the Council on Environmental Quality (the office responsible for overseeing NEPA implementation) require federal agencies to prepare cumulative impact evaluations for proposed activities, challenges in developing a consistent approach have made it difficult for federal agencies to meet this requirement.

Recommendation 5–6

The Council on Environmental Quality should revise its National Environmental Policy Act guidelines to state that environmental impact statements for proposed ocean- and coastal-related activities should incorporate the regional ecosystem assessments called for in Recommendation 5–5.

References

Federal waters provide vast opportunities to build the nation’s economy, enhance our quality of life, and increase knowledge about the workings of nature. Converging economic, technological, demographic, and other factors make these areas of the surrounding sea an increasingly attractive place for new enterprises seeking to tap the ocean’s resources, as well as for the continuation and expansion of traditional uses. The challenge for policy makers will be to unlock the ocean’s potential while minimizing conflicts among users, safeguarding human and marine health and cultural resources, and fulfilling the federal government’s obligation to manage public resources for the maximum long-term benefit of the entire nation.

While legal, policy, and institutional frameworks exist for managing some ocean uses, there remain increasingly unacceptable gaps. The nation needs a coordinated offshore management regime that encompasses traditional and emerging uses and is adaptable enough to incorporate uses not yet clearly foreseen.

Meeting Growing Needs

An important task for the new National Ocean Policy Framework is to improve the ability of the federal government to manage the growing number of activities taking place or being proposed in federal waters. This area, which extends from 3 to 200 nautical miles offshore, contains an enormous diversity of resources, many of which are used or affected by human activities. Within federal waters, the United States has sovereign rights for the purpose of exploring, exploiting, conserving, and managing the living and nonliving natural resources of the seabed and subsoil and the surface and subsurface of the waters. The federal government also has jurisdiction over the establishment and use of artificial structures, islands, and installations that have economic purposes, and the protection and preservation of the ocean environment. Associated with these authorities is the federal government’s responsibility to ensure that ocean activities are managed for the benefit of the public.

In decades past, nearshore areas held certain inherent advantages for human activities—the waters tend to be shallower, logistics simpler, and costs lower. Increasingly, however, these advantages are shrinking. Nearshore waters are now crowded with competing users whose ranks are steadily augmented by surging coastal populations. There is also consid-
erable public opposition to certain activities when conducted close to shore, such as those that involve the use of heavy equipment or disrupt scenic views. In addition, technological advances and an evolving scientific understanding of the ocean have made activities in offshore areas more feasible and economical than in the past.

For these reasons, interest in the use of federal waters is growing and activities farther offshore are expected to multiply (Figure 6.1). In many instances, these activities are mutually compatible and can take place in the same approximate area without problems. In other instances, uses conflict with and can disrupt one another. Later chapters discuss many specific offshore activities, including fisheries (Chapter 19), aquaculture (Chapter 22), bioprospecting (Chapter 23), and development of offshore energy and mineral resources (Chapter 24). The chapters in Part V discuss the various responsibilities related to protecting the oceans from the impacts of pollution. The focus of this chapter, however, is the overarching offshore management regime that will be needed to coordinate all these activities and more—an important part of moving toward an ecosystem-based management approach.

An offshore management regime should encompass robust coordination for all ocean activities, while recognizing the particular needs and challenges associated with each individual use. It must be able to address the needs of the ecosystem—including human needs—by prioritizing activities, minimizing conflicts, protecting resources, and ensuring that uses are compatible. It is also important to strike a balance between long-term and short-term strategies. For example, a legislative remedy may be warranted to address immediate concerns about one ocean activity, but the legislation should leave room to incorporate the activity within a broader, developing regime.

Any new offshore management regime should be grounded in the guiding principles set forth by the Commission in Chapter 3. For example, the nation should not wait until technologies are fully developed or scientific information is complete to establish mecha-
nisms for managing new ocean uses. Instead, policy makers should proceed judiciously and responsibly to prepare for new uses, and to establish proactive means for identifying and remedying any negative impacts. Creating a coherent and coordinated management regime will make it easier for governments at all levels to protect the public interest and for private interests to make informed decisions.

One of the biggest obstacles to improving management of offshore resources is inadequate scientific understanding of how ecosystems function and how to evaluate the cumulative impacts of activities over time. Regional ecosystem assessments, as recommended in Chapter 5, provide a vehicle to comprehensively and periodically analyze the status of an ocean region, establish baselines for ocean ecosystem health, and describe existing or potential impacts from human activities. These assessments, coupled with a strong commitment to furthering scientific understanding of ecosystems and their components, would dramatically enhance the effectiveness of offshore management.

Clarifying Offshore Responsibilities

The management of offshore activities by federal agencies is a mixed picture. Some, such as fishing or offshore oil and gas development, are governed according to well-developed regulatory regimes established in accordance with specific legislative mandates while others, such as marine bioprospecting, are essentially unmanaged in federal waters. Other new and emerging ocean uses, such as offshore aquaculture or wind energy, are subject to regulation by a number of authorities executing varying responsibilities, but are not managed by any comprehensive federal law (Box 6.1).

When authorities and responsibilities remain dispersed, ill defined, or virtually non-existent, obviously the decision making process is unclear. The resulting confusion can create roadblocks to public participation, discourage private investment, cause harmful delays, and generate unnecessary costs. Further, serious gaps in the protection of the public interest could result. Without an understandable, streamlined, and broadly accepted method for reviewing, authorizing and managing offshore activities, reactive, ad hoc approaches will continue, perpetuating uncertainty and raising questions about the comprehensiveness and legitimacy of decisions.

Recommendation 6–1
The National Ocean Council should ensure that each current and emerging activity in federal waters is administered by a lead federal agency and make recommendations for Congressional action where needed. The lead agency should coordinate with other applicable authorities and should ensure full consideration of the public interest.

Establishing a Coordinated Offshore Management Regime

There are two main categories of ocean uses: those that are confined to a specific location, typically linked to an offshore structure such as an oil rig, a wind turbine, an aquaculture pen, or a sunken vessel, and those, such as fishing or recreation, that are more diffuse, taking place within broad, flexible areas. Some activities combine these characteristics and could be managed according to either scenario. As an example, bioprospecting could be treated as a site-specific use by granting exclusive rights to explore for organisms in a particular area, or as a moveable activity by granting permits to collect certain organisms regardless of their location. To move toward an ecosystem-based management approach, the federal government needs to develop a better understanding of offshore areas and resources, prioritize uses, and ensure that activities in a given area are compatible.
Where a proposed activity will occupy a certain space to the exclusion of other uses, it is the federal government’s responsibility to determine where the activity can take place, by whom, in what manner, and for what length of time. But wise decisions cannot be made in isolation: the agency administering the siting of aquaculture facilities, for example, must be aware of actions taken by another agency permitting offshore power generation facilities.

As the pressure for offshore uses grows, and before serious conflicts arise, coordination should be immediately improved among single-activity management programs that regulate location-dependent activities. The National Ocean Council will be well-positioned to review single-purpose ocean programs that regulate offshore activities with the goal of determining how such programs may be better coordinated. In addition, coordination of the management of all offshore activities is necessary—including those that are not tied to a specific geographic location. Any new offshore management regime will need to make
sure that disputes are resolved and decisions made through an open process that involves the participation of all parties.

Building a coordinated offshore management regime will take time. It will not be easy. No regime for governing ocean activities will eliminate all conflicts, given the complexity of the problems and the diverse perspectives of competing interests. However, the National Ocean Council, President’s Council of Advisors on Ocean Policy, regional ocean councils, and states provide the basis for more coordinated, participatory management of ocean activities. This new decision-making framework provides the opportunity—perhaps long overdue—for a broad dialogue among stakeholders at the national, regional, and state levels on a more coordinated and deliberate approach to managing activities in offshore areas. (The interests and roles of state and territorial governments in activities that take place in federal waters is discussed in Chapter 9.)

A Fair Return for the Use of Offshore Resources

The management of public resources generally includes issues of public compensation. Specifically, economists refer to the economic value derived from a natural resource as resource rent. In the ocean, a natural resource may be an area, a space, or a living or non-living commodity. When a publicly-owned resource is made available to the private sector,Box 6.2 Sunken Treasure: Our Underwater Cultural Heritage

As technology has improved, so has the ability to locate objects of historical, cultural, and financial interest on the seafloor. At least 50,000 shipwrecks are scattered about the territorial waters and exclusive economic zone of the United States. Other sites harbor the physical evidence of past cultures, preserved in inundated human communities. Many of these sites hold considerable archeological value, providing a tangible and unique link to our past. They are also attractive for recreational enjoyment and financial returns through salvage. Whatever their origin or value, all submerged objects are highly susceptible to burial, decay, and destruction.

Considerable controversy surrounds the complicated set of local, state, federal, foreign, and international laws related to the management of shipwreck sites. Commercial salvors rely on traditional admiralty law to support their right to locate, recover, and remove objects of value from shipwrecks. However, many archeologists argue that historic shipwrecks and other submerged sites, as well as the material recovered from them, are part of the world’s collective heritage, and that the sale of artifacts deprives the public of important historical, cultural, and educational assets.

The lack of a comprehensive national strategy has exacerbated this debate. At least a dozen federal laws contain provisions relating or applied to historic shipwreck sites. Some apply in all U.S. waters, while others apply only in some zones, and still others apply only to certain agencies, or to specific types of sunken vessels, such as warships. There are also international agreements that apply to state-owned vessels submerged in the waters of another nation. However, there are currently no federal laws that assert ownership of cultural resources outside of state waters, or that claim jurisdiction over such resources outside specifically designated marine protected areas.

The new coordinated offshore management regime should incorporate a comprehensive policy on submerged cultural resources, including shipwreck sites. The offshore regime will need to balance the historical importance of certain sites with their potential recreational and economic value, preserving the most significant sites for future generations while leaving room for the recreational use and salvage of others. The establishment of a comprehensive national policy will also help in promoting an international regime for the use and protection of submerged cultural resources.
fairness and efficiency argue for a return to the public of some portion of the rent received from the use of that resource. This principle has been clearly established on land, where the government collects rents from ranchers through grazing fees and from timber and mining companies through royalties. The government also collects revenues from outer Continental Shelf oil and natural gas operations in the form of bonuses and royalties. In keeping with this concept, it is appropriate for the public to receive some return when private entities are allowed to benefit from ocean space and resources.

Recommendation 6–2

Congress, working with the National Ocean Council (NOC) and regional ocean councils, should establish a balanced, ecosystem-based offshore management regime that sets forth guiding principles for the coordination of offshore activities, including a policy that requires a reasonable portion of the resource rent derived from such activities to be returned to the public.

In developing an offshore management regime, Congress, the NOC, and regional ocean councils should:

- adopt as guiding principles those set forth by the Commission.
- recognize the need, where appropriate, for comprehensive, single-purpose ocean governance structures, which would be based on the guiding principles of the new regime and integrated with other uses.
- include a process for addressing new and emerging activities.

Employing Marine Protected Areas as a Management Tool

Marine protected areas are one type of management tool the federal government can employ for locations and resources in estuarine, nearshore, and offshore areas in need of protection. A broad umbrella term, marine protected areas are created for many different reasons, including conserving living marine resources and habitat, protecting endangered or threatened species, maintaining biological diversity, and preserving historically or culturally important resources. These areas have also been recognized for their scientific, recreational, and educational values.

Marine protected areas can vary from restricting all activities to limiting only some uses. Examples of activities that might be restricted include oil and gas exploration and production, dredging, dumping, certain types of vessel traffic, fishing, and placing structures on the seabed. Marine protected areas can be set aside permanently or temporarily and can be implemented either seasonally or year-round. Even within a marine protected area, a particular activity may be allowed in one part of the area but not in others. Marine protected areas can be established and managed by a variety of agencies at the federal, state, territorial, tribal, and local levels, pursuant to a number of authorities.

Federal Efforts

The National Oceanic and Atmospheric Administration (NOAA) is authorized to develop and implement marine protected areas through several programs. NOAA’s National Marine Sanctuary Program has had over thirty years of experience in area-based management. The thirteen marine sanctuaries included in the program cover over 18,000 square miles of ocean and coastal area—much of it in federal waters. Although the primary purpose of the sanctuary program is to ensure long-term protection of natural and cultural resources, the sanctuaries incorporate a number of interests and plan for a variety of uses while pursuing management, research, and public education activities. The program coordinates with local, state, territorial, tribal, and federal interests, and has experimented with a wide range of management techniques. NOAA also administers the National Estuarine Research...
Reserve System, which is made up of a network of twenty-six protected estuarine areas, and manages a variety of fishery zones and area closures to protect critical habitat for selected species.

The U.S. Department of the Interior (DOI), through the National Park Service (NPS) and the U.S. Fish and Wildlife Service (USFWS), is also authorized to create and manage marine protected areas. NPS manages the National Park System, which includes national parks, monuments, and preserves in ocean areas, as well as ten areas designated as national seashores on the Atlantic, Gulf, and Pacific coasts, and four national lakeshores along the Great Lakes coastline. USFWS manages the National Wildlife Refuge System, which includes more than 500 wildlife refuges, many of which are located in ocean and coastal areas.

In 2000, an executive order on Marine Protected Areas directed NOAA and DOI to establish a Marine Protected Area Center. The Center is charged with developing a framework for a national system of marine protected areas and providing federal, state, territorial, tribal, and local governments with information, tools, and strategies for effectively designing and managing such areas. The Center has made progress in improving coordination and working to establish a national system of marine protected areas; however, further consolidation of the many related federal programs may be needed. Simplifying the multiplicity of marine protected area management regimes can lessen confusion, foster stewardship, and enhance enforcement. (Federal marine protected area programs are summarized in Appendix D.)

The Role of Marine Protected Areas

Marine protected areas are important tools for ecosystem-based management, although they will not in and of themselves deliver long-term sustainable use of the oceans. Other pressing problems will continue to require attention, including resource use outside protected areas, point and nonpoint source pollution, and intensive coastal development. For this reason, marine protected areas are most effective when they are designed within the broader context of regional ecosystem planning and adaptive management, and when they are employed in conjunction with other management tools.

When a marine protected area is determined to be the best approach for addressing ecosystem goals in a particular area, its design must take a number of factors into consideration. These factors include local, state, regional, and national objectives, ecosystem characteristics and threats, competing uses within the targeted area, ecological and socioeconomic impacts, and the capacity for effective implementation and enforcement of the protected area. Marine protected areas must also be designed using the best available scientific information to ensure that their establishment is likely to meet the intended objectives. Monitoring, periodic assessment, and modification are also essential to ensure the continuing effectiveness of marine protected areas and to remain accountable to affected stakeholders.

Although at times controversial, appropriately designed and implemented marine protected areas have proven useful. A 2001 report by the National Research Council concluded that marine protected areas can be effective in maintaining marine biological diversity and protecting habitats, and have the potential to provide a flexible, spatially-based management framework for addressing multiple ecological and socioeconomic objectives.¹ The report stated that, in particular, closing certain areas to fishing—temporarily, seasonally, or permanently—can advance sustainable fisheries management and provide insurance against uncertainties in fisheries science. Nevertheless, design and implementation of marine protected areas, like any other marine resource management measure, must be considered in the context of broader planning and the implementation of a coordinated regime.
National Interests

It is appropriate for marine protected areas to be designed and implemented with strong input from the regional, state, and local levels. However, because marine protected areas have the potential to affect issues of national concern, such as freedom of navigation, there will always be a need for national-level oversight. With its multiple use, ecosystem-based perspective, the National Ocean Council is the appropriate entity for overseeing the development of a uniform process to design, implement, and evaluate marine protected areas.

The design of marine protected areas should not unreasonably limit important national interests, such as international trade, national security, recreation, clean energy, economic development, and scientific research. For example, in most cases, freedom of navigation through marine protected areas should not be restricted. However, where some infringement on such national interests is deemed essential to achieve the purposes of a marine protected area, restrictions should be based on the best available scientific information, with a plan for ongoing monitoring and modifications over time. The overall ecological and socioeconomic impacts of marine protected areas need to be assessed at the national level.

Recommendation 6–3
The National Ocean Council should develop national goals and guidelines leading to a uniform process for the effective design, implementation, and evaluation of marine protected areas. The process should include the following:

- marine protected area designations that are based on the best available science to ensure that an area is appropriate for its intended purpose.
- periodic assessment, monitoring, and modification to ensure continuing ecological and socioeconomic effectiveness of marine protected areas.
- design and implementation that consider issues of national importance, such as freedom of navigation, and are conducted in the context of an ecosystem-based comprehensive offshore management regime.
Regional and Local Stakeholders

Part of the controversy surrounding marine protected areas stems from the impacts their restrictions can have on stakeholders. While some stakeholders recognize the benefits of creating such areas, others vigorously oppose the limitations on otherwise legal ocean uses. When designing and implementing a marine protected area, it is important to engage all regional and local stakeholders to build support for the proposed protected area and to ensure compliance with any restrictions it may impose.

Because marine protected areas are used to accomplish a broad range of objectives and have different meanings for different people, it is imperative that each proposed area has clearly defined goals and objectives that meet the needs of that particular area, but are also consistent with national goals and guidelines. Regional ocean councils, or other appropriate regional, state, and local entities, can provide a forum for applying the uniform process developed by the National Ocean Council to design marine protected areas. They can also facilitate stakeholder input and public discussion of the trade-offs inherent in implementing marine protected areas. Well-designed scientific studies at the design and review stages can assist in the evaluation of the potential impacts of marine protected areas on communities.

Recommendation 6–4

To create effective and enforceable marine protected areas, regional ocean councils and appropriate federal, regional, state, and local entities should work together on marine protected area design, implementation, and evaluation. Planners should follow the process developed by the National Ocean Council, actively soliciting stakeholder input and participation.

References

CHAPTER 7

STRENGTHENING THE FEDERAL AGENCY STRUCTURE

Although improved coordination is a vital aspect of the new National Ocean Policy Framework, changes to the structure of some federal agencies will also be needed to enable effective implementation of national ocean policy. Strengthening the federal agency structure through a phased approach—in combination with improving coordination through the National Ocean Council—will improve agency performance, reduce unnecessary overlap, and significantly enhance the long-term goal of addressing the nation’s management of oceans, coasts, and other natural resources through an ecosystem-based management approach.

Immediate strengthening of the National Oceanic and Atmospheric Administration’s ability to carry out its many ocean- and coastal-related responsibilities is critical. That is to be followed by strengthening of other agencies with ocean-related responsibilities, and consolidation, where appropriate, of ocean and coastal programs in all agencies. Over the long term, more fundamental changes to the federal agency structure should be made to recognize the inextricable connections among the sea, the land, the atmosphere, and all living creatures on Earth, including humans.

Reorganizing to Support an Ecosystem-based Management Approach

New knowledge about the functioning of ecosystems—and specifically about our ocean and coastal regions—supports the need for fundamental changes in the nation’s approach to managing its resources. The benefits of improved coordination at national and regional levels were discussed in Chapters 4 through 6, and a number of recommendations made. But even excellent coordination does not preclude the need to consider reorganization. The new National Ocean Policy Framework contemplates both. The proliferation of federal agencies with some responsibility for ocean and coastal activities (illustrated in Figure 4.1) strongly suggests that consolidation might improve government performance, reduce unnecessary overlaps, facilitate local, state, and regional interactions with the federal government, and begin to move the nation toward a more ecosystem-based management approach.
Reviewing Previous Reorganization Proposals

In 1969, the Stratton Commission called for the establishment of a major new independent agency to administer the nation's civil marine and atmospheric programs. Around the same time, the President's Advisory Council on Executive Reorganization (known as the Ash Council) made recommendations for more effective management of all federal programs and agencies.

Based on the advice from these two groups, the Nixon administration planned to create an ocean and atmospheric agency and place it in a new Department of Natural Resources, in which the U.S. Department of the Interior (DOI) and several other agencies were identified as key elements. However, in 1970 the administration decided, largely for political reasons, to establish the National Oceanic and Atmospheric Administration (NOAA) as an agency within the U.S. Department of Commerce.

Since that time, members of Congress have introduced many reorganization proposals to improve federal management generally or specifically as it affects oceans and coasts. Two presidential proposals addressed broad reorganization around natural resources, while a national advisory committee on oceans and coasts proposed specific recommendations to improve the federal agency structure in that area. Proposals in the 1970s called for putting NOAA within a broader Department of Natural Resources, while a mix of proposals during the 1980s and 1990s would have either established an independent NOAA or moved parts of the agency to a different department. In the end, largely because of the political complexity associated with any reorganization of executive branch agencies, none of the proposals to reorganize or relocate NOAA was adopted. (Brief summaries of past proposals are included in Table 7.1 at the end of this chapter and summarized in Figure 7.1.)

Despite past failures to reorganize ocean and coastal programs, the concept of combining federal programs with similar functions remains under active consideration. In its 2003 report, the National Commission on the Public Service (known as the Volcker Commission) concluded that the historical phenomenon of governmental expansion on an issue-by-issue basis has resulted in a “virtually unmanageable tangle of government activities” that negatively affects program performance. That commission emphasized the need to reorganize the federal government “into a limited number of mission-related executive departments.”

![Figure 7.1 Proposals to Reorganize Federal Ocean Management](image-url)

Since 1970, there have been many congressional, presidential, and federal advisory committee proposals to consolidate the management of natural resources, including oceans, within the federal government (Table 7.1). Most recently, proposals have focused on establishing NOAA as an independent agency, or moving it out of the Department of Commerce to a more compatible home.
The complexity of the current policy-making process, with its many political and jurisdictional components, compels a cautious, methodical, phased approach for moving toward a more ecosystem-based federal structure. The phases include:

1. **Phase I—Immediate Action**: Solidify NOAA’s role as the nation’s lead civilian ocean agency through the enactment of a NOAA organic act that codifies the agency’s establishment within the Department of Commerce, clarifies its mission, and strengthens execution of its functions.

2. **Phase II—Medium-term Action**: Strengthen other agencies with ocean-related responsibilities and consolidate selected ocean and coastal functions and programs where such consolidation would eliminate unnecessary duplication, achieve more effective policy implementation, and not undermine the central mission of any agency.

3. **Phase III—Long-term Action**: Include oceans and coasts within a unified federal agency structure to manage all natural resources according to an ecosystem-based management approach.

Strengthening NOAA: Phase I

NOAA’s mission is to understand and predict changes in the Earth’s environment and to conserve and manage ocean and coastal resources to meet the nation’s economic, social, and environmental needs. The agency’s responsibilities have been spread across five line offices: the National Ocean Service; the National Marine Fisheries Service; the National Weather Service; the National Environmental Satellite, Data, and Information Service; and the Office of Oceanic and Atmospheric Research.

Since its creation, NOAA has made significant strides in weather prediction, navigational charting, marine operations and services on the ocean and along the coast, management and protection of living marine resources, satellite operations, processing and distribution of data, and development of innovative technologies and observing systems. These successes have occurred despite significant programmatic and functional overlaps, and frequent disagreements and disconnects among the current line offices. Recently, a sixth line office, the Office of Program Planning and Integration, was established to improve horizontal integration among NOAA line offices. Although this change will require time to take hold and show results, such initiatives constitute one of many steps required to strengthen NOAA’s performance.

NOAA needs both to manage its current activities more effectively and, if some or all of the recommendations discussed in this report are implemented, to handle a number of new responsibilities (Box 7.1). For example, Chapter 26 discusses significant improvements that will be needed at NOAA to enable its effective implementation of the Integrated Ocean Observing System (IOOS), including streamlined distribution of funds to other involved agencies, closer partnerships with industry and academia, and the ability to assume operational responsibilities for satellite Earth observing programs. A stronger, more effective, science-based and service-oriented ocean agency—one that contributes to better management of oceans and coasts through an ecosystem-based approach—is needed.

NOAA’s three primary functions can be categorized as follows: 1) assessment, prediction, and operations for ocean, coastal, and atmospheric environments; 2) marine resource and area management; and 3) scientific research and education. One of the critical objectives for a strengthened NOAA is improved interaction within and among these categories such that NOAA’s functions complement and support each other. For example, resource management decisions should be based on the best available science, research efforts should be planned to support the agency’s management missions, and all research—sea, land, and air—should be connected and coordinated. Changes of this nature will likely require adjustments to the internal operation of the agency, including possible additional changes to the current line office structure.
Recommendation 7–1

Congress should establish an organic act for the National Oceanic and Atmospheric Administration (NOAA) that codifies its existence and mission. The act should ensure that NOAA’s structure is consistent with the principles of ecosystem-based management and with its three primary functions of: assessment, prediction, and operations; management; and research and education.

Specifically, NOAA’s structure should support its role in:

- assessment, prediction, and operations for ocean, coastal, and atmospheric environments, including mapping and charting, satellite-based and in situ data collection, implementation of the Integrated Ocean Observing System, broadly based data information systems, and weather services and products.
- management of ocean and coastal areas and living and nonliving marine resources, including fisheries, ocean and coastal areas, vulnerable species and habitats, and protection from pollution and invasive species.
- research and education on all aspects of marine resources, including a focus on the importance of research and development, the use of scientifically valid technical data throughout the agency and with external partners, and promotion of educational activities across the agency and with the public.

NOAA’s entire structure, leadership, and staff should be oriented to support the effective exercise of these functions. Beginning with a strengthened science program and a more service-oriented approach, NOAA should be organized not only to improve its efficiency, but also to promote inclusiveness and a commitment to meaningful partnerships with other agencies, states, the private sector, and the academic community. Where partnerships are strong, each institution benefits from the strengths of the others and the

Box 7.1 Improving Ocean and Coastal Management by Enhancing NOAA’s Capacity

NOAA is currently responsible for a variety of ocean and coastal activities and this report contains many recommendations intended to increase the agency’s responsibilities and strengthen its performance in the following areas:

- Ocean exploration.
- Scientific planning and budgeting.
- Research support in a broad range of areas, including socioeconomics, oceans and human health, and monitoring.
- Infrastructure and technology development, including the transition from research to operations.
- Mapping and charting.
- Data and information management and communication.
- Formal and informal education for all ages.
- Domestic and international fishery management.
- Marine mammal and other marine species protection.
- Coral reef conservation.
- Sustainable aquaculture.
- Coastal and watershed management.
- Natural hazards planning and response.
- Habitat conservation and restoration.
- Coastal sediment management.
- Water pollution and water quality monitoring.
- Invasive species control.
tendency to duplicate similar expertise and functions is minimized. International responsi-
bilities will also need visibility at the highest levels of the agency.

As the clear lead civilian ocean agency in the federal government, NOAA will require
budget support commensurate with its important and varied responsibilities. NOAA’s
placement within DOC may be partly responsible for insufficient visibility, but it has de-
finite budgetary implications. At this time, NOAA’s budget is reviewed within the Office of
Management and Budget’s (OMB’s) General Government Programs, along with other ele-
ments of the U.S. Department of Commerce, such as the Bureaus of Industry and Security,
Economics and Statistics, and Economic Analysis, the Census Bureau, the International
Trade Administration, and the Patent and Trademark Office. These programs all have fund-
damental characteristics and missions programmatically separate from NOAA’s, requiring
budget examiners with very different expertise and perspectives. NOAA’s placement
within OMB also precludes its ocean and atmospheric programs from being considered in
an ecosystem-based context along with the other resource and science programs in the
federal government.

Recommendation 7–2
The Office of Management and Budget (OMB), at the instruction of the President, should
review the National Oceanic and Atmospheric Administration budget within OMB’s Natural
Resources Programs, along with the budgets of the U.S. Departments of Agriculture, Energy,
and the Interior, the U.S. Environmental Protection Agency, the National Science Foundation,
the National Aeronautics and Space Administration, and the U.S. Army Corps of Engineers’
Directorate of Civil Works.

Consolidating Ocean and Coastal Programs: Phase II

In addition to NOAA, many other agencies across the federal government administer ocean-
and coastal-related programs (Box 7.2). In fact, although NOAA encompasses the single
largest aggregation of civilian ocean programs, other agencies, taken together, represent the
majority of federal spending on ocean, coastal, and atmospheric issues. Thus, changes
within NOAA address only one part of the federal agency structure for oceans and coasts.
Other agencies with ocean-related activities must be strengthened in a similar manner.

Recommendations throughout this report are intended to strengthen the execution of
programs in other federal agencies with ocean- and coastal-related responsibilities, includ-
ing the U.S. Departments of Agriculture, Commerce, Defense, Energy, Health and Human
Services, Homeland Security, the Interior, Labor, State, and Transportation, and the U.S.
Environmental Protection Agency (EPA), the National Aeronautics and Space Administration
(NASA), and the National Science Foundation (NSF). The goal of moving toward an
ecosystem-based management approach requires that all agencies consider how the central
functions of: assessment, prediction, and operations; resource management; and scientific
research and education fit within their missions. The structure and coordination of these
primary functions within each agency should assure they are complementary and support
each other.

Departments and agencies often support very similar or overlapping activities. In
some cases, this programmatic overlap can provide useful checks and balances when
agencies bring different perspectives and experiences to the table. Furthermore, some
entities, such as the U.S. Navy, the U.S. Department of Justice, or the NSF, have such
distinct missions that their ocean- and coastal-related components could not be simply
removed and transferred without harm to the overall enterprise. Programs that are not
suitable for consolidation will need to be coordinated through the National Ocean
Council and the regional ocean councils.
Box 7.2 Federal Ocean and Coastal Activities in Agencies other than NOAA

The U.S. Department of the Interior’s (DOI’s) mission is to protect the nation’s treasures for future generations, provide access to the nation’s natural and cultural heritage, provide wise stewardship of energy and mineral resources, foster sound use of land and water resources, and conserve and protect fish and wildlife. Several agencies within DOI have ocean and coastal functions, including the U.S. Geological Survey (USGS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), and the Minerals Management Service (MMS). USGS provides scientific information to describe and understand the Earth, minimize loss of life and property from natural disasters, and manage water, biological, energy, and mineral resources. The goal of NPS is to conserve the scenery, the natural and historic objects and the wildlife therein, and to provide for the enjoyment of these resources in a manner that will leave them unimpaired for future generations. Many units within the National Park System are located in coastal areas. The USFWS mission is to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continuing benefit of the American people. MMS assesses the nature, extent, recoverability, and value of leasable minerals on the outer Continental Shelf. It oversees the development and efficient recovery of mineral resources and promotes the use of safe offshore operational technologies.

The mission of the U.S. Environmental Protection Agency (EPA) is to protect human health and to safeguard the natural environment—air, water, and land—upon which life depends. Within EPA, the Office of Water includes the Office of Wetlands, Oceans, and Watersheds, which addresses wetlands protection, protection of ocean and coastal environments, including watersheds and estuaries, management of dredged material, and water quality monitoring.

The National Aeronautics and Space Administration’s Earth Science Enterprise studies the Earth from space through environmental research programs and observing systems to meet the needs of the nation’s scientific communities.

The U.S. Army Corps of Engineers’ Directorate of Civil Works, located in the U.S. Department of Defense, administers flood control and shore protection programs, environmental restoration programs, and the regulation of U.S. waters and wetlands.

The U.S. Coast Guard, a multi-mission agency recently transferred from the U.S. Department of Transportation to the new U.S. Department of Homeland Security, is the principal federal marine enforcement agency for environmental and natural resource regulations in U.S. ocean and coastal waters, and regulates vessel and port safety, security, and environmental protection.

The U.S. Navy contributes significant resources to ocean science activities. Through the Office of Naval Research and the Naval Meteorological and Oceanography Command, the Navy has been instrumental in a number of areas since long before the creation of NOAA. Some of these areas include global ocean and seafloor data collection, archival, modeling, data fusion, and product generation, as well as a wide array of ocean research and technology, diving and salvage technology, deep submergence, ocean engineering and construction, and medical research.

The National Science Foundation supports basic research to further the understanding of all aspects of the global oceans and their interactions with the land and the atmosphere.

Other agencies in the Departments of Defense and Homeland Security also carry out activities with significant ocean components, although typically in a military or security context quite different from the resource management focus of the primary ocean agencies. Programs with ocean-related functions also exist within the Departments of Agriculture, Energy, Health and Human Services, Justice, Labor, State, and Transportation and in the U.S. Agency for International Development.
Nevertheless, during the 1970 reorganization that established NOAA, many programs that arguably should have become part of that new agency were left in other departments. Since that time, ocean- and coastal-related programs have continued to proliferate. In some cases, the number of separate agencies addressing a similar issue is not helpful. Such fragmentation diffuses responsibility, introduces unnecessary overlap, raises administrative costs, inhibits communication, and interferes with the development of a comprehensive management regime that addresses issues within an ecosystem-based context.

Programs that may be appropriate for consolidation can be found in several departments and agencies, including DOI, EPA, USACE’s Directorate of Civil Works, and NASA. These agencies carry out important functions related to managing and protecting marine areas and resources, conducting science, education, and outreach, and carrying out assessment and prediction in the ocean, coastal, and atmospheric environments. In Phase II of strengthening the federal agency structure, judicious consolidation of ocean- and coastal-related functions and programs will improve policy integration and program effectiveness.

Recommendation 7–3
The Assistant to the President, with advice from the National Ocean Council and the President’s Council of Advisors on Ocean Policy, should review federal ocean, coastal, and atmospheric programs, and recommend opportunities for consolidation of similar functions.

Discussion of possible candidates for program consolidation can be found throughout this report, including in Chapter 9 (area-based ocean and coastal resource management), Chapter 14 (nonpoint source pollution), Chapter 16 (vessel pollution), Chapter 17 (invasive species), Chapter 20 (marine mammals), Chapter 22 (aquaculture), and Chapter 26 (satellite Earth observing operations).

Because the legislative process to create or reorganize agencies is often contentious, lengthy, and uncertain, involving multiple committees in both houses of Congress, limited reorganization authority has been granted to the President at various times (Box 7.3). In its 2003 report, the Volcker Commission supported the reinstatement of presidential reorganization authority, with suitable congressional oversight, to streamline improvements in the executive branch.3 Allowing the President authority to propose expedited agency reorganization, with a congressional review and approval process that is timely, constitutionally valid, administratively workable, transparent, and accountable, would provide an excellent mechanism to achieve reorganization of federal ocean- and coastal-related agencies and programs more expeditiously.

Recommendation 7–4
Congress should authorize the President to propose structural reorganization of federal departments and agencies, subject to Congressional approval.
In particular, such legislation should:
- preclude Congress from amending the President’s proposal.
- require Congress to vote on the President’s proposal within a specified time period after submission of the plan by the President.
Managing All Natural Resources in an Ecosystem-based Management Approach: Phase III

Based on a growing understanding of ecosystems, including recognition of the inextricable links among the sea, land, air, and all living things, a more fundamental reorganization of federal resource agencies will eventually be needed.

As noted, the major ocean- and coastal-related functions of: assessment, prediction, and operations; resource management; and research and education reside in a variety of agencies. Strengthening the performance of ocean, coastal, and atmospheric programs through coordination and consolidation are important steps in moving toward an ecosystem-based management approach. By immediately establishing the National Ocean Council and strengthening NOAA, followed by the consolidation of suitable ocean and coastal programs and functions, the nation will be poised to take a further step in strengthening the federal government structure.

Consolidation of all natural resource functions, including those applicable to oceans and coasts, would enable the federal government to move toward true ecosystem-based management. This could be implemented through the establishment of a Department of Natural Resources or some other structural unification that brings together all of the nation's natural resource programs.

Recommendation 7–5

Following establishment of the National Ocean Council and the President’s Council of Advisors on Ocean Policy, strengthening of the National Oceanic and Atmospheric Administration, and consolidation of similar federal ocean and coastal programs, the President should propose to Congress a reorganization of the federal government that recognizes the links among all the resources of the sea, land, and air, and establishes a structure for more unified, ecosystem-based management of natural resources.
Between 1971 and 2001, there were many congressional, presidential, and federal advisory committee proposals to improve the management of oceans and other natural resources within the federal government. Details of these proposals are shown below. The icons on the left of each proposal correspond to Figure 7.1.

<table>
<thead>
<tr>
<th>Proposal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Council Proposal (1971)</td>
<td>A Department of Natural Resources: The proposal (H.R. 3249) called for redesignating the Department of the Interior as the Department of Natural Resources and moving NOAA to this department. No action was taken.</td>
</tr>
<tr>
<td>Moss Proposal (1973)</td>
<td>A Department of Natural Resources and Environment: The proposal (S. 27) called for the creation of a new Department of Natural Resources and Environment, and transferred all of the functions of the Department of the Interior, the Water Resources Council, the Energy Research and Development Administration, the Nuclear Regulatory Commission, and the Federal Energy Administration to the new department. Various functions of the Department of Commerce (including NOAA), the Department of Defense (civil works and civil regulatory functions), the Department of Agriculture, the Department of Transportation, and the Environmental Protection Agency were also to be transferred to the new department. The proposal was introduced again in 1975 (also S. 27), but no action was taken on either proposal.</td>
</tr>
<tr>
<td>Dingell Proposal (1973)</td>
<td>A Department of Natural Resources: The proposal (H.R. 9090) called for establishing an executive department to be known as the Department of Energy and Natural Resources, with five administrations to include an Oceanic, Atmospheric, and Earth Sciences Administration. NOAA and several other agencies would be transferred to the new department, with a division of functions among the five administrations. No action was taken.</td>
</tr>
<tr>
<td>Hollifield Proposal (1973)</td>
<td>A Department of Energy and Natural Resources: The proposal (H.R. 12733) called for redesignating the Department of the Interior as the Department of Natural Resources, within which a National Oceanic and Atmospheric Agency would be established. No action was taken.</td>
</tr>
<tr>
<td>Tunney Proposal (1975)</td>
<td>A Department of Natural Resources: The proposal (S. 2726) called for establishing a new Department of Natural Resources in the executive branch, transferring all of the functions of the Department of the Interior, the Federal Energy Administration, the Federal Energy Research and Development Administration, and the Water Resources Council to the new department. Various functions of the Departments of Commerce, Defense, Agriculture, and Transportation would also be transferred to the new department. The proposal also called for the establishment of an Executive Office of Resource and Materials Policy and a Joint Congressional Committee on Energy, Materials, and the Environment. No action was taken on this proposal.</td>
</tr>
<tr>
<td>Ribicoff Proposal (1976)</td>
<td>A Department of Energy and Natural Resources: The proposal (S. 3339) called for establishing a Department of Energy and Natural Resources to assume the nonregulatory functions of specified agencies dealing with the management and conservation of natural resources and energy research. It also proposed to establish, within the Executive Office of the President, the Natural Resources Council to facilitate communication among federal agencies responsible for natural resource management and policy and to recommend improvements in such management and policy. No action was taken.</td>
</tr>
<tr>
<td>Hollings Proposal (1976)</td>
<td>A Department of the Environment and Oceans: The proposal (S. 3889) called for creating a Department of the Environment and Oceans, transferring into this new department existing agencies, such as the Environmental Protection Agency, NOAA, and the U.S. Coast Guard, as well as a number of services and programs from both the U.S. Army Corps of Engineers and the Department of the Interior, to deal with the nation’s “common property resources.” No action was taken.</td>
</tr>
<tr>
<td>Percy Proposal (1977)</td>
<td>A Department of Energy Supply and Natural Resources: The proposal (S. 591) called for reorganizing federal energy-related activities in the executive branch, temporarily establishing an Energy Policy Council and a cabinet-level Committee on Conservation to establish energy policy objectives. The proposal also called for establishing an executive Department of Energy Supply and Natural Resources, transferring energy and natural resources functions from the Department of the Interior, the Federal Energy Administration, the Energy Research and Development Administration, and the U.S. Forest Service to the new agency, and transferring additional functions to existing departments and agencies. No action was taken.</td>
</tr>
</tbody>
</table>
Table 7.1 (continued) Thirty Years of Proposals to Reorganize Federal Management of Ocean and Coastal Resources

- **Brooke Proposal (1977) for a Department of Environment and Natural Resources**: The proposal (S. 1481) called for creating a Department of Environment and Natural Resources, transferring all functions of the Environmental Protection Agency and the Department of the Interior to the new department. Additional authority with respect to oceans, vessel and facility pollution control, coastal zone management, and atmospheric services was also to be transferred to the new department. No action was taken.

- **President Carter's Reorganization Proposal (1978) for a Department of Natural Resources**: The proposal called for a larger governmental reorganization, which included a new Department of Natural Resources, to address the problems being faced on a national scale in the area of natural resource development, with the mission of “managing the nation's natural resources for multiple purposes, including protection, preservation, and wise use.” The composition of this new department would be a large part of the Department of the Interior, NOAA, the U.S. Forest Service, and a number of programs from the Department of Agriculture and the U.S. Army Corps of Engineers’ Directorate of Civil Works. Within the department would be five administrations, one of which would be the Oceanic and Atmospheric Administration to include the functions of NOAA; the Bureau of Land Management’s Outer Continental Shelf (OCS) program; the U.S. Geological Survey Conservation Division’s OCS program; U.S. Fish and Wildlife Service’s anadromous fisheries and marine mammal programs; and the Bureau of Reclamation’s Weather Modification program. This proposal was not adopted.

- **National Advisory Committee on Oceans and Atmosphere (advisory to NOAA) (1971–87)**: This body, created in 1971 as a result of the Stratton Commission, made a number of recommendations for reorganization. In its 1978 and 1979 reports, the National Advisory Committee on Oceans and Atmosphere recommended that “the President and the Congress should refashion the non-military federal structure dealing with the atmosphere, coastal zone, polar regions, and the oceans...[so as to] centralize programs and federal management elements...to improve control of activities relating to economic development, environmental protection, and scientific and technological capabilities in the oceans and affecting the atmosphere.” These recommendations were never implemented.

- **Schueer Proposal (1983) for an independent NOAA**: The proposal (H.R. 3355) called for establishing NOAA as an independent agency, granting the agency coordination responsibility for oceanic and atmospheric matters, and setting forth the enforcement authority of the administration. No action was taken.

- **Forsythe Proposal (1983) for an independent NOAA**: The proposal (H.R. 3381) called for establishing NOAA as an independent agency, granting it coordination responsibility for oceanic and atmospheric matters, and setting forth the enforcement authority of the administration. The bill reported to the House from the Committee on Merchant Marine and Fisheries, but the proposal was never adopted.

- **Weicker Proposal (1987) for an independent NOAA**: The proposal (S. 821) called for establishing NOAA as an independent federal agency. No action was taken.

- **Lowry Proposal (1988) for an independent NOAA**: The proposal (H.R. 5070) called for establishing NOAA as an independent agency to administer features of U.S. policy with respect to civil oceanic, coastal, and atmospheric activities and programs. No action was taken.

- **Unsold Proposal (1993) for transfer of NOAA functions**: The proposal (H.R. 2761) called for transferring to the Department of the Interior the following NOAA offices and assets: the National Ocean Service, the National Marine Fisheries Service, the Office of Oceanic and Atmospheric Research, the fleet of research and survey vessels, and the NOAA Corps. It also called for the transfer of components of the National Ocean Service that carry out coastal management and assessment programs to the Environmental Protection Agency. No action was taken.

- **Chrysler Proposal (1995) for transfer of NOAA functions**: After the House and Senate passed the Concurrent Resolution on the Budget for Fiscal 1996 (H. Con. Res. 67), which called for eliminating the Department of Commerce as part of a congressional effort to streamline government, increase efficiency, and save taxpayer dollars, Congressman Chrysler introduced H.R. 1756, proposing to eliminate various parts of NOAA and transfer other parts of the agency to other existing agencies as part of an overall proposal to dismantle and wind up the affairs of the Department of Commerce over a period of three years. As with other proposals of this magnitude, the bill was referred to eleven committees, involving an additional ten subcommittees. Several committee members strongly dissented in the House Committee on Ways and Means report (Rept. 104-260), but no specific mention was made about NOAA. Although several subcommittees discharged or reported on the bill, no further action was taken.

- **Abraham Proposal (1995, 1997) for an independent NOAA**: The proposal (S. 929) called for re-establishing NOAA as an independent executive entity, following the abolishment of the Department of Commerce and transferring the functions from the former NOAA to a new NOAA. It also set forth other administrative changes, as well as the coordination of environmental policy. The proposal was reported out of committee to the Senate floor, but action was never taken. Variations of this proposal were introduced again in 1997 (S. 1226 and S. 1316), but no action was taken.
Table 7.1 (continued) Thirty Years of Proposals to Reorganize Federal Management of Ocean and Coastal Resources

▲ Royce Proposal (1997) for transfer of NOAA functions: This proposal (H.R. 1319), similar to earlier House proposals to dismantle the Department of Commerce, called for the termination of various parts of NOAA and the transfer of other parts of the agency to other existing agencies. No action was taken.

● Royce Proposal (1997) for an independent NOAA: This proposal (H.R. 2667) was similar to other House proposals to terminate the Department of Commerce, except that it called for creating an independent NOAA, to which any of the former NOAA’s functions that were not already terminated or transferred to other agencies by the bill would be transferred. No action was taken.

▲ Young Proposal (1998) for transfer of certain NOAA functions: The proposal (H.R. 4335) called for transferring to the Secretary of the Interior the functions of the Secretary of Commerce and the National Marine Fisheries Service under the Endangered Species Act of 1973. No action was taken.

● Royce Proposal (1999) for an independent NOAA: The proposal (H.R. 2452) called for re-establishing NOAA as an independent agency in the executive branch, under the supervision and direction of an Administrator of Oceans and Atmosphere. Certain functions would be transferred to a new NOAA: National Marine Fisheries Service functions; all functions performed by the National Ocean Service; National Environmental Satellite, Data, and Information Service functions; Office of Oceanic and Atmospheric Research functions; and National Weather Service functions. Other programs would be transferred to other existing agencies: coastal nonpoint pollution functions would be transferred to the Environmental Protection Agency; aeronautical mapping and charting functions would be transferred to the Transportation Administrative Services Center at the Department of Transportation; and functions relating to mapping, charting, and geodesy would be moved to the U.S. Army Corps of Engineers. This proposal was part of a larger proposal to terminate the Department of Commerce. It was introduced again in 2001 (H.R. 375). No action was taken on either proposal.

References

3 Ibid.
CHAPTER 8

PROMOTING LIFELONG OCEAN EDUCATION

Strengthening the nation’s awareness of the importance of the oceans requires a heightened focus on the marine environment, through both formal and informal education efforts. School curricula, starting in kindergarten, should expose students to ocean issues, preparing the next generation of ocean scientists, managers, educators, and leaders through diverse educational opportunities. In addition, because formal curricula only reach students for a limited time, informal education aimed at the entire population is needed to foster lifelong learning.

An education office under the oversight of the National Ocean Council and empowered by federal agency leadership will provide a national focal point to improve ocean-related education efforts, facilitate coordination of ocean-related education among federal agencies, and enhance collaboration among the research community, state and local education authorities, and the private sector.

Strengthening the Nation’s Ocean Awareness

A recent national survey indicates that the American public has only a superficial awareness of the importance of the ocean to their daily lives, let alone its importance to all life on the planet.\(^1\) The ocean is a source of food and medicine, controls global climate, provides energy, supplies jobs, supports economies, and reveals information about the planet that cannot be gained from any other source. The ocean conceals the highest mountains and deepest canyons on Earth, as well as valuable cultural artifacts. Exploration of the ocean has revealed amazing organisms straight out of science fiction and entire ecosystems previously unknown to humankind.

But the extent of what we do not know—what remains undiscovered—sparks the imagination. With so much of the marine environment still unexplored, the ocean can be viewed as the final frontier on Earth.

While most people do not recognize the number of benefits the ocean provides, or its potential for further discovery, many do feel a positive connection with it, sensing perhaps that the vitality of the sea is directly related to human survival. This connection can be a powerful tool for increasing awareness of, interest in, and responsible action toward the marine environment, and is critical to building an ocean stewardship ethic, strengthening the nation’s science literacy, and creating a new generation of ocean leaders.
Ocean Stewardship

To successfully address complex ocean- and coastal-related issues, balance the use and conservation of marine resources, and realize future benefits from the ocean, an interested, engaged public is essential. The public should be armed not only with the knowledge and skills needed to make informed choices, but also with a sense of excitement. Individuals need to understand the importance of the ocean to their lives and realize how their individual actions affect the marine environment. Public understanding of human impacts on the marine environment will engender recognition of the benefits to be derived from well-managed ocean resources. Because of the connection among the oceans, the atmosphere, and the land, inland communities need to be as informed and involved as seaside communities.

Science Literacy

Ocean-related education also has the potential to stem the tide of science illiteracy threatening to undermine the nation's health, safety, and security. The scientific literacy of U.S. high school graduates is well below the international average. This progressive loss of literacy weakens the nation's ability to maintain its traditionally strong foundation in science and mathematics. Only 15 percent of American adults now describe themselves as well informed about science and technology issues.

Children have a natural curiosity about the world around them. By the ninth grade, however, this innate interest has too often faded or been transformed into apprehension—or even fear. Capturing children's attention early, and continually nurturing their inherent scientific curiosity, is critical to achieving scientific literacy and would be well served by employing the natural, multidisciplinary allure of the ocean as a basis for teaching science, mathematics, and engineering concepts.

This allure could be parlayed into higher achievement in other subjects as well. The influence of the ocean on nearly every aspect of daily life, and the central role it plays in the development of the nation, make ocean-based studies ideal for enhancing student performance in areas such as geography, history, economics, policy, and law. Strengthening science literacy, therefore, encompasses not only natural sciences, but a full suite of social sciences.

Future Ocean Leaders

The nation needs a diverse, knowledgeable, and adequately prepared workforce to enhance understanding of the marine environment and make decisions regarding complex ocean- and coastal-related issues. As far back as 1929, the National Research Council emphasized that advances in ocean knowledge would depend on an ocean-related workforce sufficient in size and ability, with ample educational opportunities at its disposal. In today's competitive world of knowledge-based, technology-driven economies, with increasing demands on ocean and coastal resources, this need is even more relevant and urgent.

The education of the 21st century ocean-related workforce will require not only a strong understanding of oceanography and other disciplines, but an ability to integrate science concepts, engineering methods, and sociopolitical considerations. Resolving complex ocean issues related to economic stability, environmental health, and national security will require a workforce with diverse skills and backgrounds. Developing and maintaining such a workforce will rely, in turn, on programs of higher education that prepare future ocean professionals at a variety of levels and in a variety of marine-related fields.
Crosscutting Themes

While this chapter is organized into several sections—a collaborative education network, K–12 education, higher education and the workforce, and informal education—problems identified in each of these areas often affect the others. For example, inadequate funding is a concern throughout K–12, graduate, and informal education. Likewise, increased coordination is needed within and among all educational areas. One critical issue is the need to bridge the gap between the research and education communities. Ocean-based professional development for teachers, scientifically sound ocean-based curricular materials, and up-to-date information for the public are just a few of the educational concerns that will depend on strong, vibrant connections between researchers and educators.

Another focus of this chapter is the role of the federal government in education. Although states are the leaders in K–12 education, federal agencies are a critical component of the education community. Ocean agencies will need appropriate direction and resources to fulfill this important role.

Building a Collaborative Ocean Education Network

To achieve meaningful, lifelong learning on ocean issues, the efforts of federal agencies, state and local authorities, nongovernmental entities, and professional societies with roles in education need to be better coordinated.

Participants in Ocean Education

Although not all ocean-related federal agencies have a specific education mission, most have made efforts to reach out to students, teachers, and the public to inform them about ocean issues, sometimes by adding ocean-related components to larger science and environmental education efforts. Agencies that have developed educational programs related to planetary, environmental, and scientific processes include the National Oceanic and Atmospheric Administration (NOAA), U.S. Navy, National Aeronautics and Space Administration (NASA), National Science Foundation (NSF), U.S. Environmental Protection Agency (EPA), Minerals Management Service, National Park Service, U.S. Fish and Wildlife Service, and the U.S. Geological Survey. These programs increase public understanding of the Earth's systems and the environment. While it is valuable for ocean-related information to be included as part of broader environmental and science education efforts, it is also important to support educational efforts that focus specifically on oceans, coasts, and the human relationship with them.

Of course, the U.S. Department of Education has the overarching responsibility of ensuring equal access to and fostering excellence in education across the nation. The department is engaged in a partnership effort with states and school districts to implement education reforms, including requirements that each state meet certain goals in core subject areas, such as science, math, and reading.

Two national-level ocean education programs of particular importance are the Centers for Ocean Sciences Education Excellence (COSEE) and the National Sea Grant College Program (Sea Grant). COSEE is an NSF initiative, with additional support from the Office of Naval Research (ONR) and NOAA, that has established a number of regional centers and a national office to create a coordinated program for ocean science education. Sea Grant, a partnership between NOAA and U.S. universities, is a national program implemented at the state level to further ocean-related research, education, and outreach.

While federal programs provide many opportunities for ocean-related education, education is primarily a state responsibility, with direct control exerted at the local level.
Therefore, the interaction and involvement of education administrators at the state, district, and individual school levels will be fundamental to the success of any effort to use ocean-based examples to enhance student achievement.

Aquariums, zoos, museums, and other informal education centers also provide the public with opportunities to learn about the marine environment. Teachers rely on these informal venues as another way to educate students about the oceans. The involvement of those who educate teachers, including subject-specific and professional development instructors, is critical to providing teachers the knowledge, confidence, attitudes, and ability to teach ocean-related information.

A number of groups and associations also have a significant role in ocean-related education, including professional societies, such as the National Marine Educators Association (NMEA), the National Science Teachers Association, and the American Association for the Advancement of Science. Finally, marine labs and field stations can play a key role in college and university education in ocean and coastal sciences. Most students have limited access to marine environments at their home campuses, and marine labs and field stations can provide avenues for direct experience with marine life and marine environments.

Coordinating Ocean Education

Despite the existence of many positive efforts, ocean education remains a patchwork of independently conceived and implemented programs and activities. These efforts cannot provide the nationwide momentum and visibility needed to promote sustained ocean education for students, teachers, and the general public. Within the federal government, there is little discussion of ocean education, even among those agencies with the greatest responsibility for ocean issues. Different programs and funding mechanisms are not coordinated and resources are seldom leveraged. Even within individual agencies, offices that have education components often do not collaborate or communicate.

Existing Coordination Efforts

Existing efforts at coordination have failed to take hold nationally. For example, NMEA is a national organization that brings together individuals concerned with marine-related education. However, it is strictly a volunteer initiative, with limited resources and capacity to develop, support, and sustain national-scale efforts. The Federal Task Force on Environmental Education, chaired by EPA, has had some success in bringing together federal agencies to support joint programs in environmental education. However, these programs tend to be relatively small in scale and scope, with limited attention devoted to ocean issues. The National Science and Technology Council’s Committee on Science recently formed a Subcommittee on Education because of a recognized need for improved coordination of all educational programs among federal agencies. The Subcommittee is intended to help reduce fragmentation and duplication and to bring about a coordinated set of programs. While this new body has the potential to unite agency education efforts, it too lacks an ocean focus.

One program that does focus on ocean issues is the National Oceanographic Partnership Program (NOPP), a statutory collaboration of fifteen federal agencies intended to provide leadership and coordination of national oceanographic research and education programs. Primarily through its grant program, NOPP has provided support for innovative education and outreach projects. NOPP’s Ocean Research Advisory Panel recently drafted a national ocean education strategy to improve ocean literacy and science education.6 This strategy has great potential, but it has yet to be formally approved or adopted. Further, while NOPP has provided a venue for agencies to jointly fund ocean education activities, it does not provide a coordination mechanism for existing programs.

The sea and its mysteries fascinate most people and this interest can be used to engage students to think about how they are connected to the sea and how the ocean plays a role in our collective future.

—Jean-Michel Cousteau, President, The Ocean Futures Society, testimony to the Commission, April 2002
The coordination activities described above, while helpful, do not combine federal resources across agencies in a coherent, planned, and visible way. Without leadership, no common vision for ocean education has been developed, and no path for achieving such a vision has been laid out.

A National Ocean Education Office
As discussed in Chapter 4, the National Ocean Council, to be established within the Executive Office of the President, would serve as the federal coordinating body for all ocean-related activities. NOPP and its associated offices and committees would be incorporated within this structure. By strengthening and expanding NOPP’s governing body (currently the National Ocean Research Leadership Council, but reconstituted pursuant to Recommendation 4–7 as the Committee on Ocean Science, Education, Technology, and Operations [COSETO]), and placing it under the National Ocean Council, the original NOPP goal of bringing agencies together on ocean research, operations, observing, and education efforts is more likely to be fulfilled. A national ocean education office would be an integral part of COSETO, serving as the education component of the enhanced NOPP (Figure 8.1). Such an office would coordinate the various federal ocean-related education efforts and perform many of the functions outlined in the education strategy crafted by

Figure 8.1 Proposed Structure for the Coordination of Federal Ocean Education Activities

Shown here are the institutional components that should be established under the Committee on Ocean Science, Education, Technology, and Operations (COSETO, described in Chapter 4) to improve federal leadership and coordination in ocean education. This diagram also illustrates the links between education components and other units under COSETO. Entities shaded in gray are discussed in Chapter 25.
NOPP’s Ocean Research Advisory Panel. The education office would work closely with the other NOPP offices and committees, including Ocean.US, the office responsible for coordinating development of the Integrated Ocean Observing System, which includes several education efforts.

A national ocean education office would coordinate and integrate federal agency programs, leverage resources, serve as a central, visible point of contact for K–12, university-level, and informal education partners, and work with state and local education experts and others to develop a vision, strategy, and coherent, comprehensive plans for national ocean education. In doing so, the national office should also interact with the regional ocean councils, as one avenue for ensuring consideration of regional needs.

Recommendation 8–1

Congress should amend the National Oceanographic Partnership Act to add a national ocean education office (Ocean.ED) with responsibility for strengthening ocean-related education and coordinating federal education efforts.

In particular, Ocean.ED should:

- develop a national strategy for enhancing educational achievement in natural and social sciences and increasing ocean awareness, including promotion of programs that transcend the traditional mission boundaries of individual agencies.
- develop a medium-term (five-year) national plan for ocean-related K–12 and informal education, working with federal, state, and nongovernmental education entities.
- coordinate and integrate all federal ocean-related education activities and investments.
- establish links among federal efforts, state and local education authorities, informal education facilities and programs, institutions of higher learning, and private-sector education initiatives, and strengthen existing partnerships.
- report to the National Ocean Council’s Committee on Ocean Science, Education, Technology, and Operations.

Recommendation 8–2

Congress should provide funding for Ocean.ED operations and program implementation as a line item in the National Oceanic and Atmospheric Administration (NOAA) budget, to be spent at the direction of the National Ocean Council (NOC). NOAA should develop a streamlined process for distributing Ocean.ED funds to other federal and nonfederal entities based on the NOC-approved plan.

This national effort is not meant to replace other successful programs and activities, but rather provide a mechanism for communication, coordination, and joining of forces. Once created, Ocean.ED will need staff support, sustained funding, and oversight by an interagency committee reporting to the National Ocean Council. While Ocean.ED will focus on ocean-related education, these efforts will have a greater chance of success if they are linked with efforts to improve education in other subjects, including natural sciences, technology, engineering, math, and a range of social sciences. Therefore, participation should extend beyond the current NOPP agencies, including the Department of Education. The new education office will also need an external advisory body to ensure involvement of and communication with professional teaching organizations and other experts.

The ability of a national-level ocean education office to effectively coordinate and promote ocean education efforts depends on every ocean-related federal agency acknowledging education as a priority. NASA and NSF have long embraced this approach, but it has been more difficult for many of the more mission-oriented agencies. Nevertheless, NOAA’s strategic plan for fiscal years 2003–8 includes environmental literacy, outreach, and education as a crosscutting priority7 and the agency recently created an Office of
Education and Sustainable Development to coordinate its education activities. By passing an organic act for NOAA that includes education as part of the agency’s charge, as recommended in Chapter 7, Congress can encourage these positive developments.

Funding and Assessment

In addition to the functions of Ocean.ED outlined above, the office, working through the National Ocean Council process, should help ensure that adequate funding is available to carry out ocean-related education programs and activities. It is also important for the office to work with the education community to develop a process for periodically assessing and evaluating ocean education efforts.

Sustained Support for Ocean Education

Adequate funding will be needed to meet the goals outlined in this chapter, but it is particularly important that funding for ocean-related education be sustained over time (for periods of at least five years) to allow programs to become established, produce results, and identify potential nonfederal funding sources. Continuity of funding ensures that successful education efforts can be continued, expanded, and replicated. Dedicated, secure, sustained sources of support for formal and informal ocean education efforts are needed. Such funding could be distributed through the existing NOPP funding process.

Evaluation and Assessment of Ocean Education Efforts

If ocean-based K–12, informal, and professional development programs are to serve as the basis for enhancing ocean awareness and increasing knowledge among students, educators, and the public, it will be critical to determine the effectiveness of these programs. For professional development efforts, accurate, properly conducted evaluation and assessment is vital to know how to modify existing programs and establish effective new efforts that provide educators with a productive and valuable experience. Likewise, identification and evaluation of best practices for incorporating ocean-based concepts into K–12 and teacher preparation coursework will help ensure continual improvement. Assessment mechanisms are needed to determine whether ocean-based coursework and programs are enhancing students’ academic achievement and to promote materials and programs that provide the most enriching learning experiences.

Evaluation and assessment mechanisms are also critical to determining whether public education programs have been effective at delivering their messages. This information, combined with data on the state of public knowledge, provides the basis for program development and modification.

Recommendation 8–3

The National Oceanic and Atmospheric Administration, National Science Foundation, Office of Naval Research, and National Aeronautics and Space Administration should strengthen their support of both formal and informal ocean-related education, including appropriate evaluations of these efforts.

In particular, these agencies should:

- develop, with assistance from Ocean.ED, a cooperative system of dedicated, sustained, multi-agency funding for formal and informal ocean education. This funding should be explicitly linked to the national ocean education plan.
- provide support for development and implementation of ocean-related education materials and activities with a requirement that evaluation mechanisms be included as a component of every program.
Recommendation 8–4
Ocean.ED should develop a framework for evaluating the effectiveness of ocean-related education programs, ocean-based K–12 professional development programs, best practices for incorporating ocean-based examples into K–12 education, and public education programs.

Linking the Research and Education Communities

Collaboration between the research and education communities must be improved if ocean-based information, including ocean data and new discoveries, is to be transformed into exciting and accessible materials to stimulate student achievement and enhance public awareness. Some efforts do exist to make these connections, most notably through the COSEE and Sea Grant programs.

Centers for Ocean Sciences Education Excellence
The COSEE network includes regional centers and a central coordinating office that work to integrate oceanographic data and information into high-quality curricular materials, provide ocean scientists with opportunities to learn more about educational needs and requirements, provide K–12 teachers with the knowledge and skills they need to effectively incorporate ocean-related information into their lessons, and deliver ocean-related information to the public.

Though recognized as a model for enhancing education and bringing accessible ocean-related information to the public, COSEE currently has only seven regional centers, each serving a limited number of schools in its area. The program does not have the level of committed, long-term support required to fully realize its potential.

While COSEE is currently an NSF program, placing it within the National Ocean Council structure as a NOPP program would enable the other NOPP agencies to more easily support it, capitalizing on the tremendous potential to enhance and expand the program. The placement of COSEE within NOPP should not alter the relationships established between the central coordinating office and the regional centers, or among the regional centers and their partners. Before COSEE is expanded significantly in scale and scope, its regional centers need to be evaluated to ensure that they are all addressing educational needs effectively.

Recommendation 8–5
The National Ocean Council (NOC), working with the National Science Foundation, should place the Centers for Ocean Sciences Education Excellence (COSEE) within the NOC structure as a program to be organized and overseen through Ocean.ED. The NOC should also work to expand the COSEE program.

Expansion of COSEE should include:
- tripling the number of regional centers to twenty-one, with each center receiving at least $1.5 million a year for an initial five year period.
- expanding the reach of each center beyond its immediate participants.
- identifying models for successful partnerships between scientists and K–12 teachers.
- devising strategies to incorporate the expertise of university science education specialists.
- implementing professional development programs for K–12 teachers and university research professors.

The National Sea Grant College Program
The Sea Grant Program was created by Congress in 1966. Sea Grant sponsors research, education, outreach, and technology transfer through a partnership between the nation’s universities and NOAA. The program works with university scientists, educators, and out-
reach specialists to study marine and Great Lakes resource management, development, and conservation issues, and then shares that knowledge with coastal businesses, marine industries, government, educators, and the public.

Sea Grant has forged connections between the research and education communities since its inception. Its programs provide K–12 teacher preparation and professional development programs consistent with state education standards, offer hands-on educational experiences for students, and develop research-based curricula and communications materials for students and the public. The Sea Grant network relies on longstanding local partnerships, with many connections to populations that have been traditionally underrepresented and underserved by the ocean community.

Despite its successes, however, Sea Grant is currently an underutilized resource. The existing Sea Grant network could expand its roles and responsibilities, particularly in education and outreach. Such an expanded and strengthened role is not possible with Sea Grant's current annual budget of just over $60 million. Funding for Sea Grant education initiatives is particularly limited, amounting to approximately 5 percent of the program's budget in fiscal year 2002 (excluding fellowship programs). Although Sea Grant is one of the few major education outlets for NOAA, not all state Sea Grant programs have even one full-time education professional on staff due to funding limitations.

Recommendation 8–6
The National Sea Grant College Program should increase the proportion of its resources dedicated to ocean and coastal education.

The investment in Sea Grant's education programs should be brought in line with its extension efforts. This would enable all Sea Grant programs to employ full-time education staff, have direct interaction with COSEE, and have long-term, dedicated resources available for schools and teachers. (A discussion of the need to expand the Sea Grant program overall is presented in Chapter 25.)

Because both the COSEE and Sea Grant programs play an important role in bringing together the research and education communities, and both operate on national, regional, state, and local levels, there are natural links that could be established between them. While Sea Grant programs currently participate in many of the regional COSEE centers, these two programs could enhance their partnership by developing links in all of the regions in which they both operate. In addition, COSEE and Sea Grant will need to establish strong partnerships with the regional ocean information programs discussed in Chapter 5.

Incorporating Oceans into K–12 Education

International studies show that the United States is not preparing its citizens to sustain and build on the nation's past scientific and technological accomplishments and compete successfully in an increasingly complex and technical world (Figure 8.2). At the same time, a lack of public awareness about the importance of the ocean hampers efforts to develop a balanced approach to the use and conservation of marine resources. Incorporating ocean-based learning experiences into K–12 education can help redress both these deficiencies.

A study of forty schools in twelve states found that integration of environment-based programs into the overall education system increased student academic achievement in a number of areas (Figure 8.3), underscoring the power of using the student's world, including both natural and sociocultural environments, as a conduit for reaching and engaging students.
The enactment of the No Child Left Behind Act in 2002 reemphasized education—including science education—as a national priority. With the goal of improving educational quality and student achievement, the Act calls for all states to establish standards in various subjects, with science education standards required by the 2005–6 school year. To ensure that students are reaching the goals set for them, the Act calls for science achievement to be tested beginning in the 2007–8 school year. Although its implementation may be challenging, this requirement offers an opportunity to demonstrate how ocean topics excite students about science and other subjects by incorporating ocean-related concepts into K–12 curricular materials and evaluating improvements in performance.

Using Ocean-based Examples to Meet Education Standards

There are two primary sets of science literacy guidelines at the national level: the American Association for the Advancement of Science's 1993 Benchmarks for Science Literacy; and the National Research Council's 1996 National Science Education Standards (NSES). Despite similar goals of outlining what students should know, understand, and be able to do in science at various grade levels, the Benchmarks include ocean sciences and ocean-related issues, while the NSES contain few explicit references to the oceans or ocean sciences.

A recent survey of the NMEA membership revealed a clear preference among educators for using the NSES rather than the Benchmarks when aligning science lessons with instructional standards (Appendix 3). And where statewide science standards exist, they are also typically based on the NSES. Thus, the notion of using the oceans to meet science requirements is not commonly incorporated at the state or local level, slowing the adoption of ocean-based curricula in K–12 classes.
Nonetheless, while the NSES do not highlight oceans explicitly, they do endorse a new approach to teaching and learning science that emphasizes inquiry-based education as the ideal way for students to gain knowledge and an understanding of the world around them. The oceans are an excellent vehicle for implementing this new approach. The hands-on, interdisciplinary and multidisciplinary nature of ocean-based studies lends itself to teaching the basic principles of biology, chemistry, geology, physics, and mathematics in an engaging and novel manner. Principles of the core sciences, many of which are relatively abstract, become more tangible and easier to grasp when introduced through ocean examples.

The centuries-old ties between the marine environment and human experience make the ocean an equally powerful resource for teaching literature, economics, history, and other social sciences. Ocean-based examples focusing on these areas can be a valuable tool for K–12 teachers, not only to enhance student achievement, but to educate young people on the many ways the oceans influence and are influenced by human activities. Both NMEA and the National Geographic Society have made a start at outlining basic ocean literacy concepts that can be incorporated in curricula.

However, the value of ocean-based learning must be recognized within local school districts to create a demand for ocean-related education products. A well-informed network will be needed to advocate inclusion of ocean-based examples in state and local requirements and assessments. This network could begin with organizations and efforts that have established local connections—such as COSEE, Sea Grant, NMEA, and the National Science Teachers Association—to serve as facilitators. A potential model to examine is NASA's education program, which involves translators and liaisons who work directly with teachers and administrators at the local level to produce high-quality, research-based curricula that are tailored to the needs of the school system and aligned with state and national standards. In addition, it will be important for professional teaching and ocean-related societies to encourage their members to become active participants on boards and committees that decide content for statewide science achievement tests.

Because scientists typically do not know what type, level, or format of information K–12 teachers require, and because teachers generally are not aware of how ocean-related data can be used to advance student achievement, collaborative efforts will be needed to develop and disseminate research-based, ocean-related curricula that are aligned with state and national educational standards and meet the needs of teachers.

Recommendation 8–7

Ocean.ED, working with state and local education authorities and the research community, should coordinate the development and adoption of ocean-related materials and examples that meet existing education standards.

Specifically, Ocean.ED should:
- assess existing ocean-based curricula offerings, highlighting exemplary materials that are aligned with national standards.
- promote the creation of companion materials to the National Science Education Standards that are based on ocean data and research findings (including social and economic fields).
- disseminate ocean-based examples and assessment questions that link to the concept standards in physical and life sciences, geography, history, and other topics and that demonstrate the value of oceans in teaching fundamental concepts.
- promote the development of case studies that stress the interconnected nature of the ocean, land, and atmosphere.
Bridging the Gap between Scientists and Educators

The extent to which the nation is able to enhance ocean awareness, boost student achievement, and prepare future generations of ocean professionals depends not only on the teachers and administrators who guide students on a daily basis, but on the commitment of the research community to prepare students to be responsible, knowledgeable, and competitive members of the global society. The National Research Council has highlighted the need for scientists to be fully engaged in the process of K–12 education, noting that teachers and researchers possess different strengths and resources and that they must be equally dedicated partners committed to improving educational opportunities. As noted above, collaborations are needed in the development of ocean-related curricula, but they are also needed to broaden opportunities for students and teachers to gain first-hand field and research experience.

Teaching the Teachers

Higher expectations for our youth mean higher expectations for teachers as well. Students cannot achieve without instruction by capable teachers who are knowledgeable in the topics being presented (Box 8.1). Thus, improving the quality of science and math education must begin with improving preparation of undergraduates studying to be teachers (referred to as pre-service teachers) and professional development for certified teachers in the classroom (referred to as in-service teachers).

The lack of content knowledge among educators is particularly pervasive on ocean topics. The college science courses taken by pre-service teachers form the basis of their scientific understanding and determine their comfort level in teaching science. Because very few universities provide pre-service teachers exposure to ocean topics, they remain poorly equipped to incorporate ocean-related concepts into their instruction.

Similarly, in-service teachers have few opportunities to learn about ocean concepts and how they can be introduced into lessons. First-hand, in-depth involvement of teachers in research and field experiences is a proven way to connect science teaching and science learning. The ocean research community is brimming with potential for engaging K–12 educators in the excitement and satisfaction of the scientific enterprise, and the nation’s research infrastructure provides significant opportunities for formal preparation, hands-on involvement, and teacher certification. Although several public and private sector programs can provide teachers with research experience in ocean-related topics, access to these programs is quite limited, very few have long term, stable funding, and the different efforts are poorly coordinated.

Box 8.1 The Need for Qualified Science Teachers

A 2000 National Research Council report confirmed that there is a strong relationship between the level of knowledge of science and math teachers and the achievement of their students in these areas. Nevertheless, many science and math classes continue to be taught by unqualified or under-qualified instructors. Thirty-nine percent of public school students taking life science or biology classes in grades 7–12 are taught by teachers without even a minor in these fields, while 56 percent of grade 7–12 students in physical science classes are taught by teachers without even a minor in physics, chemistry, geology, or earth science.

For example, NSF’s Research Experiences for Teachers program could be expanded to include ocean-based opportunities and NOAA could build on successful programs such as Teachers-at-Sea and Ocean Explorer. Federal ocean agencies could also provide incentives for ocean research institutions to establish certificate programs for pre-service and in-service teacher preparation and development, and include graduate courses that cover ocean-related concepts and how they can be applied in teaching. To help broaden the impact of such professional development programs, successful participants should be encouraged to serve as master teachers or resource teachers after a period of evaluation. The American Meteorological Society’s Project Maury and Project Atmosphere serve as excellent models for achieving this type of long-term impact.

Despite an abundance of good ideas and successful models (Box 8.2), significant obstacles remain in developing lasting collaborations between ocean scientists and teachers. A 1996 National Research Council report found that researchers do not fully appreciate the roles and responsibilities of teachers, and teachers are not fully aware of the duties and functions of researchers. Further, the existing academic culture can be a deterrent to scientists’ involvement in education and outreach activities. Although most faculty are expected to participate in research, teaching, and service activities, universities typically provide the greatest rewards for successful research, with teaching achievements a distant second, and little if any recognition for community service.

Federal agencies could help bring about a cultural change by providing incentives for universities to raise the visibility and rewards for faculty interactions with educators. Programs such as NSF’s Faculty Early Career Development program and Graduate Teaching Fellows in K–12 Education program address this issue by providing support for involvement in K–12 education among graduate students and young faculty. But the limited size and scope of these programs have restricted their influence.

Effective partnerships between scientists and teachers will require new, long-term arrangements between the academic community and school districts. Large-scale programs such as NSF’s Math and Science Partnership, which funds university scientists to work with teachers in areas such as professional development and curriculum enhancement, are urgently needed. The COSEE and Sea Grant networks could be used to coordinate such programs within the ocean community.

Box 8.2 COOL Professional Development for Teachers

A partnership between the Jacques Cousteau National Estuarine Research Reserve and the Rutgers University Institute of Marine and Coastal Sciences generates a wealth of professional development opportunities designed to engage New Jersey teachers and school administrators in using the ocean to enhance student learning experiences. Programs range from field-based workshops to Web-based instructional modules dubbed the COOL (Coastal Ocean Observation Laboratory) Classroom. This partnership is an example of the type of innovative, relevant, and exciting educational opportunities that can be created when the research and education communities work together to bring the latest advances in ocean research into the classroom.
Recommendation 8-8

Ocean.ED, working with academic institutions and local school districts, should help establish more effective relationships between the research and education communities to expand professional development opportunities for teachers and teacher educators. Specifically, Ocean.ED should:

- provide supplemental grants and other rewards to scientists who partner with teachers and teacher educators to include educational components in their research projects.
- establish a grants program for development and implementation of an enhanced core curriculum in science content that incorporates ocean concepts for pre-service teachers. Applicants should be required to demonstrate collaborations and partnerships among education, science, mathematics, and engineering faculty.

Bringing Oceans and Students Together

Field and laboratory experiments offer a natural avenue for students to gain first-hand exposure to science while developing an awareness of the importance of the ocean. Not all students are near, or able to travel to, the shore, but new ocean research technologies represent a tremendous and virtually untapped avenue to overcome this limitation, allowing students anywhere to be involved in real oceanographic investigations. The same remote-access technologies that make advanced ocean research possible can also help students and teachers participate in collecting, analyzing, and distributing ocean data. The benefits of technological advances for science education can help U.S. students regain their position among the best and brightest in the world.

Enabling students to interact with practicing scientists, even if they are thousands of miles away, can help create a lifelong affinity for learning. Mentoring, from teachers, scientists, or near-peers is a particularly valuable component of successful student-oriented programs.

Box 8.3 Today’s Kids … Tomorrow’s Ocean Professionals

With regular field trips beyond the resources of most educators and school systems, the KidScience program serves as a model for bringing science to students through dynamic, relevant programs broadcast directly into classrooms. Produced cooperatively by the Hawaii Department of Education and Hawaii Public Television, this live, interactive series offers students in grades 4–8 two distinct types of learning opportunities.

Locally broadcast programs demonstrate hands-on lessons that involve students in a range of research activities and allow them to communicate with their on-screen instructor by telephoning or e-mailing questions throughout the broadcast. A more in-depth examination of selected topics takes place during three-part series that are broadcast not only in Hawaii but also in Micronesia and American Samoa and across the continental United States. These series combine live discussions with experts and pre-taped virtual field trips to expose students to topics ranging from “The Underwater Classroom” to “Living on a Volcano.” Students are also engaged in current events involving ocean and coastal environments through discussions of ocean-related policy questions.
Engaging Underrepresented and Underserved Groups
Social, economic, and cultural factors can play an influential role in inhibiting a student’s access to education opportunities, especially science-based opportunities. These factors are typically even stronger among minority students and other groups that have been traditionally underrepresented and underserved in scientific fields, including marine sciences. Repairing this broken link will depend on exposing minority students to ocean-related studies early in their education, continuing that exposure throughout their school years, and demonstrating the possibilities and rewards of a career in ocean-related fields.

Enhancing the appeal and viability of ocean-related careers among traditionally underrepresented and underserved groups will not happen overnight. Such efforts will need to address social and cultural issues and must demonstrate the relevance and importance of the oceans in daily life. As highlighted in testimony before the Commission by Wendy Allen, president of NMEA, success depends on clearly demonstrating cultural connections to the heritage and daily lives of underrepresented groups so that a career in an ocean-related field is seen as viable, socially-responsible, and financially rewarding (Appendix 2).

Recommendation 8–9
Ocean.ED should promote partnerships among government agencies, school districts, institutions of higher learning, aquariums, science centers, museums, and private marine laboratories to develop more opportunities for students to explore the marine environment, both through virtual means and hands-on field, laboratory, and at-sea experiences.

Ocean.ED should ensure that programs for students:
• include a broad range of options, from in-school modules, to accessible after-school activities, daylong field trips, and summer programs.
• acknowledge cultural differences and other aspects of human diversity to expose students and teachers from all cultures and backgrounds to ocean issues.

Investing in Higher Education and the Future Ocean Workforce
Understanding the marine environment and meeting our many ocean-related societal needs will require a well-trained, diverse workforce, adequate in number, with expertise across a range of ocean-related subjects. In addition to acquiring scientific knowledge and research skills, the ocean leaders of the future need to engage interdisciplinary and multidisciplinary perspectives, use multiple contexts in solving problems, and communicate complex ideas to a broad audience. Fostering these critical abilities requires diversification of learning opportunities.

Stagnant or declining federal support for ocean-related research has eroded the ability of academic institutions to maintain certain educational programs, limiting the breadth of educational opportunities. For example, there are few vibrant schools of fishery science and management, though advances in these areas are critical to successful fishery management efforts. Likewise, strong graduate educational efforts in marine taxonomy and biodiversity are very limited, though understanding of these topics is a baseline for ensuring scientifically sound management decisions.

The graying trend in the existing federal and academic ocean workforce adds to the urgency of training new ocean professionals. Projections of federal retirements indicate that just over 30 percent of federal employees will leave the workforce in the next decade. This trend will result in the loss of a great deal of the intellectual power and
creativity that has expanded our understanding and improved management of the marine environment. The nation will require a human resource base capable of building on advances of the past to solve the problems of tomorrow.

The Leadership Void

There is no lead federal agency to assess, nurture, and maintain a strong ocean workforce, both in numbers and in diversity of skills. As the nation's primary civilian ocean agency, NOAA would seem a natural candidate to fill this void. However, NOAA's involvement in education, which has been limited to grant-specific research assistantships and a handful of policy and industry fellowships, falls far short of the effort needed on a national scale. NOAA provided only 18 percent of federal support for ocean-related academic research programs (on which much graduate student funding depends) for the 2001–2 academic year. This level of support is inadequate given that NOAA is a major employer of ocean professionals. The approach is markedly different at the National Institutes of Health, which works hard to ensure a sufficient and knowledgeable workforce for the health sciences community.

The Navy, predominantly through ONR, has traditionally been a leader in supporting ocean-related graduate student education. However, Navy funding for academic-based basic ocean research has been on a downward trend. This leaves NSF as the primary supporter of ocean science graduate students, providing 36 percent of federal support for ocean-related academic research programs for the 2001–2 academic year. While education is a part of NSF's mission, the agency's proposal-driven approach is not ideally suited to meet identified national needs for ocean-related education and training. Furthermore, NSF graduate student support tends to emphasize the natural sciences and engineering, a component—but not all—of the ocean workforce. (A detailed overview of federal agency funding for academic ocean science programs can be found in Appendix 4.)

Academic institutions also have a responsibility to help meet future ocean-related workforce needs. Redesigned graduate programs can expose students to aspects of the marine field outside their primary focus, for example, by exposing science students to policy issues and policy students to the scientific process. Ocean-related graduate programs are well-situated to develop cross-disciplinary opportunities, partnering with other university programs (such as education, public policy, economics, communications, resource management, and engineering), or with federal facilities and private laboratories.

Drawing Students into the Field

The ocean community must compete with countless other professions in attracting the talent it needs. Success lies, in part, in promoting marine-related career opportunities among undergraduate students from a broad range of disciplines. First-hand experiences in marine fields can be influential in demonstrating the possibilities and rewards of an ocean-related career. Intellectually stimulating and financially attractive options for pursuing graduate studies in an ocean-related field must follow, so a student's developing interest in ocean studies is not overshadowed by other professions that actively pursue, encourage, and support their future leaders.

Ocean sciences have another potentially important role to play at the undergraduate level. Marine science courses can be attractive options for non-science majors who need to fulfill science requirements for graduation, presenting an excellent opportunity to raise general ocean awareness.
Recommendation 8–10
The National Oceanic and Atmospheric Administration, National Science Foundation, and Office of Naval Research should support colleges and universities in promoting introductory ocean and coastal science and engineering courses to expose a wider cross-section of students, including non-science majors, to these subjects. These agencies should support this effort by:

- providing small grants to assist in course development, equipment purchases, faculty support, and field experiences.
- fostering collaborations between institutions with graduate ocean programs and others with a primarily undergraduate population.

Expanding Graduate Educational Opportunities

How students are funded significantly influences their opportunities to develop research, engineering, teaching, management, and other skills. It can also limit or expand their awareness of the career paths and job sectors available to them. More than 55 percent of ocean sciences graduate students are supported by research assistantships, making the ocean community more dependent on this type of support than other related fields (Appendix 4). For example, in the life and physical sciences, students are supported through a more diversified combination of opportunities including traineeships, fellowships, and teaching assistantships (Appendix 4).

Research assistantships are important for budding scientists and should continue as a major student support mechanism. However, an over-reliance on research assistantships limits students’ exposure to cross-disciplinary experiences that could better prepare them for addressing complex marine-related issues.

Fellowships allow top students to select a program best suited to their needs and interests. Traineeships allow graduate students to be assembled in a highly qualified research and learning environment. Student opportunities can also be diversified by getting both funding agencies and academic institutions to redefine what graduate research assistants are allowed to do. The NSF Integrative Graduate Education and Research Training program is an example of one attempt to move in this direction.

Because ocean science is fundamentally interdisciplinary, well-trained ocean professionals can find excellent careers in many areas including engineering, economics, education, law, management, policy, science, and technology. Individuals considering or pursuing graduate studies in a marine field should be aware of these options, and exploration of nontraditional marine areas should be encouraged. It is equally important for professionals educated and trained in other fields to be aware of the exciting opportunities available to them in marine-related fields.

Complementing the need to create an adequate workforce is the need to sustain and enhance that workforce through professional development and continuing education opportunities. Learning does not stop once the formal education process is complete; ocean professionals in all fields must be provided the means and liberty to continually build upon their knowledge and skills throughout their careers. A number of these training programs already exist and could be built on and expanded. For example, the National Estuarine Research Reserve System (NERRS) Coastal Training Program provides up-to-date scientific information and skill-building opportunities for coastal decision makers. This program focuses on issues such as coastal habitat conservation and restoration, biodiversity, water quality, and sustainable resource management, and targets a range of audiences, including land use planners, elected officials, regulators, land developers, community groups, environmental non-profits, and coastal businesses.
Recommendation 8–11
Ocean.ED should guide and promote the development of the nation’s ocean-related workforce. In particular, Ocean.ED should:

- promote student support, diversified educational opportunities, and investment in innovative approaches to graduate education that prepare students for a broad range of careers.
- encourage, with targeted federal support, graduate departments of ocean sciences and engineering to experiment with new or redesigned programs that emphasize cross-disciplinary courses of study.
- set targets for federal stipends for ocean-related education to be competitive with other disciplines.

Workforce Needs

As discussed above, most graduate ocean education has been linked to faculty research, an approach that pays little or no attention to the needs of the ocean-related workforce—which are poorly understood—or to national demographics, which are better understood but not well integrated into workforce preparation.

While the U.S. Department of Labor plays a role in assessing workforce status and trends, currently there is no data collection or analysis of ocean-related workforce supply or demand, including requirements for the maritime transportation system. Only sketchy information is available on how many new ocean professionals are being produced and in what fields. In a recent survey of ocean-related higher education programs, 26 percent maintained no data on initial employment of recent graduates (Appendix 4). Even less effort has been put into projecting the types of professionals the ocean community will require in the future.

Federal ocean funding agencies will continue to operate in the dark without improved information on the status of the ocean-related workforce, with periodic follow-up to determine whether workforce needs are being met. Some of the necessary data can be found through the Department of Labor, NSF, and others, but additional analyses and a tracking mechanism will be needed. The survey of academic institutions conducted by the Consortium for Oceanographic Research and Education can help in developing this tracking mechanism (Appendix 4).

Recommendation 8–12
The National Oceanic and Atmospheric Administration and the U.S. Department of Labor should establish a national ocean workforce database and compile an annual report for the National Ocean Council on trends in ocean-related human resource development and needs. This effort should include an information clearinghouse to facilitate career decisions, provide access to career guidance, and enable employers, guidance counselors, and others to develop effective strategies to attract students to ocean-related careers. Ocean.ED should organize an ocean workforce summit every five years to address the alignment of ocean education with workforce needs.

Specific Federal Responsibilities

Each federal agency with ocean-related responsibilities—most notably NOAA, NSF, and ONR—has a responsibility to help ensure a vibrant ocean-related workforce. NOAA should be particularly concerned with creating a pipeline of students in areas it identifies to be of critical importance to the agency and the nation. Opportunities should include both research experiences, especially exposure to mission-oriented research, and experi-
ences beyond the research arena. Student exposure can begin as early as the senior level in high school, continuing through postdoctoral education. A range of programs will help identify and recruit the best and brightest to careers in marine-related fields and ensure a continuing source of essential human capital.

At the graduate and postdoctoral levels, NOAA can support fellowships and trainee-
ships that emphasize interdisciplinary approaches and real-world experiences beyond the university setting, such as those provided by the Dean John A. Knauss Marine Policy Fellowship, the NOAA Coastal Services Center Coastal Management Fellowship, the NERRS Graduate Research Fellowship Program, Smithsonian graduate and post-graduate fellowships, and the American Association for the Advancement of Science Fellowship. NSF's Integrative Graduate Education and Research Training program and NASA trainee-
ships and fellowships offer other models. Within NOAA, Sea Grant plays a critical role in providing graduate-level education opportunities, a role which could be enhanced as part of an expansion of that program.

The Navy has had success in partnering directly with academic institutions, providing support for distinguished scientists who develop laboratories and educate students in areas of fundamental interest to the Navy. NOAA could establish similar competitive marine studies professorships at leading institutions of higher education with a demonstrated commitment to marine programs. Disciplines of interest to NOAA for such professorships might include fisheries science, climate research, atmospheric studies, and marine resource economics, policy, aquaculture, genomics, education, and ecosystem studies. The intent would be to create a cadre of distinguished NOAA endowed chairs at universities around the nation. In a complementary effort, NOAA should consider establishing competitive national awards to recognize excellent teaching in marine-related topics.

Recommendation 8–13

The National Oceanic and Atmospheric Administration (NOAA) should establish a national ocean education and training program, patterned after the National Institutes of Health model, within its Office of Education and Sustainable Development to provide diverse and innovative ocean-related education opportunities at the undergraduate, graduate, and postdoctoral levels.

Specifically, NOAA should:

- offer students at the undergraduate level experiential learning opportunities in a range of marine fields through summer internships or similar mechanisms.
- support fellowships and traineeships at the graduate and postdoctoral levels that emphasize interdisciplinary approaches and real-world experiences outside the university setting, especially in areas critical to the agency’s mission.
- support professorships in fields of particular interest to NOAA.

At NSF, higher education is an explicit part of its mission. At the undergraduate level, NSF's Research Experience for Undergraduates program could be expanded to include more marine-related experiences. At the graduate and postdoctoral levels, opportunities could include fellowships that encourage cross-disciplinary research, interdisciplinary traineeships, and master's degree fellowships. Programs such as NSF's Integrative Graduate Education and Research Training program, Centers for Learning and Teaching, and Graduate Teaching Fellows in K–12 Education could be enhanced and broadened to attract other federal sponsors. Finally, NSF cooperative programs are well-positioned to strengthen support at universities, museums, and other institutions for educational opportunities related to biodiversity.
Recommendation 8–14
The National Science Foundation’s Directorates for Geosciences, Biological Sciences, and Education and Human Resources should develop cooperative programs to provide diverse, multidisciplinary educational opportunities at the undergraduate, graduate, and postdoctoral levels in a range of ocean-related fields.

The success of the Navy depends on a well-developed understanding of the environment in which it operates. Understanding the ocean environment—including the atmosphere above it, the seafloor beneath it, and the coastlines that encircle it—will always be a core naval requirement. Thus, the Navy should continue its historic role in supporting the education of future generations of ocean professionals.

Recommendation 8–15
The Office of Naval Research (ONR) should reinvigorate its support of graduate education in ocean sciences and engineering. This could be accomplished, in part, by increasing the number of ocean-related awards made under ONR’s National Defense Science and Engineering Graduate Fellowship Program.

Strength through Diversity
Human diversity has the power to enrich and invigorate the ocean community with a range of perspectives critical to the overall capabilities of the ocean workforce. Science and management professionals who are part of a particular cultural or ethnic community can help to engender understanding of marine-related issues within their communities and can serve as role models to help young people envision themselves as future ocean professionals. Nearly 90 percent of students enrolled in U.S. ocean-related graduate programs during the fall of 2001, however, were identified as white.

While a number of minority-serving institutions (MSIs) offer degree-granting programs in marine sciences, only the University of Puerto Rico offers a Ph.D.-level program. This could be a contributing factor to the lack of minority representation among ocean professionals with advanced degrees. In the United States, historically black colleges and universities enroll only 13 percent of all African American college students, but they award 40 percent of the science degrees earned by African Americans. There is great potential for building on this success and developing more avenues for underrepresented and underserved students to pursue advanced ocean-related studies. Member schools of the Hispanic Association of Colleges and Universities provide a similar opportunity for engaging Hispanic students in marine-related careers, as do tribal colleges and universities in the American Indian Higher Education Consortium.

One avenue that should be explored is support for collaborative programs that partner MSIs with research institutions to develop more graduate-level marine science programs at MSIs. One successful existing program that could provide opportunities for additional underrepresented and underserved students is NOAAs Educational Partnership Program with MSIs. A central element in this and similar programs is the establishment of links between students and minority ocean professionals through mentoring programs.

While efforts should be made to expand opportunities for marine-related study at MSIs, all institutions need to provide an environment of cultural acceptance and instructional dedication to move students from diverse backgrounds forward academically. As part of the effort to strengthen formal and informal education efforts, additional opportunities need to be created for participation by traditionally underrepresented and underserved groups.
Recommendation 8–16

The National Oceanic and Atmospheric Administration, National Science Foundation, Office of Naval Research, and National Aeronautics and Space Administration should encourage increased participation of traditionally underrepresented and underserved groups in the ocean-related workforce. Ocean.ED should coordinate among these agencies and institutions of higher learning.

Specifically, Ocean.ED should:

- ensure that the appropriate mix of programs and opportunities exists to provide underrepresented and underserved groups ample access to and support for pursuing ocean-related graduate education, including opportunities at Minority Serving Institutions and other universities and oceanographic institutions.
- ensure that programs are established through a competitive process and evaluated for performance on an annual basis.

Bringing the Ocean and Coasts to All Americans

While the public has a general sense that the ocean is important, most people lack a full awareness and understanding of the ocean, its health, the benefits it provides, and its connection to the nation’s collective well-being (Box 8.4). This information gap is a significant obstacle in achieving responsible use of our nation’s ocean and coastal resources, empowering public involvement in ocean-related decision making, and realizing support for wise investments in, and management of, ocean-related activities.

Although a healthy marine environment is a prerequisite for our continued enjoyment of ocean and coastal benefits, a recent survey shows that many people consider the health of the marine environment a second-tier environmental concern, overshadowed by the problems of air and water pollution and toxic waste disposal. The American public apparently feels little sense of urgency for safeguarding our coastal and ocean resources. In addition, while most Americans realize the marine environment can be degraded as a result of human activities, they are less clear about the role individuals play in contributing to this damage. Nearly half the public mistakenly agrees with the statement, “What I do in my lifetime doesn’t impact ocean health much at all” (Appendix 4).

Multifaceted Approaches

Such public misinformation points to the urgent need for raising awareness about the oceans. This herculean task is currently being undertaken by a number of informal education facilities and programs, publicly and privately funded, struggling to make headway in advancing public knowledge about the marine environment.

The strength of the informal education community lies in the diversity of methods used. The varied formats, styles of presentation, and depth of detail, coupled with wide-ranging modes of access, result in an array of opportunities for reaching the public.

Box 8.4 The Ocean Information Gap

According to a recent national survey on ocean awareness, nearly 60 percent of Americans do not realize that more plants and animals live in the oceans than on the land; 75 percent mistakenly believe that forests, rather than oceans, are the planet’s major source of oxygen; and 40 percent are unaware of the essential role oceans play in regulating climate.¹

Informal education facilities such as aquariums, science centers, zoos, museums, and marine parks, along with other outlets such as national magazines and television programs, local newscasts, traveling exhibits, and Internet sites, are all important contributors to the domain of public education.

U.S. aquariums, zoos, and other informal education centers welcome over 135 million visitors a year to their on-site displays and bring information to millions of additional guests through community outreach efforts. These informal education centers endeavor to be equal opportunity teachers by employing mechanisms and instituting programs to reach traditionally underrepresented and underserved groups. Natural history museums and science centers also provide ocean-related science and cultural educational experiences to millions each year. For example, the National Museum of Natural History in Washington, D.C. just initiated a long-term Ocean Science Initiative. As part of this initiative, the museum, in partnership with NOAA, is developing a major new Ocean Hall. Aquariums, zoos, museums, and other informal facilities have a reputation for delivering accurate information about the marine environment and represent a powerful voice in the realm of public education. A recent public poll revealed that aquariums are a highly trusted source of environmental information.

In addition to informal education facilities, federal ocean-related agencies conduct public education and outreach. Opportunities range from first-hand exploration of the marine environment at a variety of marine sanctuaries, parks, and reserves to interactive Web sites that follow oceanographic expeditions in real time, to materials that translate scientific discoveries and relate them to everyday life (Box 8.6). Federal agencies also support informal education by funding projects that aim to increase public understanding of scientific, cultural, and environmental issues. (Additional information on a sampling of programs and activities offered by informal education facilities and federal agencies is provided in Appendix 5.)

Coordinating Messages

While the many existing informal education efforts have made progress, they have not yielded the level of national consciousness needed to cultivate a broad sense of responsibility toward the use and conservation of the nation’s marine resources. As discussed earlier in this chapter, lack of leadership and coordination, in both message and action, and lack of funding are usually cited as the most significant barriers to realizing the full potential of informal education efforts.

Although all ocean-related informal education efforts have a common goal, they generally lack the coordination, connectivity, and leveraging of resources needed to achieve the greatest long-term impact. While nascent efforts are working to bring about
better collaboration among aquariums and other informal education facilities, additional leadership will be needed to realize a focused and coordinated informal education network for ocean and coastal information. Government agencies, aquariums, academia, professional societies, and all others involved in public education must play a role in coordinating messages on the importance and significance of oceans. Tourism providers are often the best messengers to communicate with visitors participating in ocean and coastal recreation. A team approach will increase the longevity, breadth of delivery, and integration of messages coming from many sources.

Coordination is also needed between the informal and K–12 education communities. Informal education efforts can provide information that is used to develop K–12 classroom lessons and activities. While many aquariums and museums now routinely create programs that are linked to state and local education standards, a stronger connection between informal and K–12 education efforts is needed, and the requirements of K–12 educators and students should be a constant consideration.

Funding for ocean-related informal education is a major concern. At the federal level, there is no dedicated source of funding for ocean-related informal education initiatives. While NSF, EPA, and other federal agencies support some informal education efforts, the programs are relatively small and do not focus on ocean-related activities.

The kinds of aquarium and science center exhibits most likely to have significant impacts are costly to assemble. Without outside public or private support, aquariums and similar facilities are often forced to focus on those topics that draw the greatest attendance, generally marine biology rather than the chemistry, physics, or geology of the marine environment. Reliable support would allow facilities to present a more complete picture of the marine environment and even illustrate the application of scientific understanding in managing ocean resources.

Broad Outreach

Public information needs are as varied as our population is diverse. Some individuals will benefit from detailed information on how specific issues directly affect their jobs or business. Others may need information presented in a language and media tailored to their culture and community. Still others seek advice on how to alter their own activities to support responsible ocean stewardship. This information is as critical for those who live in the heartland as for those who live near the shore.

Informal education requires outreach programs, in partnership with local communities, to make contact with individuals where they live and work, regarding issues that affect how they live and work, in a style that speaks to them (Box 8.7). Local organizations, including youth, senior, and other community groups, can play a pivotal role. They possess knowledge of the community and experience implementing various strategies.
to reach desired outcomes. While federal agencies, state governments, and nongovernmental groups partner with communities on such programs, and should continue to promote participation of traditionally underrepresented and underserved groups, increasing populations and limited resources swamp the ability of these programs to reach all who would benefit from ocean-related information.

Information supplied to the public should be timely and accurate. It should also be supported by a system that allows for follow-up and the acquisition of additional information or guidance. The roles of, and relationships among, scientists, educators, and journalists in translating research results for the public are especially critical. Innovative partnerships with media outlets or industries that deal with the public may offer new means to broaden the visibility of ocean issues and increase public awareness. Informal education facilities and the academic community will need to work closely together to facilitate the rapid transfer and translation of the latest scientific discoveries into publicly accessible displays, materials, and programs.

Information delivered through informal education programs, displays, and activities is most effective when it is linked to the positive associations people have with the oceans. Information should be presented in terms of the ocean’s role in the Earth system as a whole, including the physical, chemical, and geological aspects of the marine environment, and interactions with humans.

Recommendation 8–17

Ocean.ED, working with other appropriate entities, should promote existing mechanisms and establish new approaches for developing and delivering relevant, accessible information and outreach programs that enhance community education.

In particular, Ocean.ED should:

- work with ocean-related informal education initiatives to better engage underrepresented and underserved populations and communities by using mechanisms, materials, and language familiar to and accepted by them.
- work with informal education facilities to develop the capacity to quickly prepare and deliver new science-based materials and programs to the public and the media to capture immediate interest in noteworthy advances in ocean science.
- engage industry, the commercial sector, and the media in community education and stewardship programs.

Box 8.7 Equal Opportunity Educators

The Splash Zone program at the Monterey Bay Aquarium is one example of an informal education effort designed to reach and engage underserved members of the community. The program was developed in part to enhance Hispanic attendance, membership, and participation at the aquarium, which were far below their proportion in the Monterey area population.

The Splash Zone exhibit on coral reef ecosystems and the rocky shore forms the basis for additional educational activities and materials. Working with local Head Start offices, the aquarium is better able to reach and focus on Hispanic children and their families. The knowledge gained during visits to the aquarium is continued in the classroom. Appropriate activities and curricula are demonstrated to Head Start and other kindergarten through second grade educators during a week-long Teachers Institute. In addition, the program includes outreach to the schools through bilingual aquarium educators and family science nights in the neighborhood community center.

To continue the educational experience of the Splash Zone program, families can take advantage of the Shelf to Shore program. This complementary effort, conducted in cooperation with local libraries in largely Hispanic communities, allows individuals to check out a free aquarium pass for the entire family as easily as they would check out a book.
References

12 Ibid.

PART 4

LIVING ON THE EDGE: ECONOMIC GROWTH AND RESOURCE CONSERVATION ALONG THE COAST

CHAPTER 9
MANAGING COASTS AND THEIR WATERSHEDS ... 150

CHAPTER 10
GUARDING PEOPLE AND PROPERTY AGAINST NATURAL HAZARDS 162

CHAPTER 11
CONSERVING AND RESTORING COASTAL HABITAT ... 170

CHAPTER 12
MANAGING SEDIMENT AND SHORELINES ... 180

CHAPTER 13
SUPPORTING MARINE COMMERCE AND TRANSPORTATION 192
The pressures of continuing growth are acutely felt in coastal areas. While largely attributable to activities taking place at the coast, some pressures originate hundreds of miles away in inland watersheds. To more effectively manage coasts, states need a stronger capacity to plan for and guide growth—one that incorporates a watershed approach to govern coastal and ocean resources. In addition, to assist states in such development and support the move toward an ecosystem-based management approach, federal area-based coastal programs should be consolidated to better integrate and capitalize on the strengths of each. Finally, to reach the goal of economically and environmentally sustainable development, changes should be made to federal programs that currently encourage inappropriate growth in fragile or hazard-prone areas.

Attracting Crowds, Creating Opportunities

While coastal watershed counties comprise less than 25 percent of the land area in the United States, they are home to more than 52 percent of the total U.S. population (Appendix C). A study of coastal population trends predicts average increases of 3,600 people a day moving to coastal counties, reaching a total population of 165 million by 2015.¹ These figures do not include the 180 million people who visit the coast every year.²

Population growth and tourism bring many benefits to coastal communities, including new jobs and businesses and enhanced educational opportunities. Burgeoning industries associated with tourism and recreation in coastal areas (such as hotels, resorts, restaurants, fishing and dive stores, vacation housing, marinas, and other retail businesses) have created one of the nation's largest and fastest-growing economic forces (Appendix C).

Implications of Growth

The popularity of ocean and coastal areas intensifies pressures on these environments, creating a number of challenges for managers and decision makers. Increased development puts more people and property at risk from coastal hazards (Chapter 10). Every year, millions of dollars are spent replenishing sand at the nation's beaches and protecting
coastal property from storms, waves, and erosion. Rising sea level exacerbates the damage to beaches and wetlands. The growth in development, coupled with greater protection for sensitive coastal habitats, also makes it increasingly difficult to maintain public access to beaches and coastal waters for swimming, fishing, and boating.

Poorly planned growth reduces and fragments fish and wildlife habitat (Chapter 11) and can alter sedimentation rates and flows (Chapter 12). It is also well understood that growth in coastal areas contributes to water pollution (Chapter 14), with impacts on fishing, swimming, and many other recreational and economic activities. One of the most serious impacts on ocean and coastal areas is the increasing amount of polluted runoff from urban, suburban, and agricultural areas, which is exacerbated by increases in impervious surfaces, such as roads, parking lots, sidewalks, and rooftops. Some evidence indicates that ecosystem health may be seriously impaired when the impervious area in a watershed reaches 10 percent, particularly in the absence of mitigating factors, such as a high percentage of wetlands or forest cover in the watershed, or urban stormwater best management practices such as riparian buffers along streams. If current coastal growth trends continue, many more watersheds will cross the 10 percent threshold over the next twenty-five years.

Although the rate of population growth in coastal counties is not greater than in other areas of the country, the sheer number of people being added to fixed coastal land areas, combined with the fragile nature of coastal resources, create disproportionate impacts (Appendix C). In many cases, these impacts are destroying the very qualities that draw people to the coast.

Box 9.1 Coastal Activities Are Big Business

Across the country, more than 89 million people a year participate in marine-related recreation, such as swimming, scuba diving, surfing, motor boating, sailing, kayaking, and wildlife viewing. In just four South Florida coastal counties, recreational diving, fishing, and ocean-watching activities generate $4.4 billion in local sales and almost $2 billion in local income annually and more than 2.9 million people visit the Florida Keys each year. During the summer of 2000, beach activities in Los Angeles and Orange counties stimulated an estimated $1 billion in spending. The Hawaiian Islands and many U.S. island territories are particularly dependent on tourism for their economic health. Hawaii alone attracts some 7 million tourists each year. In 2001, over 8 million people took to the sea aboard cruise ships, and approximately 135 million people visited the nation’s aquariums and zoos. Although golf and tennis are recognized as major U.S. industries, it is estimated that more Americans participate in recreational fishing than in both of these sports combined.

The pattern of coastal growth—often in scattered and unplanned clusters of homes and businesses—is also significant. Urban sprawl increases the need for infrastructure such as roads, bridges, and sewers, degrading the coastal environment while making fragile or hazard-prone areas more accessible to development. Because of the connections between coastal and upland areas, development and sprawl that occur deep within the nation’s watersheds also affect coastal resources.

Strengthening Coastal Planning and Management

Multi-layered Decision Making

A complex combination of individuals and institutions at all levels of government make decisions that cumulatively affect the nation’s ocean and coastal areas. These institutional processes determine where to build infrastructure, encourage commerce, extract natural resources, dispose of wastes, and protect or restore environmental attributes.

Many of the decisions that affect the nation’s coastal areas are made by local governments through land use planning, zoning, subdivision controls, and capital improvement plans. Local decisions are shaped in turn by state policies and requirements. Some coastal states have developed statewide goals and policies for transportation, land use, and natural resource protection, with a few states putting specific emphasis on coastal resources. Recognizing that sprawling patterns of growth are not sustainable, several coastal states have instituted programs intended to manage growth, including Maine, Oregon, Florida, Washington, and Maryland. By applying a variety of land use planning tools, techniques, and strategies, these programs attempt to steer growth toward existing population centers and away from fragile natural areas (Box 9.2).

Existing federal, state, tribal, and local institutional processes have made substantial progress in managing activities that affect the nation’s coastal resources. However, local and state governments continue to face a number of obstacles in planning and managing the cumulative impacts of growth, including: disincentives to long-term planning due to the pressures of short political and business cycles; lack of shared values or political will; inadequate information, including locally relevant socioeconomic indicators; difficulty in addressing problems that cross multiple jurisdictions including upland areas; insufficient resources dedicated to protecting coastal ecosystems; and multiple institutions at different levels of government that address isolated aspects of connected problems. Improved policies for managing growth in coastal areas will be essential in protecting and restoring the natural resources that sustain the character and economies of coastal communities.

Although most coastal management activities take place at state and local levels, coastal decision making is also influenced by federal actions, including funding decisions and standard setting. Of the many federal programs that provide guidance and support for...
Managing Coasts and Their Watersheds

State and local decision making, some address the management of activities and resources within designated geographic areas, while others address the management of specific resources, such as fisheries or marine mammals.

Federal Area-based Coastal Programs

The major area-based coastal programs include the Coastal Zone Management Program, National Estuarine Research Reserve System, and National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA); the National Estuary Program of the U.S. Environmental Protection Agency (EPA); and the Coastal Program and Coastal Barrier Resources System of the U.S. Fish and Wildlife Service (USFWS). (These programs and others are also summarized in Appendix D.) In addition to their shared geographic focus, these programs are all implemented at the state and local level and highlight the importance of science, research, education, and outreach in improving the stewardship of ocean and coastal environments.

Coastal Zone Management Program

The Stratton Commission’s 1969 report called for a national program to address development and environmental issues in coastal areas and to enhance the capacity of state and local governments to manage activities that affect these areas. Three years after that report’s release, Congress enacted the Coastal Zone Management Act (CZMA), the federal government’s principal tool for fostering comprehensive coastal management. The CZMA established a unique partnership between federal and coastal state governments, the primary goal of which is to balance the conservation of the coastal environment with the responsible development of economic and cultural interests.

Administered by NOAA, the CZMA provides two incentives for coastal states to voluntarily develop and conduct coastal management programs: federal grants and federal consistency authority. Federal consistency provisions require federal activities affecting the land, water, or natural resources of a state’s coastal zone to be consistent with the enforceable policies specified in that state’s approved coastal management program. (See Box 9.4 for an explanation of federal consistency.)

Currently, thirty-four of thirty-five coastal states and territories have coastal programs in place, covering 99 percent of the nation’s marine and Great Lakes coastlines. The tools, assistance, and resources provided by the CZMA have enabled states and territories to increase their management capacity and improve decision making to enhance the condition of their coastal areas. These programs facilitate public access to ocean and coastal areas, protect people and property from coastal hazards, conserve critical natural resources, and stimulate economic development by revitalizing urban waterways and promoting coastal-dependent industries. The CZMA has also enhanced communication and coordination between federal and state governments and between state and local governments.

Under the CZMA, participating states are given the flexibility to design coastal management programs that address their individual priorities and the programs are approved as long as they meet certain minimum national guidelines. This flexibility has been hailed by many as the CZMA’s greatest virtue and by others as its most serious shortcoming.

State-by-state implementation has resulted in wide variations in the strength and scope of state coastal management programs. NOAA has few options to ensure that the programs are meeting national guidelines other than withholding funding or withdrawing program approval. No state program has ever been disapproved. The geographic boundaries of state coastal management programs also differ greatly. The CZMA defines the coastal zone—the area subject to the enforceable policies of a state’s program—as stretching from the seaward boundary of state ocean waters (generally 3 nautical miles) to the inland extent deemed necessary by each state to manage activities that affect its coastal resources. Individual state discretion regarding the landward reach of its coastal zone has

The Coastal Zone Management Act has helped immensely over the past 20 years, and I believe it still serves as the model, but new information on policy setting and an influx of financial resources are needed.

—Sarah Cooksey, Administrator, Delaware Coastal Program, testimony to the Commission, January 2002
resulted in major variations. For example, Florida, Delaware, Rhode Island, and Hawaii include the entire state in their coastal zones, while the inland boundary of California’s coastal management program varies from a few hundred feet in urban areas to several miles in rural locales.

The CZMA can be strengthened by developing strong, specific, measurable goals and performance standards that reflect a growing understanding of ocean and coastal environments, the basic tenets of ecosystem-based management, and the need to manage growth in regions under pressure from coastal development. Other elements of the CZMA also need to be strengthened, including habitat restoration, community hazards planning and management, ocean management, and special area management planning. A large portion of federal support for the states should be linked to program performance, with additional incentives offered to states that perform exceptionally well. In addition, a fallback mechanism is needed to ensure that national goals are realized when a state does not adequately participate or perform.

The landside boundaries of state coastal management programs also need to be reconsidered. At a minimum, each state should set the inland extent of its coastal zone based on the boundaries of coastal watersheds (discussed in Chapter 1 and Box 9.3). In establishing new management areas, it is necessary for state programs to consider additional factors such as large or growing population centers, areas of considerable land use, and particularly sensitive natural resources, such as wetlands. Social and natural resource assessment and planning at the watershed scale should become a high priority in each state’s program.

Funding for CZMA implementation remains a significant concern, having been capped at $2 million per coastal state since 1992. This level hampers program implementation, limiting the states’ ability to effectively carry out important program functions or expand to include coastal watersheds.

Recommendation 9–1

Congress should reauthorize the Coastal Zone Management Act (CZMA) to strengthen the planning and coordination capabilities of coastal states and enable them to incorporate a coastal watershed focus and more effectively manage growth. Amendments should include requirements for resource assessments, the development of measurable goals and performance measures, improved program evaluations, incentives for good performance and disincentives for inaction, and expanded boundaries that include coastal watersheds.

Specifically, CZMA amendments should address the following issues:

- **resource assessments**—State coastal management programs should provide for comprehensive periodic assessments of the state’s natural, cultural, and economic coastal resources. These assessments will be critical in the development of broader regional ecosystem assessments, as recommended in Chapter 5.
• **goals**—State coastal management programs should develop measurable goals based on coastal resource assessments that are consistent with national and regional goals. State coastal programs should work with local governments, watershed groups, nongovernmental organizations, and other regional entities, including regional ocean councils, to develop these goals.

• **performance measures**—State coastal management programs should develop performance measures to monitor their progress toward achieving national, regional, and state goals.

• **evaluations**—State coastal management programs should continue to undergo periodic performance evaluations by the National Oceanic and Atmospheric Administration. In addition to the existing evaluation criteria, the performance measures developed by state programs should also be reviewed. The public, representatives of watershed groups, and applicable federal program representatives should participate in these program evaluations.

• **incentives**—Existing incentives for state participation—federal funding and federal consistency authority—should remain, but a substantial portion of the federal funding received by each state should be based on performance. Incentives should be offered to reward exceptional accomplishments, and disincentives should be applied to state coastal management programs that are not making satisfactory progress in achieving program goals.

• **boundaries**—Coastal states should extend the landward side of their coastal zone boundaries to encompass coastal watersheds. Mechanisms should also be established for coordinating with watershed management groups outside of a state’s designated coastal zone boundary.

Coastal Barrier Resources System
The Coastal Barrier Resources Act established the John H. Chafee Coastal Barrier Resources System in 1982 to minimize the loss of human life, wasteful federal expenditures, and damage to fish, wildlife, and other natural resources associated with coastal barriers, such as barrier islands. Through this program, which is administered by USFWS, the federal government discourages development on designated coastal barriers in the Atlantic and Gulf coasts, Puerto Rico, the U.S. Virgin Islands, and the Great Lakes by restricting certain federal assistance, including flood insurance coverage, loans, funding for U.S. Army Corps of Engineers development projects, and construction of sewer systems, water supply systems, and transportation infrastructure. Nearly 1.3 million acres of land, wetlands, and water along the East Coast, Great Lakes, and Gulf of Mexico are part of the “full system unit,” with “otherwise protected areas” covering an additional 1.8 million acres of coastal barriers already held for conservation or recreational purposes. The program does not ban development in these areas; rather, it creates disincentives by denying federal subsidies and imposing the full costs of development on the developer or property owner.

National Estuarine Research Reserve System
The CZMA established the National Estuarine Sanctuaries Program in 1972 for the purpose of creating “natural field laboratories in which to study and gather data on the natural and human processes occurring within the estuaries of the coastal zone.” That program evolved into NOAA’s National Estuarine Research Reserve System (NERRS), which provides funds to states for acquiring estuarine areas and developing and operating research facilities and educational and professional development programs. The NERRS program currently includes twenty-six reserves.

National Marine Sanctuary Program
In 1972, one hundred years after the first national park was created, a similar commitment was made to preserving marine treasures by establishing the National Marine Sanctuary Program within NOAA. Since then, thirteen national marine sanctuaries have been desig-
nated, representing a variety of ocean environments. The mission of the program is to serve as the trustee for these areas and to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy. Sanctuaries are designated for many objectives, ranging from protecting the breeding and calving grounds of humpback whales to preserving the remains of historic shipwrecks.

National Estuary Program

Created by the 1987 amendments to the Clean Water Act, the National Estuary Program (NEP) was established to improve the quality of estuaries of national importance. EPA administers the program, and provides funds and technical assistance to local stakeholders to develop plans for attaining or maintaining water quality in designated estuaries. The program requires stakeholders to develop a comprehensive conservation and management plan that includes measures for: protection of public water supplies; protection and propagation of fish, shellfish, and wildlife populations; allowance for recreational activities in and on the water; and control of point and nonpoint sources of pollution that supplements existing pollution control measures. Currently, twenty-eight estuaries are included in the program. In several cases, more than one state participates in a single NEP. In contrast to the CZMA’s broad scope and focus on state and local government decisions throughout the coastal zone, the NEP concentrates on bringing together stakeholders in particular areas that are in or approaching a crisis situation.

The assessment and planning process used by the NEP holds promise for the future of ecosystem-based management. However, the low level of federal funding for the implementation of NEP plans limits their effectiveness, as do the intergovernmental obstacles that arise when an estuary spans multiple states.

Coastal Program of the U.S. Fish and Wildlife Service

Through its Coastal Program, the USFWS undertakes habitat conservation efforts in bays, estuaries, and watersheds along the U.S. coastline, including the Great Lakes. The program targets funding to sixteen high-priority coastal ecosystems, providing assessment and planning tools to identify priority sites for protection and restoration, conserving pristine coastal habitats through voluntary conservation easements and locally initiated land acquisition, and forming partnerships to restore degraded habitat.

Linking Area-based Programs

The area-based programs described above have made significant progress in managing coastal resources in particular locations, working with communities and decision makers in those areas, and fostering improved coordination between different levels of government. However, because these programs generally operate in isolation from one another, they cannot ensure effective management of all ocean and coastal resources or achievement of broad national goals. As NOAA is strengthened through the multi-phased approach described in Chapter 7, consolidation of area-based coastal resource management programs will result in more effective, unified strategies for managing these areas, an improved understanding of the ocean and coastal environment, and a basis for moving toward an ecosystem-based management approach.

Recommendation 9–2

Congress should consolidate area-based coastal management programs in a strengthened National Oceanic and Atmospheric Administration (NOAA), capitalizing on the strengths of each program. At a minimum, this should include bringing together the Coastal Zone Management and National Marine Sanctuary programs and the National Estuarine Research Reserve System, currently administered by NOAA, and additional coastal programs administered by other agencies, including the National Estuary Program, the John H. Chafee Coastal Barrier Resources System, and the U.S. Fish and Wildlife Service Coastal Program.
Other Relevant Federal Programs

In addition to the area-based programs discussed above, a number of other laws significantly affect coastal resources, including the National Environmental Policy Act, Clean Water Act, and Clean Air Act. Programs related to transportation, flood insurance, disaster relief, wetlands permitting, dredging, beach nourishment, shoreline protection, and taxation also exert a profound influence on the coast. While these laws and policies address specific issues, and have each provided societal benefits, in many cases federal activities under their purview have inadvertently led to degradation of coastal environments.

For example, road construction can have negative impacts on coastal areas and resources—including habitat destruction, increased runoff, and encouragement of inappropriate development—that could be mitigated if transportation infrastructure activities were implemented in the context of comprehensive, ecosystem-based goals and plans. Similarly, Federal Emergency Management Agency hazards-related programs may inadvertently encourage development in high-hazard, flood, and erosion areas (Chapter 10), and certain U.S. Army Corps of Engineers beach nourishment and shoreline protection programs can encourage growth in unsuitable areas (Chapters 11 and 12).

Regional coordination of federal agency activities, along with establishment of regional ocean councils and regional ocean information programs, as recommended in Chapter 5, would greatly improve federal project planning and implementation. Enhancing relationships among federal agencies, state coastal resource managers, and all decision makers would also help to ensure compatibility among the many activities that affect ocean and coastal environments.

Recommendation 9–3
The National Ocean Council should recommend changes to federal funding and infrastructure programs to discourage inappropriate growth in fragile or hazard-prone coastal areas and ensure consistency with national, regional, and state goals aimed at achieving economically and environmentally sustainable development.

Linking Coastal and Watershed Management

In recent years there has been a growing interest in watershed management. This approach acknowledges the hydrologic connections between upstream and downstream areas, including surface and groundwater interactions, and considers the cumulative impacts of all activities that take place throughout a watershed.

The environmental and political characteristics of the nation’s watersheds vary tremendously. As a result, watershed management initiatives can differ widely in size and scope. Many watershed groups are formed at the local level by community members concerned about water quality or the health of fish and wildlife populations. Often, these groups work to improve watershed health through partnerships among citizens, industry, interest groups, and government.

The value of a watershed approach was articulated by the National Research Council in a 1999 report: “[w]atersheds as geographic areas are optimal organizing units for dealing with the management of water and closely related resources, but the natural boundaries of watersheds rarely coincide with political jurisdictions and thus they are less useful for political, institutional, and funding purposes. Initiatives and organizations directed at watershed management should be flexible to reflect the reality of these situations.”

The benefits of a watershed focus have been recognized at state, regional, national, and international levels. For example, Oregon has defined watershed groups in law and set up a process for their legal recognition and funding. The New Jersey government includes a Division of Watershed Management that provides coordinated technical, financial, and
In the area of natural resource management, one of the more interesting, innovative, and sometimes contentious features of the nation’s system of federalism is the relationship between the federal government and coastal state governments with respect to the control and shaping of ocean activities in federal waters.

Historically, this relationship has taken on many hues and forms, but its policy and legal aspects have been largely structured over the last three decades by the development of one section of a single law, the so-called federal consistency provision (Section 307 of the Coastal Zone Management Act). As noted earlier in this chapter, the promise of federal consistency was one of two incentives (the other being grant money) Congress provided to encourage state participation in this voluntary program.

In very general terms, it is a promise that federal government actions that are reasonably likely to affect the coastal resources of a state with an approved coastal management program will be consistent with the enforceable policies of that program. Under some circumstances, it is a limited waiver of federal authority in an area—offshore waters seaward of state submerged lands—in which the federal government otherwise exercises full jurisdiction over the management of living and nonliving resources.

The underlying principle of federal consistency represents a key feature of cooperative federalism: the need for federal agencies to adequately consider state coastal management programs by fostering early consultation, cooperation, and coordination before taking an action that is likely to affect the land or water use or natural resources of such state’s coastal zone. It facilitates significant input at the state and local level from those who are closest to the issue and in a position to know the most about their coastal resources.

The process, however, is not one-sided. For states to exercise federal consistency authority, they must submit and receive approval of their coastal management programs from the Secretary of Commerce. Congress established the general criteria for approval of the programs, including a review by other federal agencies before the plans are officially authorized. A core criterion for program approval is whether the management program adequately considers the national interest when planning for and managing the coastal zone, including the siting of facilities (such as energy facilities) that are of greater than local significance.

Once a state has received approval, federal consistency procedures are triggered. Under current practice, states only review federal actions that have reasonably foreseeable coastal effects. There is flexibility in the law to allow agreements between states and federal agencies that can streamline many aspects of program implementation. For example, there may be understandings with respect to classes of activities that do not have coastal effects. Otherwise, the decisions about such effects are made on a case-by-case basis.

There have been disagreements between federal agencies and states on some coastal issues, the more high profile ones largely in the area of offshore oil and gas development. (For a further discussion of this issue, see Chapter 24.) Nevertheless, in general, the federal consistency coordination process has improved federal-state relationships in ocean management. States and local governments have to consider national interests while making their coastal management decisions and federal agencies are directed to adjust their decision making to address the enforceable policies of a state’s coastal management program.

In the event of a disagreement between the state and a federal agency, the agency may proceed with its activity over the state’s objection, but it must show that it is meeting a certain level of consistency. In a separate part of the federal consistency section, the coastal activities of third party applicants for federal licenses or permits are required to be consistent with the state’s program. If the state does not certify that the activities will be consistent, the federal agency shall not grant the license or permit and the proposed action may not go
planning support for twenty watershed management areas within the state. New Jersey also participates, along with Pennsylvania, Delaware, and New York, in the Delaware River Basin Commission, a regional body authorized to manage activities within an area that transcends political boundaries. The Chesapeake Bay Program, the California Bay-Delta Authority (known as CALFED), and the Northwest Power Planning Council are other notable examples of current initiatives that aim to address natural resource issues on a watershed scale. Some existing bi-national watershed initiatives include the Great Lakes Commission, Shared Strategy for Puget Sound, and the Gulf of Maine Council on the Marine Environment.

Federal agencies have also started to adopt a watershed management focus. For example, beginning in the 1990s EPA began to reorient federal and state clean water programs to address certain problems on a watershed basis rather than on a source-by-source or pollutant-by-pollutant basis. As part of that effort, EPA has developed extensive guidance for use by states, territories, tribes, and the public concerning watershed management. Available information includes guiding principles for a watershed approach, innovative funding mechanisms, intergovernmental coordination techniques, and development of training and education materials. EPA also has developed an online Watershed Academy that provides extensive support for watershed groups, including training courses, a catalog of federal funding sources for water protection, a bibliography of technical references, links to over a dozen state watershed management programs, facilitation techniques for development of successful watershed management frameworks, and a compendium of experiences and lessons learned from various watershed initiatives. EPA, the National Resources Conservation Service, U.S. Forest Service, National Park Service, Tennessee Valley Authority, and other federal agencies have also developed extensive guidance on best management practices for use by public and private watershed managers and groups, and the general public.

Some federal grants are now being distributed on a watershed basis. EPA’s Targeted Watershed Grant Program encourages community-based approaches to restore, preserve, and protect the nation’s watersheds through competitive grants to watershed organizations. The Department of Agriculture has chosen high priority watersheds in which agricultural runoff is a major source of pollution as the basis for distributing funds under the new Conservation Security Program’s environmental stewardship program.

As interest in watershed management continues to grow, so does the need for coordination of available information and funding in support of watershed initiatives. Information currently available through individual agency programs would be more useful if it were
consolidated into a central repository and given increased exposure through public outreach and education efforts. Agency funding can also be coordinated to ensure maximum effectiveness. The National Ocean Council and regional ocean councils can play an important role in these coordination efforts.

Recommendation 9–4

Congress should amend the Coastal Zone Management Act, Clean Water Act, and other federal laws, where appropriate, to provide better financial, technical, and institutional support for watershed management initiatives. The National Ocean Council and regional ocean councils should enhance support for coastal watershed initiatives by coordinating agency programs, technical assistance, and funding and by overseeing development of an accessible clearinghouse of information on watershed best management practices.

Linking Coastal and Offshore Management

As discussed in Chapter 6, the growing number of activities that take place in offshore waters calls for a more comprehensive offshore management regime. While the focus of this chapter is on coastal and watershed management, it is important to recognize the strong relationship between the management of onshore and offshore resources. States have long asserted their interests offshore, both by acting as the trustee for public resources in and beneath state waters, and by exerting their responsibilities for activities that take place in federal waters but affect state resources (principally through the CZMA federal consistency provisions, described in Box 9.4). Several states, including Oregon, California, and Hawaii, have developed comprehensive plans to guide ocean activities, resolve conflicts, and anticipate new uses in their waters. Other states, including Florida, Maine, Mississippi, and North Carolina have conducted extensive studies of ocean issues affecting their states. In 2003, Massachusetts launched an ocean planning initiative. Because there is no wall that separates state and federal waters, state planning and management of the waters under their jurisdiction is an important complement to the coordinated offshore management regime called for in Chapter 6.

Increasing Understanding of Coastal Ecosystems

To improve the management of the nation's oceans and coasts, decision makers at all levels will need to gain a better understanding of ecosystems, both how they function and how they are affected by human activities and natural events. The establishment of regional ocean information programs, as recommended in Chapter 5, is one important vehicle for enabling decision makers to better communicate their information needs to the scientific community and ensuring that new information is converted into useful products. Coastal and watershed management activities, and growing efforts to link these two approaches, should provide the information necessary for the public to be responsible stewards of the nation's oceans, coasts, and watersheds.
References

Rising populations and poorly planned development in coastal areas are increasing the vulnerability of people and property to storms, hurricanes, flooding, shoreline erosion, tornadoes, tsunamis, and earthquakes. In addition, climate change may lead to more frequent storms and sea-level rise, both of which increase coastal susceptibility. Not only can natural hazards have devastating impacts on people and property, but they may also have deleterious effects on the environment, particularly sensitive habitats.

To lessen the threat from natural hazards, the federal government should coordinate the efforts of all coastal management agencies to reduce inappropriate incentives created by federal infrastructure investments. It should also improve a number of natural hazards-related activities implemented by the Federal Emergency Management Agency, including hazards mitigation planning, information collection and dissemination, and the National Flood Insurance Program.

Assessing the Growing Cost of Natural Hazards

The nation has experienced enormous and growing losses from natural hazards. Conservative estimates, including only direct costs such as those for structural replacement and repair, put the nationwide losses from all natural hazards at more than $50 billion a year, though some experts believe this figure represents only half or less of the true costs.¹

More accurate figures for national losses due to natural hazards are unavailable because the United States does not consistently collect and compile such data, let alone focus on specific losses in coastal areas. Additionally, there are no estimates of the costs associated with destruction of natural environments. Between 1967 and 1996, insurance payouts (which cover only a small portion of losses) rose steadily from $1 billion between 1967 and 1971, to $61 billion between 1992 and 1996, roughly doubling every five years (Figure 10.1).² While stricter building codes, improved forecasts, and early warning systems have helped save lives, deaths from natural hazards are expected to rise along with development and population along the nation’s coasts.³ Climate change may increase storms and sea-level rise, making the coastal zone even more vulnerable.
Improving Federal Management of Hazards in Coastal Areas

Many federal agencies have explicit operational responsibilities related to hazards management, while numerous others provide technical information or deliver disaster assistance. The nation’s lead agencies for disaster response, recovery, mitigation, and planning are the Federal Emergency Management Agency (FEMA) and the U.S. Army Corps of Engineers (USACE). These agencies implement programs that specifically target the reduction of risks from natural hazards. The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service (USFWS) also have a significant influence on natural hazards management.

NOAA’s weather forecasting and ocean observing functions are vital to hazards management. NOAA’s National Weather Service plays a key role in collecting atmospheric weather and oceanic real-time data for management, assessments, and predictions. Through its implementation of the Coastal Zone Management Act, the agency also plays a notable role in discouraging coastal development in areas at risk from natural hazards. (Additional discussion of these roles, and recommendations for enhancing NOAA’s contributions, are found in Chapters 9 and 26.) The Coastal Barrier Resources Act administered by USFWS (discussed in Chapter 9), also has significant implications for natural hazards management.

This chapter focuses on those federal programs that specifically target the reduction of losses of life and property due to natural hazards along the nation’s coasts. Among the opportunities for improving federal natural hazards management, four stand out: amending federal infrastructure policies that encourage inappropriate development; augmenting hazards information collection and dissemination; improving the National Flood Insurance Program; and undertaking effective and universal hazards mitigation planning.

Changing Inappropriate Federal Incentives

The federal government has made substantial investments in infrastructure designed to reduce human exposure to hazards, including flood control and coastal erosion projects. These efforts often eliminate or conflict with the natural buffers that would otherwise help shield communities. Furthermore, because such projects are not accompanied by strict restrictions on subsequent construction, they may actually encourage further commercial and residential development in hazard-prone areas (Box 10.2). In some cases, a federal infrastructure project intended to reduce a hazard merely drives the problem to a nearby location, such as when erosion control efforts lead to further coastal armoring up or down the coast. The cumulative impact of such projects may be weakening the ecosystem’s natural resilience to hazards and creating the potential for even greater losses to property, health, and natural resources.

Of course, the federal government is not the sole driver of infrastructure development in coastal areas. State and local governments also build roads and bridges along and over the water, underwrite wastewater treatment, and support water supply projects, all of which have impacts on coastal development and vulnerability.

The great majority of federal infrastructure programs are implemented by USACE, whose hazards-related activities include flood control efforts such as dams, dikes, and levees, and coastal erosion projects such as groins, sea walls, revetments, and beach
nourishment. USACE also has responsibilities for dealing with disaster response efforts such as construction of emergency infrastructure.

Evolving public values that favor environmental protection, as well as a growing understanding of the complex workings of natural systems, have propelled USACE to adopt more environmentally conscious initiatives, including the pursuit of nonstructural approaches to some flood control projects. However, such initiatives are not universally embraced within the agency, by all stakeholders, or in Congress, and remain greatly out-numbered by traditional, construction-oriented USACE projects that may disrupt natural hydrological and geomorphological processes, harm ecosystems, and create incentives for additional human development in high-risk regions.

USACE has also been the focus of debates about the cost-benefit analyses used to review proposed projects. Some experts have suggested that these analyses are often flawed by a reliance on incorrect assumptions and faulty methodologies. In 2001, the National Research Council (NRC) began a comprehensive review of USACE programs and procedures. A 2002 NRC report recommended external review of all controversial or complex USACE civil works projects.4

Recommendation 10–1
The U.S. Army Corps of Engineers’ Civil Works Program, with guidance from the National Ocean Council, should ensure valid, peer-reviewed cost-benefit analyses of coastal projects, provide greater transparency to the public, enforce requirements for mitigating the impacts of coastal projects, and coordinate such projects with broader coastal planning efforts.

Improving Understanding

The federal government plays an important role in acquiring complex hazards-related data and translating them into information that states and communities can use to reduce their vulnerability to natural disasters. A number of federal agencies and departments, including NOAA, the U.S. Geological Survey, the National Aeronautics and Space Administration, and the U.S. Department of Defense, are charged with increasing both basic understanding and site-specific knowledge about natural hazards. These agencies’ principal contributions include: developing and deploying new technologies for understanding land, ocean, and atmospheric processes and their interactions; tracking and predicting hazards, particularly meteorological hazards; assessing hazards risks; conducting post-disaster research; and communicating this information to end users. These contributions have significantly improved the quality and timeliness of weather-related warnings, increasing the lead time for protective measures and evacuations. Implementation of the Integrated Ocean Observing System (discussed in Chapter 26) would improve weather-related warnings and provide...
additional predictive capabilities for tsunamis and for chemical and biological hazards, such as sudden pollutant loadings, harmful algal blooms, and pathogens.

FEMA, as the lead disaster management agency, collects, analyzes, and disseminates hazards-related data. It is also responsible for assessing the effectiveness of its programs. However, these efforts fall short of shaping an effective overall national policy and providing the information state and local decision makers and individuals need to fully understand their risks from coastal hazards. The absence of a standard, centralized data collection system that could produce accurate accounting for losses from natural hazards is only one example. An inability to provide adequate, useful information at the local, state, and regional levels can lead to incorrect estimates of risk, which then affect cost-benefit analyses of proposed development and mitigation projects. Local land use decisions are frequently made without information about cumulative impacts or the vulnerability of individuals and groups in the community, and without an ability to judge the full impact of disasters on humans, institutions, the economy, natural resources, and ecosystem services. This lack of accurate information is likely to reinforce the tendency to underestimate risks from natural hazards and delay taking action to prevent future problems.

Flooding is the most costly of natural hazards, and maps produced by the National Flood Insurance Program are the federal government’s primary tool for communicating flood risks to communities and individuals. Most existing flood hazard maps are not georeferenced, limiting their usefulness for hazards planning.

The combination of mounting federal and nonfederal disaster expenses, vigorous advocacy by the insurance community, state and local governments, and others who rely on flood maps prompted FEMA to design an ambitious map modernization program in 1997. The incorporation of FEMA into the U.S. Department of Homeland Security

Box 10.2 New Orleans at Risk

Prior to 1965, New Orleans—a community that sits as much as 10 feet below sea level—had suffered substantial losses of protective barrier islands and wetlands and developed an elaborate system of flood control measures. After Hurricane Betsy struck in 1965, causing more than $1 billion in damages, hundreds of millions of dollars were spent to upgrade the flood control system that now includes more than 520 miles of levees, 270 floodgates, 92 pumping stations, and thousands of miles of drainage canals.

While the new protections did reduce risks to people and property in developed areas, they also encouraged additional development in flood-prone regions. Jefferson Parish and the adjoining Orleans Parish ranked first and second among communities receiving repeat payments for damage claims under the National Flood Insurance Program between 1978 and 1995. These two communities alone accounted for 20 percent of the properties with repeat losses, at an average of nearly three claims per property, for a total of $308 million in claims.

New Orleans’ protective levees are designed to withstand only a moderate (Category 3) hurricane storm surge. Were they to fail, the city and surrounding areas could suffer upward of $25 billion in property losses and 25,000–100,000 deaths by drowning.

3 Ibid.
spurred Congress to provide substantial financial support to underwrite the effort beginning in fiscal year 2002. This program will create a digital base map, update and digitize flood hazards information, and provide standard protocols that state and local governments and others can use to incorporate and relate information about other natural and manmade hazards. Though FEMA’s map modernization effort is intended to target the highest-risk communities first, the initial selection made in 2003 did not include any coastal communities—despite their status as high-population, high-risk regions. This is attributable to technical difficulties in mapping coastal flood hazards. FEMA’s plans call for updating priority coastal community maps starting in fiscal year 2004 when such obstacles are resolved.7

Although many communities are in a position to benefit from this opportunity, others may be constrained by a lack of technical and financial resources and expertise. National maps that reflect all hazards (for example, coastal erosion, localized stormwater drainage flooding, potential flood control structure failures, and increased risk from development, land subsidence, and sea-level rise) are needed to communicate the true vulnerability of a community, its social and physical infrastructure, and the surrounding ecosystem. Because relative sea level is rising in many coastal areas, it will be particularly important for maps to reflect this to more accurately analyze the potential impacts of coastal hazards. Such maps will also be essential in informing prospective purchasers of coastal property about potential hazards. FEMA and other relevant agencies will need to work together to make such comprehensive mapping a reality.

Recommendation 10–2

The National Ocean Council should establish a task force of appropriate federal agencies and state and local governments, with the Federal Emergency Management Agency in the lead, to improve the collection and use of hazards-related data.

Under the oversight of the NOC’s Committee on Ocean Resource Management, the hazards-related data task force should develop a coordinated effort that includes the following functions:

- systematic collection, storage, analysis, and dissemination of data on post-disaster losses and the cost of mitigation efforts.
- development and transmittal to communities of the information and tools they need to understand the risks of hazards to their residents and their social, physical, economic, and environmental infrastructures.
- cooperation with the Federal Geographic Data Committee and state and local governments to achieve comprehensive, digitized, georeferenced mapping and identification of all natural hazards.
- development of adequate funding proposals for the National Flood Insurance Program map modernization initiative, including a high-priority effort to update maps for high-risk coastal communities.

The Federal Geographic Data Committee, as well as other important issues related to mapping and charting, are discussed in Chapter 25.

The National Flood Insurance Program

Enacted in 1968, the National Flood Insurance Program (NFIP) is the federal government’s primary tool for managing flood hazards through a combination of incentives and regulation. In addition to the development of maps identifying flood-prone areas, the NFIP provides (or helps private companies provide) flood insurance to owners of commercial and residential structures in communities that adopt appropriate construction standards. Premiums and fees from property owners cover most program costs. Other NFIP responsibilities include identifying flood hazards, assessing risks, and implementing measures for reducing losses. While the NFIP is a national program, the majority of its...
policies, total coverage, and premium revenues are associated with coastal communities. Without the NFIP, many of the more than 19,000 participating communities most likely would not have had the incentive to develop active programs to manage flood risks. Unlike private-sector insurers, the federal government can carry debt over the long term and replenish funds depleted by catastrophic disasters over time. For this reason, the federal government is able to undertake the expense of mapping flood hazards nationally and subsidize coverage for older buildings. FEMA estimates that NFIP building standards and other floodplain management measures reduce flood losses by $1 billion per year.\(^8\)

As impressive as these accomplishments are, concerns have been raised that the NFIP may inadvertently facilitate inappropriate coastal development and redevelopment. While many factors weigh heavily in such decisions, including the market forces that make real estate in coastal floodplains and estuarine areas so valuable, the availability of flood insurance also plays a role. Determining the extent of this role is difficult because the impacts of the NFIP have never been comprehensively evaluated. FEMA recently commissioned such an evaluation, with several reports expected to be issued, including a final comprehensive report scheduled for September 2005. This study will help inform the National Ocean Council and may determine any further action. Nonetheless, three aspects of the program—treatment of erosion hazards, coverage of repetitive losses, and availability of insurance in undeveloped floodplain and erosion zones—are issues that merit immediate attention.

Informing the Public about Erosion Risks

Property owners within 500 feet of the shoreline face as large a risk from erosion as from flooding. Under current conditions, approximately one-quarter of all homes within 500 feet of the coast will be lost to erosion in the next sixty years. Insurance rates in areas designated as coastal high-hazard zones would need to double over the next thirty to sixty years to keep pace with these increasing erosion risks.\(^9\) Although FEMA has developed a plan for undertaking erosion mapping and reflecting actual risks in future NFIP insurance rates, the agency is awaiting congressional authorization to implement the plan. If erosion mapping and rating are not carried out, higher premium rates will have to be spread across all policyholders, losing an important opportunity to discourage building in the riskiest areas.

Repetitive-loss Properties

The NFIP requires that substantially damaged properties be removed or elevated. However, local governments are responsible for determining whether a property is substantially damaged and they are often reluctant to do so when a property owner does not have the
financial resources to move or elevate the home.Absent this designation, many of these properties have been rebuilt in place, leading to repeated claims. Although only 2 percent of NFIP covered properties have received repetitive-loss payments, they account for 40 percent of overall NFIP payments, many at cumulative totals exceeding the property’s value. Although a national problem, between 1978 and 1995, Louisiana and Texas accounted for $1.1 billion, or 40 percent of the $2.75 billion in total repetitive-loss claims paid by the NFIP.11

Approximately 90 percent of repetitive-loss payments are for buildings that predate NFIP maps.12 This demonstrates the effectiveness and success of NFIP building standards for new construction in flood-prone areas, but also underscores the program’s lack of authority for reducing the vulnerability of older buildings. Many property owners underestimate their risk, resist investments in structural improvements that do not directly translate into higher home prices, and then rely on federal disaster assistance as a fallback when floods occur. For some properties, the most acceptable and economical solution for all concerned will be voluntary buyouts at prices that allow property owners to relocate out of harm’s way.

Eliminating Incentives for Development in Floodplains and Eroding Areas
The NFIP was created both as a more desirable alternative to federal disaster relief in the wake of flooding and as a tool to guide development away from flood prone areas through state and local floodplain management. However, of the 6.6 million buildings located in the 100-year floodplains of participating communities, more than a third were built after the NFIP maps were created and floodplain management requirements imposed.13 As one of the federal government’s principal tools for influencing development in high-hazard areas, the NFIP’s risk assessment, mitigation, and insurance components should be revamped to better achieve the original goal of discouraging communities from building in harm’s way.

Recommendation 10–3
The National Ocean Council should recommend changes in the National Flood Insurance Program (NFIP) to reduce incentives for development in high-hazard areas. Specifically, NFIP changes should:

• establish clear disincentives to building or rebuilding in coastal high-hazard zones by requiring property owners at risk of erosion to pay actuarially sound rates for insurance.
• enforce measures that reduce vulnerability to natural hazards, including assistance in retrofitting older structures and buyout programs for susceptible structures with repetitive-loss histories.
• create enforceable mechanisms to direct development away from undeveloped floodplains and erosion zones.

Hazards Mitigation Planning
Hazards mitigation planning—the process of assessing potential hazards and evaluating and identifying actions to reduce or eliminate vulnerabilities—has been required of states for nearly two decades as a condition of receiving disaster relief and other FEMA funding. However, the quality of those plans, and the degree to which they are based on a sound process with adequate stakeholder involvement, vary widely. Major disaster losses in the 1990s led FEMA to increase its attention to hazards mitigation planning, establishing a unit dedicated to that purpose in 1998.

Congress also recognized that deficiencies in mitigation planning prevented the most effective use of disaster assistance funds. Communities recovering from disasters receive little guidance during the rebuilding process to improve their resilience to future disasters. In the Disaster Mitigation Act, passed in 2000, Congress directed FEMA to impose more stringent mitigation planning requirements on states. States that fail to meet FEMA’s new criteria can be denied disaster assistance and some other types of funding, while states...
that develop excellent mitigation plans are eligible to use a greater proportion of their
disaster funding to implement further hazards mitigation projects.

Effective hazards mitigation planning is fully consistent with watershed and ecosystem-
based management approaches because they all attempt to consider communities and the
effects of human activities within the broader environmental context. Effective watershed
management plans that include a hazards component can be used to satisfy FEMA's miti-
gation planning requirements. The agency has also expressed a goal of integrating sustain-
able redevelopment into its program, recognizing the interdependence among economic
opportunity, community well-being, and protection of the natural environment.

In 2002, FEMA issued regulations implementing enhanced mitigation planning stan-
dards, with compliance required for most state and local governments by October 2004.
However, many state and local governments are struggling to comply with the new criteria
because of severe fiscal constraints, technical difficulties, and relatively low levels of fed-
eral support. In addition to providing greater technical and financial assistance, it may be
appropriate to withhold other forms of hazards-related federal financial assistance until
mitigation plans are in place. For example, the U.S. Small Business Administration has
narrowed eligibility for its low-interest Pre-Disaster Mitigation Loan Program to commu-
nities with approved plans.

Recommendation 10–4
The Federal Emergency Management Agency (FEMA) should enhance technical assistance
to state and local governments for developing or improving their hazard mitigation plans.
The National Ocean Council should identify opportunities for conditioning federal hazards-
related financial and infrastructure support on completion of FEMA-approved state and local
hazards mitigation plans.

References

2 Consumer Federation of America. “America's Disastrous Disaster System.”
 before the Subcommittee on Housing and Community Opportunity, Committee on Financial Services, House of
7 Sharrocks, F., and A. Lichtenfels, Federal Emergency Management Agency, Mitigation Division. Personal
 Washington, DC, April 2000.
12 Burby, R.J. “Flood Insurance and Floodplain Management: The U.S. Experience.” *Environmental Hazards* 3, no. 3 (July 2002).
13 Ibid.
CHAPTER 11

CONSERVING AND RESTORING COASTAL HABITAT

Wetlands, estuaries, seagrass beds, mudflats, sand beaches, mangrove forests, coral reefs... these are just some of the diverse habitats that make up the ocean and coastal environment and provide invaluable benefits to humans and marine life. Marine habitats face increasing pressures as activities within ocean and coastal areas intensify. Coastal habitat conservation and restoration should be integral to ocean and coastal management, as well as to the management of activities within watersheds, and should be strengthened through the development of national, regional, and local goals, the institution of a dedicated program for coastal and estuarine conservation, better coordination of federal habitat-related activities, and improved research, monitoring, and assessment.

Assessing the Threats to Coastal Habitat

The diverse habitats that comprise the ocean and coastal environment provide tangible benefits such as buffering coastal communities against the effects of storms, filtering pollutants from runoff, and providing a basis for booming recreation and tourism industries. These habitats also provide spawning grounds, nurseries, shelter, and food for marine life, including a disproportionate number of rare and endangered species.1

As more people come to the coast to live, work, and visit, coastal habitats face increasing pressures. Most human activities in coastal areas provide distinct societal benefits, such as dredging rivers and harbors to facilitate navigation, converting forests and wetlands for agriculture and development, and building dams for flood control and hydropower. But these activities can also degrade coastal habitats and compromise their ability to adapt to environmental changes.

Serious habitat degradation is evident in every region, state, territory, and community along the nation’s coastline. Since the early settlers arrived in the United States, the nation has lost more than half of its wetlands—over 110 million acres.2 California has lost 91 percent of its wetlands since the 1780s.3 The Southeastern United States experienced a loss of over 2.3 million acres of wetlands from the mid-1970s to the mid-1980s.4 Significant wetlands loss has also occurred in the Pacific Islands. For example, American Samoa has lost about 25 percent of its wetlands to development, and much of the original extent of wetlands in the Commonwealth of the Northern Mariana Islands has been altered.5

Many mangrove forests, seagrass beds, and coral reefs have also fared poorly. Shallow-water reefs near urbanized coasts in the United States have been degraded by environmen-
tal and human disturbances such as hurricanes, fishing activities, coastal development, runoff, and sedimentation. More than 50 percent of the historical seagrass cover has been lost in Tampa Bay, 76 percent in the Mississippi Sound, and 90 percent in Galveston Bay. Extensive seagrass losses have also occurred in the Chesapeake Bay, Puget Sound, San Francisco Bay, and Florida’s coastal waters. Climate change, rising global temperatures, and sea-level rise place additional stresses on coastal habitats.

Because such a wide range of activities is affecting coastal habitats, an equally wide range of management tools will be needed to keep them healthy. Many of these approaches—maintaining water quality, minimizing trash and other debris, managing development—are discussed elsewhere. This chapter focuses on two types of activities that can be undertaken by governmental and nongovernmental partners to protect the coast: conservation and restoration.

Conserving Coastal Habitat

Conserving valuable ocean and coastal areas not only protects significant habitat and other natural resources, it also precludes the need to undertake costly and scientifically uncertain restoration efforts after an area has been degraded or lost. Current conservation needs, however, are not being met—a situation that will continue to worsen with increasing pressures on ocean and coastal environments and rising demands for coastal land.

Habitat Conservation Programs

Millions of coastal acres have been designated for conservation by various levels of government, and the tools for implementing conservation programs are found in a multitude of statutes. A number of federal programs aim to preserve the natural attributes of specific areas while providing varying levels of access to the public for educational, recreational, and commercial purposes. These include the U.S. Department of the Interior’s (DOI’s) National Parks and Seashores, National Wildlife Refuges, National Monuments, and National Wilderness Areas; the National Oceanic and Atmospheric Administration’s (NOAA’s) National Marine Sanctuaries and National Estuarine Research Reserves; and the U.S. Environmental Protection Agency’s (EPA’s) National Estuary Program.

DOI’s U.S. Fish and Wildlife Service (USFWS) administers several programs that provide grants for the acquisition, restoration, and enhancement of coastal lands, including the National Coastal Wetlands Conservation Grants Program. NOAA carries out a number of programs that aim to conserve valuable coastal lands, restore degraded habitat, and advance the science of restoration technology. Several U.S. Department of Agriculture (USDA) forestry- and agriculture-related programs provide incentives for land protection, including coastal land protection. The U.S. Army Corps of Engineers (USACE) conducts a variety of environmental stewardship and restoration programs. And both USACE and EPA are involved in conserving wetland habitats through the wetland permitting program under the Clean Water Act. (Many of these programs and authorities are summarized in Appendix D.)

Coastal habitat conservation programs also exist at the state, territorial, tribal, and local levels. For example, marine protected areas (discussed in greater detail in Chapter 6) can be designated by different levels of government for a variety of reasons, including habitat conservation.

Regulatory and non-regulatory conservation techniques are also used as tools for coastal conservation. Many local governments use a variety of planning and regulatory tools and techniques, including zoning and land use planning. Other tools—including fee simple land acquisition, the purchase or donation of easements, tax incentives and disincentives, and tradable development rights—play a special role in enabling willing landowners to limit future development on their land for conservation purposes. Land
acquisition and easements are often implemented through partnerships among governments, nongovernmental organizations such as land trusts, and the private sector. These groups work together to leverage limited resources from several partners to fund projects and ensure that areas acquired for conservation purposes are properly managed. As coastal populations grow and demands on coastal lands intensify, the resources needed to make such conservation partnerships work will continue to increase.

Conservation is important to maintain critical habitats and the benefits they provide, but it is also cost-effective, avoiding the much larger expense and scientific uncertainties associated with attempting to restore habitats that have already been degraded or lost.

Federal Funding for Habitat Conservation

The Land and Water Conservation Fund is a major source of federal funding for federal, state, and local conservation efforts, authorized to provide up to $900 million a year in support of these projects. However, since the Fund’s inception in 1965, Congress has appropriated less than half of the amount authorized. A number of agriculture and forestry-related programs administered by USDA represent an even larger source of funds for land conservation projects. Funding for agri-environmental programs is expected to rise to a projected total of $38.6 billion over the next ten years. Several of these programs include multi-year contracts with farmers and ranchers to retire and protect certain lands. The Wetlands Reserve Program, Farmland Protection Program, and Grassland Reserve Program, in particular, pay for permanent conservation easements on lands enrolled in those programs. Another USDA program, the Forest Legacy Program, provides funds for conservation easement purchases for forest lands threatened with development. Though these funding sources are not specifically targeted for the conservation of coastal and ocean resources, the funds can be used in those areas. Moreover, conservation of habitat in upland watersheds that enhances water quality indirectly benefits coastal areas.

In addition to the need to increase these programs’ focus on coastal habitat protection, the critical nature of coastal habitats—and the alarming rate at which they are being lost—requires more direct attention. Only a small fraction of federal spending on habitat is dedicated to coastal efforts, although habitat conservation is one of the goals of the Coastal Zone Management Act. To further that goal, in 2002, Congress appropriated money for the Coastal and Estuarine Land Conservation Program to provide a dedicated funding source to support coastal conservation partnerships among willing landowners, but this Program has not been made permanent.

Recommendation 11–1

Congress should amend the Coastal Zone Management Act to create a dedicated funding program for coastal and estuarine land conservation. In addition, a larger share of U.S. Department of Agriculture and other federal agency conservation programs should be directed to coastal and estuarine lands. To guide these programs, each state should identify priority coastal habitats and develop a plan for establishing partnerships among willing landowners for conservation purposes, with participation from federal agency, local government, nongovernmental, and private-sector partners.

Restoring Coastal Habitat

Once critical habitat has been lost, or the functioning of those areas diminished, restoration is often needed. Habitat restoration efforts are proliferating in response to heightened public awareness of, and concern for, the health of the nation’s oceans and coasts. Several large-scale efforts are underway to restore the nation’s unique ecological treasures, including coastal Louisiana, the Florida Everglades, the Chesapeake Bay, the San Francisco Bay-Delta, and the Great Lakes. The goals of these initiatives are extremely ambitious—
Coastal habitats provide essential breeding and nursery grounds for numerous marine and estuarine species. They also afford many benefits for humans by safeguarding coastal communities against storms, filtering anthropogenic pollutants, and providing varied recreation and tourism opportunities.

reestablishing thousands of square miles of water flow and habitat to sustain healthy levels of fish and wildlife populations while maintaining water supply for human uses and allowing future development (Box 11.1).

In addition to the large-scale, regional restoration efforts described above, there are numerous smaller-scale projects that collectively make significant contributions to restoring the health of coastal environments. Examples of these efforts include local initiatives to restore wetlands, bays, riverbanks, and streams in coastal communities. Because coastal habitat restoration efforts are often costly and complicated, they require the participation of a wide range of stakeholders to accomplish goals not achievable by any one party (Box 11.2). As a result, these projects often demonstrate the power of public–private partnerships, bringing together community members, government agencies, and businesses to solve common problems. They also require substantial volunteer effort, emphasizing the need for outreach and education among community members to enhance stewardship.

The Coastal America partnership, formed in 1991 through a memorandum of understanding signed by several federal departments and agencies, has had notable success in bringing together a wide range of participants to implement restoration projects throughout the nation. The partnership focuses on overcoming institutional barriers and inconsistent federal agency jurisdictions and authorities to achieve mutual restoration goals.

The success of individual coastal habitat restoration efforts in achieving larger ecosystem objectives can be enhanced through the development of comprehensive regional restoration strategies. These strategies will vary according to the unique circumstances in each region, but should also be part of an overarching national strategy that can enhance the effectiveness of regional efforts and provide a basis for evaluating progress.

In 2000, the Estuary Restoration Act called for a national strategy to include the goal of restoring one million acres of estuarine habitat by 2010. The Act established an interagency council to develop the strategy, create a comprehensive approach to estuarine habitat restoration efforts, foster coordination of federal and nonfederal activities, and administer a program for setting priorities and providing appropriate technical and financial assistance. In 2002, the Estuary Habitat Restoration Council—chaired by USACE and made up of designees from NOAA, EPA, USFWS, and USDA—published its final strategy, which encourages an ecosystem-based approach, including strengthening public–private partnerships and applying innovative restoration technologies, monitoring capabilities, and performance measurement tools.10

The establishment of the Estuary Habitat Restoration Council as a forum for federal agency coordination and communication at the national level is a significant and positive
Large-scale restoration efforts are challenging in a number of ways. First, the success of these efforts requires an understanding about how to recreate natural systems and restore historical ecosystem functions, a field still in its infancy. Second, these efforts cross political boundaries and affect a broad range of human activities, requiring support and intense coordination among a wide range of governmental and nongovernmental stakeholders. While some restoration projects have been successful, continued progress will depend on sustained funding, government leadership and coordination, scientific research, and stakeholder support.

Coastal Louisiana

Nowhere is the problem of habitat loss more compelling than in coastal Louisiana, which experiences about 80 percent of the total annual coastal land loss in the continental United States.¹ From 1956 to 2000, an average of 34 square miles of Louisiana’s wetlands disappeared into the sea every year (Figure 11.1). If this rate of loss continues, an estimated 700 additional square miles of coastal wetlands will be lost over the next fifty years, threatening billions of dollars worth of resources vital to the state’s—and the nation’s—economic well-being.²

The devastating losses are the result of a number of converging factors, including both human activities and natural processes. Chief among them are the dams, levees, and channels developed along the Mississippi River and its tributaries, as well as a network of canals that provide access to oil and gas well sites. These projects, which have supported nationally important infrastructure, navigation routes, and energy supplies, have also resulted in a 67 percent decrease in the supply of sediments to the coastal area and have disrupted the natural flow of water that kept the wetlands healthy.³ Sea-level rise, coastal storms, destruction of marsh plants by muskrat and nutria, and the subsidence of the region over geologic time intensify the problem and put the state’s more than two million coastal residents at increasing risk.

Figure 11.1 Dramatic Coastal Land Loss in Louisiana

From 1932 to 2000, coastal Louisiana lost 1,900 square miles of land—an area roughly equivalent to the size of Delaware. An additional 700 square miles could potentially be lost over the next fifty years if no new restoration takes place, putting more than 2 million coastal residents at risk from floods and storms.

Restoration efforts have intensified since the passage of the Coastal Wetlands Planning, Protection, and Restoration Act in 1990 (also known as the Breaux Act), which focused national attention and significant federal funding on over one hundred conservation and restoration projects. In 1998, a more comprehensive ecosystem-based plan to restore the natural processes of the region’s coastal wetlands was jointly developed by the state of Louisiana and the federal government.iv Additional studies are underway to determine the feasibility of sustaining Louisiana’s coastal ecosystem.

The Florida Everglades
Another extensive effort to restore a regional ecosystem dramatically altered by human activities is taking place in the Florida Everglades, an unparalleled network of mangroves, coastal marshes, seagrass beds, lakes, rivers, estuaries, and bays that once stretched from Orlando to Florida Bay. A long history of water diversions, flood control projects, and agricultural and urban development in South Florida has reduced the size of the Everglades by half.v As a result, the region has experienced numerous environmental problems such as nutrient enrichment, threatened or endangered species, pesticide contamination, mercury buildup in plants and animals, widespread invasion by exotic species, increased algal blooms, seagrass die off, and declines in fishery resources.vi

In 1992, Congress authorized a comprehensive review of the potential to restore the Everglades ecosystem. This review resulted in the development of the Comprehensive Everglades Restoration Plan, the largest such effort ever pursued based on the size of the ecosystem and the nearly 200 individual projects being developed to implement the plan.vii Many of these projects involve massive and expensive engineering and construction feats designed to restore natural hydrological functions and water quality throughout the entire region.

Despite its immense size and scope, the Comprehensive Everglades Restoration Plan is only one component of an initiative to restore the southern half of the state and the nearshore waters of Florida. The larger effort is being headed by the South Florida Ecosystem Task Force, which is charged with developing a strategy for coordinating hundreds of projects carried out by several different federal, state, tribal, and local entities, universities, and other stakeholder groups. The Task Force is made up of senior level officials from seven federal agencies, the Florida Department of Environmental Protection, the Miccosukee and Seminole tribes, the South Florida Water Management District, the Florida Governor’s Office, and two local governments.

iii Ibid.
step. There remains, however, a need for a federal coordinating forum with responsibilities and membership that is broader than the Estuary Habitat Restoration Council—one that can coordinate the development and implementation not only of estuarine habitat restoration efforts, but activities that affect all types of coastal habitat and include conservation as well as restoration measures. This forum could also be responsible for fostering the development and implementation of goals and priorities at the regional level.

Improving Habitat Conservation and Restoration

Currently the many entities that administer conservation and restoration activities operate largely independently of one another, with no framework for assessing overall benefits in an ecosystem-based context. The multitude of disjointed programs prohibits a comprehensive assessment of the progress of conservation and restoration efforts and makes it difficult to ensure the most effective use of limited resources.

Consistent local, state, regional, and national goals are vital for prioritizing conservation and restoration needs and orchestrating effective efforts at all levels. In particular, these efforts should be assessed in a regional, ecosystem context. This will be aided by improved regional coordination and the creation of regional ocean councils, as discussed in Chapter 5. The regional ocean information programs, also discussed in Chapter 5, will help meet the information needs essential to the success of these initiatives. Conserving and restoring historical ecosystem functions are significant steps in sustaining the health of the nation’s ocean and coastal resources. Over time, the regional ocean councils will also help to improve the management of all activities that affect coastal habitats and the well-being of coastal communities.

Recommendation 11–2

The regional ocean councils, working with state coastal management programs and other governmental and nongovernmental entities, should assess regional needs and set goals and priorities for ocean and coastal habitat conservation and restoration efforts that are consistent with state and local goals. The National Ocean Council should develop national goals that are consistent with regional, state, and local goals, and should ensure coordination among all related federal activities.

An increased and dedicated funding source for coastal conservation activities is called for earlier in the chapter. Similarly, restoration initiatives will require sufficient funding to develop the best techniques, implement restoration activities, and track their success. In addition to federal investments, innovative sources of funding can be identified through partnerships with the private sector.

Enhancing Information and Understanding

One of the most significant obstacles to conservation and restoration efforts is the lack of adequate knowledge about the structure and functioning of coastal habitats and the relative effectiveness of restoration techniques. Furthermore, many individual efforts do not benefit from the knowledge and positive experiences that do exist. Enhanced support for ecosystem restoration science and applied research on effective restoration techniques is needed, as is support for programs that educate practitioners on how to implement these techniques. A better understanding of the connections between human activities and their impacts on coastal habitats will lead to better management of coastal resources and a strengthened stewardship ethic among all stakeholders and citizens.
Coordinated and comprehensive inventories and assessments are essential for identifying critical habitats, evaluating the causes of habitat loss and degradation, and setting priorities for conservation and restoration efforts, thus enabling decision makers to focus limited resources on the most pressing needs. The regional ecosystem assessments called for in Chapter 5 will provide timely and comprehensive information on the status of coastal habitats.

In addition to improved understanding and broad national assessments and inventories, the nation needs better ongoing monitoring. Currently, most federal funding available for conservation and restoration efforts can only be used for direct implementation, not for the equally important tasks of monitoring the success of these efforts and further advancing restoration science.

Finally, conservation and restoration efforts must build on past successes to achieve progress. Currently, there is no accessible nationwide system for sharing information, including research results, planning processes, conservation and restoration techniques, and funding opportunities. A broadened and redefined Estuary Habitat Restoration Council could serve as a mechanism for this type of information sharing. Information pertinent to coastal habitat conservation and restoration efforts can also be shared through the regional ocean councils and regional ocean information programs.

Recommendation 11–3

The U.S. Department of the Interior, National Oceanic and Atmospheric Administration, U.S. Department of Agriculture, and U.S. Army Corps of Engineers should enhance their restoration science, monitoring, and assessment activities. Congress should amend relevant legislation to allow greater discretion in using a portion of federal habitat conservation and restoration funds for related research, monitoring, and assessments.

Box 11.2 A Community Habitat Restoration Effort: Friends of Heeia State Park

There are thousands of examples of local efforts in which concerned citizens, government entities, business, and other stakeholders have helped restore coastal habitats valuable to both native plant and animal species and to the culture of the local community. Friends of Heeia State Park, a nonprofit educational institution located on the Hawaiian Island of Oahu, coordinates several community restoration activities each year during which local volunteers help clean up beaches and streams, monitor water quality, and remove invasive species. Recently, the group received a grant from the U.S. Environmental Protection Agency to conduct a project replacing non-native coastal plants, which were preventing adequate filtering of waters from the watershed to the Heeia Bay, with native species. The project was part of a larger effort to restore portions of the entire Heeia watershed that had become degraded by nonpoint source pollution originating from various human activities. Thousands of volunteers participated in the project.

These and other local restoration efforts are vital components of the overall goal of improving the health of coastal habitats nationwide. They also serve a valuable role in promoting coastal stewardship by instilling a sense of ownership and responsibility throughout the community. Improving communication and coordination among these efforts, and enhancing the research efforts needed to determine the most effective restoration strategies, will strengthen the ability of individual projects to contribute to the overall improvement of ocean and coastal health.

Protecting the Nation’s Wetlands: A Special Case

Coastal wetlands, including marshes, swamps, and bogs, are an important and integral component of coastal habitat. USACE regulations define wetlands as those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support vegetation that typically lives in saturated soils. Coastal watersheds currently include about 30 percent of all wetlands in the lower forty-eight states, a total of approximately 27 million acres. Like other coastal habitats, wetlands provide a variety of valuable ecosystem services, such as improving water quality, providing natural flood control, recharging groundwater, stabilizing shorelines, contributing to recreational value, and serving as nursery areas for thousands of species of plants, fish, and other animals.

The functions and values provided by wetlands have not always been recognized. Prior to the 1970s, federal policies for agriculture, development, and insect control encouraged the draining and filling of wetlands—referred to disparagingly at the time as swamps. A 2001 National Research Council report found that, as a result, by the 1980s the area of wetlands in the contiguous United States had decreased to approximately 53 percent of its extent one hundred years earlier.

In response to this dramatic loss of wetlands, the National Wetlands Inventory (NWI) Program was formed in 1975 to collect information about remaining wetlands. To date, approximately one-half of the United States is represented in the inventory, which includes all wetlands and deepwater habitats, such as lakes, rivers, and streams as well as marshes, bogs, and swamps. NWI data are used by Congress, all levels of government, academia, the private sector, and nongovernmental organizations for a variety of purposes, including resource management, transportation planning, infrastructure siting, and conservation and restoration planning. Despite these important applications, NWI data remain incomplete for much of the nation and relatively inaccessible to many who could put the data to beneficial use.

Recommendation 11–4

The U.S. Fish and Wildlife Service should complete, digitize, and periodically update the National Wetlands Inventory.

By the late 1980s, federal policies had shifted and the protection of wetlands became a national priority. In 1989, President George H.W. Bush acknowledged the importance of wetlands by establishing the goal of “no net loss of wetlands,” a goal that has been supported by subsequent administrations. As a result of these shifts in attitude and policy, the rate of wetlands loss has decreased substantially, although there is some uncertainty as to the extent of the decrease and the functional value of remaining wetlands compared to their historic counterparts. Despite selected improvements, wetlands continue to be lost due to subsidence, erosion, storms, and human activities, including the conversion of such areas for other uses.

There is no single, comprehensive federal wetlands protection law. Instead, multiple federal statutes and programs provide protections in different forms, including the various conservation and restoration programs described earlier in this chapter. State, local, and tribal wetlands programs add to the success—and the complexity—of wetlands protection efforts.

The Clean Water Act Section 404 program is the primary federal regulatory program providing protection for the nation’s wetlands. The goal of the program is to avoid deliberate discharges of materials into wetlands, or to minimize discharges where they cannot be avoided. The program requires permits for discharges of materials (such as dredged materials, or other soil or sand used as fill) into U.S. waters, although several major categories of activities are generally exempted, including certain ongoing farming, ranching, and silviculture operations. When a permit is issued that will result in some wetlands loss, compensatory mitigation is often required; that is, wetlands must be restored, enhanced, preserved, or created elsewhere to replace the permitted loss of wetland acres and functions.
Although it has shown some success in slowing the rate of wetlands loss, Section 404 does not constitute a comprehensive national wetlands management and protection program. It does not address many kinds of activities that affect wetlands and its implementation has been uneven; a large gap remains between the mitigation required in connection with permitted activities and that which has actually been achieved. Moreover, the navigation, flood control, and other civil works projects undertaken by the USACE itself may have impacts as great as, or greater than, those of any permitted activity. Mitigation for some federal projects has also fallen far short of what was originally approved. Finally, the Section 404 program has generally failed to give sufficient consideration to the cumulative impacts associated with issuing multiple individual permits, or conducting a variety of federal projects, in the same geographic or watershed area. (Recommendations on improving the ability of USACE to address the regional, cumulative impacts of its activities are provided in Chapter 12.)

Other provisions of the Clean Water Act, such as those dealing with stormwater runoff and certain types of pollution, also provide some measure of wetlands protection, but not in the context of a coordinated wetlands management regime. As the nation recognizes the interconnectedness of upland and downstream areas, considers entire watershed systems, and moves toward an ecosystem approach, comprehensive wetlands protection should be considered as an integral part of ocean and coastal management.

Recommendation 11–5

The National Ocean Council should coordinate development of a comprehensive wetlands protection framework that is linked to coastal habitat and watershed management efforts, and should make specific recommendations for the integration of the Clean Water Act Section 404 wetlands permitting process into that broader management approach.

References

The natural flow of sediment over land and through waterways is important for sustaining coastal habitats and maintaining attractive beaches. However, excess or contaminated sediment can destroy habitats, poison the food chain, and endanger lives. Too little sediment can also alter habitats and allow beaches to wash away. Because navigational dredging, infrastructure projects, farming, urban development, and many other necessary and beneficial human activities can interfere with natural sediment processes, their impacts should be understood and managed. A national strategy for managing sediment is needed to reduce harm to natural resources, address ecological and economic needs, and achieve goals such as greater beneficial uses of sediment from navigational dredging. Such a strategy should manage sediments on a multi-project, regional basis, and involve all relevant parties. The strategy should also foster improved methodologies for evaluating beneficial uses of dredged material, along with additional research, monitoring, assessment, and technology development to improve sediment management.

Understanding the Dual Nature of Sediment

Sediment in ocean, coastal, and Great Lakes waters is composed of inorganic and organic particles created through erosion, decomposition of plants and animals, and human activities. Sediment may be carried by wind or water from upland areas down to coastal areas, or may originate in the marine environment. Sediments along coastlines are transported by wind, waves, and currents in dynamic processes that constantly build up and wear away cliffs, beaches, sandbars, inlets, and other natural features.

From a human perspective, sediment has a dual nature—desirable in some locations and unwanted in others (Box 12.1). Sediment can be used to create or restore beaches and to renew wetlands and other coastal habitats. Such activities are referred to as beneficial uses. Undesirable sediment can cloud water and degrade wildlife habitat, form barriers to navigation, and contaminate the food chain for marine plants, animals, and humans.

Whether sediment is desirable or not, its location and movement can have large economic and ecological consequences. For example, excess sediment in shipping channels may cost ports millions of dollars in delayed or limited ship access, while in other locations insufficient sediment deposits could result in the loss of valuable coastal wetlands.
The dual nature of sediment as both a threat and a resource to humans and the environment makes its management particularly challenging. To complicate matters further, the natural processes that create, move, and deposit sediment operate on regional scales, while management tends to focus on discrete locations—a single beach, wetland, or port. In addition, the policies that affect sediment location, transport, and quality fall under the jurisdiction of diverse programs within multiple agencies at all levels of government. This complex governance approach makes it difficult to manage sediment at the appropriate scale and in consonance, rather than in conflict, with natural processes. The prospect of global climate changes further complicates matters. For example, predictions of increased storm activity and changes in runoff patterns may adversely affect sediment delivery from upland areas, accelerate shoreline erosion, and result in increased runoff of contaminated sediments to coastal waters.

Box 12.1 Sediment: Friend or Foe?

Sediment levels that are too high or too low can be detrimental to both natural environments and man-made structures, including extreme cases where structures are lost due to beach and cliff erosion. But sediment such as sand and gravel can also be viewed as a valuable resource.

<table>
<thead>
<tr>
<th>Too much sediment can lead to...</th>
<th>...while too little sediment can lead to...</th>
<th>Sediment can also be used for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>- obstructed channels</td>
<td>- disappearing beaches</td>
<td>- construction material</td>
</tr>
<tr>
<td>- overflowing rivers</td>
<td>- eroded riverbanks</td>
<td>- beach nourishment</td>
</tr>
<tr>
<td>- smothered reefs</td>
<td>- wetlands losses</td>
<td>- wetland restoration</td>
</tr>
<tr>
<td>- high turbidity that blocks sunlight</td>
<td>- altered river profiles</td>
<td>- replacement of agricultural soil</td>
</tr>
</tbody>
</table>

The dual nature of sediment as both a threat and a resource to humans and the environment makes its management particularly challenging. To complicate matters further, the natural processes that create, move, and deposit sediment operate on regional scales, while management tends to focus on discrete locations—a single beach, wetland, or port. In addition, the policies that affect sediment location, transport, and quality fall under the jurisdiction of diverse programs within multiple agencies at all levels of government. This complex governance approach makes it difficult to manage sediment at the appropriate scale and in consonance, rather than in conflict, with natural processes. The prospect of global climate changes further complicates matters. For example, predictions of increased storm activity and changes in runoff patterns may adversely affect sediment delivery from upland areas, accelerate shoreline erosion, and result in increased runoff of contaminated sediments to coastal waters.

Reviewing Federal Roles in Sediment Management

The federal government’s role in managing sediment in the marine environment covers five areas: navigation-related dredging; beneficial use of sediment; construction of infrastructure to reduce flooding and erosion hazards; management of contaminated sediment; and basic and applied research into sediment processes. As with many ocean and coastal issues, numerous federal agencies are involved.

The U.S. Army Corps of Engineers (USACE) plays a large part in nearly all of these areas and is the lead agency for all but contaminated sediment. The U.S. Environmental Protection Agency (EPA) has oversight of ocean disposal of dredged material, and the cleanup and disposal of contaminated sediment. The National Oceanic and Atmospheric Administration (NOAA) administers the Coastal Zone Management Program, which requires participating coastal states to have enforceable policies to protect ocean and coastal resources, including policies that affect sediment management. NOAA’s National Marine Fisheries Service and the U.S. Department of the Interior’s (DOI’s) U.S. Fish and Wildlife Service have responsibilities for living marine resources and habitat that also give them a role in evaluating the impacts of proposed sediment projects undertaken or permitted by federal agencies. DOI’s Minerals Management Service identifies and authorizes access to sand deposits in federal waters suitable for beach nourishment and wetlands protection projects. The U.S. Geological Survey advances research on the sources, transport, impacts, disposal, beneficial use, and other aspects of sediment. USACE, NOAA, and EPA also conduct related research efforts, and the National Science Foundation and Office of Naval Research fund many relevant studies.
Other federal programs have less direct, but no less important impacts on sediment. The U.S. Department of Agriculture's Natural Resources Conservation Service plays a central role in efforts to reduce agricultural soil erosion, much of which finds its way to estuaries and the ocean. USACE and DOI's Bureau of Reclamation operate flood control, water storage, and hydroelectric projects which retain, and occasionally release, large amounts of sediment. Sediment also is addressed extensively through the nation's regulation of point and nonpoint sources of pollution, with EPA and NOAA as the principal federal agencies involved.

Some activities that affect sediment, such as dredging and shoreline erosion control projects, fall under specific laws, often implemented in isolation from each other. Other activities are addressed under broader, less specific authorities. Even seemingly well designed projects can sometimes create more problems than they solve, or encounter frustrating delays, because of poor communication among stakeholders, and confusion about the many programs that remove, relocate, prevent, or accelerate the transport of sediment. At this time, there is no consistent mechanism to ensure that each individual sediment-related project is considered in a larger ecosystem-based context.

Altering Sediments through Human Intervention

Changing Sediment Quantities

Many human interventions in sediment processes are unintentional, occurring as a by-product of routine economic activities that overload or deprive natural systems of sediment. Activities such as forestry, agriculture, and urban development yield great benefits to the nation, but also accelerate natural erosion. Excess sediment suspended in the water column or accumulated at the bottom of water bodies can create problems for other industries, such as shipping, fishing, and tourism, and can harm aquatic life.

Conversely, flood control, water supply, and hydroelectric projects prevent the natural movement of sediment, contributing to downstream erosion and subsidence problems (Figure 12.1). As older components of this infrastructure become too costly to maintain, or are rendered obsolete for structural or economic reasons, disposing of the enormous quantities of trapped sediment will pose a new set of problems. Development in coastal communities can also disrupt natural sediment movement, causing erosion in some places and accretion in others. Such projects may have unintended effects on neighboring jurisdictions, both upstream and downstream, that had no role in the planning process.

Figure 12.1 Dams Impede Sediment Destined for the Coast

To support California’s exponential population growth, over 1,400 dams have been constructed across the state for a number of purposes, including water storage, irrigation, flood control, recreation, and hydroelectric power. However, dams constructed in coastal watersheds block the flow of sediments needed for natural beach replenishment.

Changing Sediment Quality

Over the last fifty years, lakes, rivers, and harbors have accumulated bottom sediment contaminated with heavy metals (such as lead, copper, and arsenic) from mining and industrial activities, as well as long-lived toxic chemicals (such as DDT, MTBE, PCBs, and dioxin) (Box 12.2). Continued discharges from municipal waste and industrial plants, and polluted runoff from agricultural and urban sources, perpetuate the problem, while newly identified contaminants such as flame retardants are now being detected in ocean and coastal sediments. Toxic chemicals from sediment can accumulate in marine plants and animals, causing reproductive failure, impaired growth, disease, and death. They may also pose health risks to humans who consume or come in contact with tainted marine products.

Of the 12 billion cubic yards of sediment that comprise the top 2 inches underlying U.S. waters, an estimated 10 percent is thought to be contaminated at levels that pose possible risks to marine life, wildlife, and humans. Of the 300 million cubic yards of sediment the USACE dredges annually to facilitate navigation, an estimated 5 to 10 percent is contaminated. Once a portion of sediment becomes contaminated, it becomes a source of further contamination downstream.

Currently, six laws and seven federal agencies are involved in the dredging or remediation of contaminated sediment, depending on whether the material is to be removed, deposited, or treated. Different sets of laws apply when navigational dredging or environmental cleanup is the primary focus of activity. A 1997 National Research Council report concluded that this patchwork of laws generally fails to manage contaminated sediment according to the risk it poses to the environment, does not adequately weigh the costs and benefits of different solutions, and imposes lengthy and unnecessary delays in addressing problems.

The Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) established the federal Superfund program to clean up the nation's uncontrolled or abandoned hazardous waste sites. At over one hundred locations, bottom sediments in rivers and harbors are so contaminated they are designated as Superfund sites. The EPA estimates that cleanup of the thirty most highly contaminated sites in rivers, lakes, and coastal areas may cost hundreds of millions of dollars.

The presence of contaminated sediment greatly complicates the management of dredged material. For example, such sediment would be inappropriate for use in wetland restoration or erosion control projects. Costs are also much higher for the safe and secure disposal of these materials. The very process of dredging contaminated sediment increases ecological and human health risks because some of the sediment inevitably becomes resuspended and carried to new locations during removal.

Box 12.2 The Legacy of Sediment Contamination

Long-term remedial response action is required at areas on EPA’s Superfund list, one of which is Fox River and Green Bay, Wisconsin. From 1954 to 1971, PCBs were released during the manufacture of carbonless copy paper by seven companies along the banks of the river. The chemical releases left 11 million cubic yards of contaminated sediment in Fox River and Green Bay. The EPA estimates that up to 70 percent of the PCBs entering Lake Michigan via its tributaries come from the Fox River. This contamination has affected water quality, recreation, and the health of people, fish, and birds. Elevated PCB concentrations in some Lake Michigan fish have prompted health advisories. Native Americans in the area have been particularly affected because of the importance of subsistence fishing to their community.

2 Wisconsin Department of Natural Resources and U.S. Environmental Protection Agency. Superfund Record of Decision for Operable Units 3, 4, and 5. Madison, WI, and Washington, DC, June 2003.
Developing Regional Strategies for Sediment Management

Sediments flow continuously downstream to the coast, on and offshore, and back and forth along the coast. A project-by-project approach to sediment management can result in expensive actions that may undermine the interests of other stakeholders. For example, flood and erosion control structures, while temporarily protecting targeted locations, interrupt the natural transport of sediment along the coast, preventing the accumulations that create beaches and maintain wetlands, exacerbating coastal erosion, and potentially threatening life, property, and coastal economies in other locations. Similarly, upstream sediment diversions or contamination can have major impacts in estuaries and other coastal areas.

Coastal stakeholders have increasingly recognized the need to develop more proactive and preventive strategies. However, their absence from broad watershed planning efforts—where decisions about land use and water management could reduce excess and contaminated sediments at their source—makes such change difficult to realize. (A more detailed discussion of watershed planning efforts appears in Chapter 9.) The nation needs both a better understanding of the interactions between human activities and sediment flows, and a better mechanism for involving all potentially affected parties.

Moving toward an ecosystem-based management approach is a critical step. The new National Ocean Policy Framework outlined in Part II creates a structure for regional coordination and cooperation among the many parties affected by sediment. Participation by federal, state, and local entities in watershed management efforts, along with key stakeholders such as coastal planners and port managers, is one way to diminish upland sources of excess and contaminated sediment that harm the marine environment.

Recommendation 12–1

The National Ocean Council should develop a national strategy for managing sediment on a regional basis. The strategy should incorporate ecosystem-based principles, balancing ecological and economic considerations.

In addition, the strategy should:

- acknowledge adverse impacts on marine environments due to urban development, agriculture, dams, dredging, pollutant discharges, and other activities that affect sediment flows or quality.
- ensure involvement of port managers, coastal planners, land use planners, and other stakeholders in watershed planning.
- emphasize watershed management as a tool to address upstream land uses that affect sediment input to rivers and coastal waters.

Regional sediment management will require coordination among diverse interests, political jurisdictions, and levels of government to achieve environmental, social, and economic goals. For example, construction and restoration projects in coastal areas often face long permitting and planning delays, which can substantially add to project costs and be ecologically detrimental. A regional sediment planning process that identifies pre-approved beneficial use sites through a collaborative stakeholder process could help expedite projects, resulting in quicker realization of economic benefits to the region.

A regional approach could also help prioritize projects. In considering beach nourishment proposals for two nearby sites, priority might be given to one of the sites if natural sediment transport processes would result in secondary nourishment of the down-coast site, doubling the impact of the investment. Regional sediment management could also inform coastal land use planning and permitting decisions, moving new development or post-disaster rebuilding away from erosion hot spots, as discussed in Chapter 10.
One of the difficulties in undertaking a regional approach to managing sediment is that the definition of a region may differ substantially among parties engaged in land use planning, port management, coastal development, wetlands protection, or fishery management. To understand the sources and transport of sediment, a region might extend tens to hundreds of miles up and down rivers and the coastline. Alternately, for management of dredged material at a port, the region might be linked to the size of that port. Coastal erosion and living marine resources may define other scales. These definitions should be reconciled to achieve effective sediment management in an appropriate regional context.

Moving Toward Regional Sediment Management at USACE

USACE’s traditional protocols for dredging and other sediment management projects consider the impacts of those projects individually and on short-term and local scales—typically from one to thirty years, across areas of less than ten miles—despite widespread recognition that coastal processes operate at regional scales with time frames of up to 250 years and geographic extents of dozens of miles from a project’s location. In many cases, this disregard for the scale over which natural processes operate has resulted in projects having unintended adverse impacts on nearby coastal resources, placing too much sediment in the wrong place or too little where it is needed.

More recently, USACE, with support from Congress, has begun pursuing alternatives to its project-by-project approach. For example, USACE created the Regional Sediment Management Program based on general direction from Congress to develop long-term strategies for disposing of dredged materials and to cooperate with states to develop comprehensive plans for coastal resource conservation. Under this program, USACE collaborates with states, communities, and other diverse stakeholders to develop plans to manage sediment across a region that encompasses multiple USACE dredging projects.

To date, the Regional Sediment Management Program has undertaken six demonstration projects around the country. Early results have yielded technology improvements, information sharing, and the building of a base of experience in more comprehensive management of construction activities affecting sediment. Nevertheless, scientific, technological, and institutional hurdles remain to implementing truly regional sediment management.

Recommendation 12–2

Congress should direct the U.S. Army Corps of Engineers (USACE) to adopt regional and ecosystem-based management approaches in carrying out all of its sediment-related civil works missions and should modify USACE authorities and processes as necessary to achieve this goal.

Weighing the Costs and Benefits of Dredging

Navigational Dredging

Widespread adoption of regional sediment management practices will help address many problems. However, until such practices are common—and even once such frameworks are in place—certain sediment activities merit special attention. Dredging for navigational purposes is perhaps the most direct and prominent way humans affect sediments in marine waters, and the federal government is in charge of dredging activities for this purpose.

Navigational dredging in ports and waterways seeks to remove accumulated sediment that blocks or endangers vessels and prevents access by ships that continue to increase in size and draft, requiring wider and deeper channels. An estimated 400 million cubic yards

[Dredging related] navigation and environmental challenges must be addressed within the context of rapidly increasing population growth in the coastal zone and the resulting tensions between residential, recreational, and economic uses and the need to preserve, protect and restore critically important ecological resources.

—Major General Robert Griffin, Director of Civil Works, U.S. Army Corps of Engineers, testimony to the Commission, October 2002
of sediment (300 by USACE and another 100 by private permittees) are dredged annually to maintain and improve navigation. As the volume and value of goods transported by water continues to grow, the importance of maintaining efficient, modern ports increases. (Chapter 13 includes a broader discussion of port planning in the context of maritime commerce and transportation.) All dredging, whether related to navigation or not, can have negative impacts. These impacts may include habitat disturbance and the dispersion of sediment—frequently contaminated—to new locations, with unintended impacts on the ecosystem.

One frequent complaint associated with dredging projects is the time involved from conception to completion. Currently, the process of planning, permitting, and completing a navigation channel improvement project (widening or deepening) can take more than twenty years. Reasons for delay include inconsistent funding allocations and congressional approvals, the complexity of the project review process, and scientific uncertainties. Such lengthy time frames can be ecologically and economically detrimental to a region. Delayed access to a port may reduce ship traffic and trade, and environmental impact statements may become outdated. At the same time, certain projects may be legitimately questioned by those who believe there are less costly or environmentally damaging alternatives.

EPA and USACE are currently investigating mechanisms for improving the efficiency of the planning and permitting process for management of dredged material. These efforts should be encouraged. A streamlined process could help evaluate the necessity of a proposed dredging project, look for opportunities to improve sediment management, and set priorities among projects.

Box 12.3 Beach Nourishment: One Use for Dredged Sediment

Dredging of sediment does take place outside the navigation context, most notably for use in beach nourishment to protect recreation, tourism, and beachfront property. Such projects have been a source of great contention. Proponents champion beach nourishment as essential to protecting life, property, and beach-dependent economies. Opponents decry it as a costly taxpayer-subsidized activity that threatens coral reef and other ecosystems and creates incentives for inappropriate development in coastal areas subject to storm, flooding, and erosion hazards. Political representatives are often pressured to support beach nourishment projects where eroding shorelines threaten the economic health and safety of a coastal community.

However, as the National Research Council noted in a 1997 report, the process for determining when, where, and how to use dredged sediment for beach nourishment suffers from a number of deficiencies, including a lack of performance criteria, inadequate technical and economic methodologies, outdated design standards, insufficient stakeholder involvement, an inadequate understanding of the physical and biological mechanisms of beach and littoral systems, and a failure to plan for the long term or in a regional context. Because the high costs of undertaking and maintaining these projects are borne in large measure by the public, investments should target projects that will render the greatest benefit and where other alternatives, such as moving development away from eroding areas, are not possible. Achieving this goal will require a better understanding of sediment processes and a method for considering beach nourishment proposals in a regional context.

Box 12.3 Beach Nourishment: One Use for Dredged Sediment

Dredging of sediment does take place outside the navigation context, most notably for use in beach nourishment to protect recreation, tourism, and beachfront property. Such projects have been a source of great contention. Proponents champion beach nourishment as essential to protecting life, property, and beach-dependent economies. Opponents decry it as a costly taxpayer-subsidized activity that threatens coral reef and other ecosystems and creates incentives for inappropriate development in coastal areas subject to storm, flooding, and erosion hazards. Political representatives are often pressured to support beach nourishment projects where eroding shorelines threaten the economic health and safety of a coastal community.

However, as the National Research Council noted in a 1997 report, the process for determining when, where, and how to use dredged sediment for beach nourishment suffers from a number of deficiencies, including a lack of performance criteria, inadequate technical and economic methodologies, outdated design standards, insufficient stakeholder involvement, an inadequate understanding of the physical and biological mechanisms of beach and littoral systems, and a failure to plan for the long term or in a regional context. Because the high costs of undertaking and maintaining these projects are borne in large measure by the public, investments should target projects that will render the greatest benefit and where other alternatives, such as moving development away from eroding areas, are not possible. Achieving this goal will require a better understanding of sediment processes and a method for considering beach nourishment proposals in a regional context.

Box 12.3 Beach Nourishment: One Use for Dredged Sediment

Dredging of sediment does take place outside the navigation context, most notably for use in beach nourishment to protect recreation, tourism, and beachfront property. Such projects have been a source of great contention. Proponents champion beach nourishment as essential to protecting life, property, and beach-dependent economies. Opponents decry it as a costly taxpayer-subsidized activity that threatens coral reef and other ecosystems and creates incentives for inappropriate development in coastal areas subject to storm, flooding, and erosion hazards. Political representatives are often pressured to support beach nourishment projects where eroding shorelines threaten the economic health and safety of a coastal community.

However, as the National Research Council noted in a 1997 report, the process for determining when, where, and how to use dredged sediment for beach nourishment suffers from a number of deficiencies, including a lack of performance criteria, inadequate technical and economic methodologies, outdated design standards, insufficient stakeholder involvement, an inadequate understanding of the physical and biological mechanisms of beach and littoral systems, and a failure to plan for the long term or in a regional context. Because the high costs of undertaking and maintaining these projects are borne in large measure by the public, investments should target projects that will render the greatest benefit and where other alternatives, such as moving development away from eroding areas, are not possible. Achieving this goal will require a better understanding of sediment processes and a method for considering beach nourishment proposals in a regional context.

Beneficial Uses of Dredged Material

Dredged material has long been used to create new land for commercial, residential, and infrastructure developments, as well as to bolster beaches and barrier islands to protect against storm and erosion hazards and enhance tourism and recreation (Box 12.3). Since the 1970s, these beneficial uses of dredged material have also included environmental enhancement, such as restoration of wetlands, creation of wildlife habitat, and improvement of fish habitat. Surprisingly, navigation-related dredged material does not find its way into beneficial use projects as often as perhaps it should. This is due in part to sediment contamination, but also to USACE policies that favor disposal in open waters or in upland dump sites. These policies may be unnecessarily foregoing opportunities to support economic growth or environmental protection and may have serious unintentional consequences for aquatic ecosystems.

Techniques of Cost-Benefit Analysis

Under current USACE policies, navigation-related dredged material is primarily viewed as a waste stream and diversion for beneficial use is considered extraneous to the navigation mission. For the federal government to cover the costs of a navigational dredging project, USACE regulations require that the dredged material be disposed of in the “least costly, environmentally acceptable manner consistent with engineering requirements established for the project.” During its project evaluation process, USACE determines the least-costly disposal method, designated as the Federal Standard, and decides on the appropriate cost-sharing structure with nonfederal partners. If the Federal Standard option is not used, the nonfederal partners must assume a larger portion, sometimes over 50 percent, of the project costs.

Because USACE cost-benefit methodologies tend to undervalue the benefits of projects that use dredged material, while failing to account for the full costs, including environmental and other nonmarket costs, of traditional disposal methods, the least-cost option generally favors open-water disposal of dredged material. A more accurate system for selecting and ranking projects would be based on a comparative net economic and environmental return for the United States rather than a narrow cost-benefit analysis for a specific project. Recognizing the advantages of beneficial-use projects may also justify spreading the costs among a wider array of stakeholders. To check the USACE’s assumptions and methodologies, the analyses should be peer-reviewed, as called for in a recent National Research Council report.8

Recommendation 12–3
The U.S. Army Corps of Engineers should ensure that its selection of the least-cost disposal option for dredging projects reflects a more accurate accounting of the full range of economic, environmental, and other relevant costs and benefits for options that reuse dredged material, as well as for other disposal methods.

National and Regional Dredging Teams

Recognizing the benefits of improved sediment management, a number of ports have developed long-term plans for managing dredged material, including the ports of Boston, New York and New Jersey, Houston, Long Beach, Los Angeles, Oakland, Seattle, and others. These long-term plans were intended to avoid delays caused by new environmental testing procedures, the determination that some dredged material was not suitable for ocean disposal, and the lack of disposal alternatives, all of which had added years to the expected completion of some port expansion and navigational dredging projects.
Long-term planning efforts for managing dredged material can bring together federal agencies, port authorities, state and local governments, natural resource agencies, public interest groups, the maritime industry, and private citizens to forge agreements that, among other factors, increase the likelihood of beneficial uses of dredged material. These types of initiatives were encouraged by a 1994 Interagency Working Group report to the Secretary of Transportation, *The Dredging Process in the United States: An Action Plan for Improvement*. Three years after the Action Plan's publication, a 1997 National Research Council report echoed its findings and recommendations.\(^9\)

The Action Plan concluded that early acknowledgment of environmental concerns and effective public outreach could substantially reduce potential conflicts and delays. Specific recommendations included: creation of a timely, efficient, and predictable regulatory process; support for port or regional scale planning by partnerships that involve the federal government, port authorities, state and local governments, natural resource agencies, public interest groups, the maritime industry, and private citizens prior to seeking project approval; involvement of dredged material managers in watershed planning to emphasize the importance of reducing sediment loadings and contamination at their source; and encouragement for the environmentally sound, beneficial use of dredged materials, such as wetlands creation and beach nourishment. The Action Plan also emphasized the need to continually integrate the best available science.

In subsequent years, progress was made on some elements of the Action Plan, most importantly the 1995 establishment of the National Dredging Team co-chaired by EPA and USACE, but other elements lagged. In 2003, the National Dredging Team issued *Dredged Material Management: Action Agenda for the Next Decade*\(^{10}\) as a successor to the 1994 Action Plan. The Action Agenda's twenty-two recommendations focus on increasing beneficial use of dredged material, using effective watershed planning to improve sediment management, strengthening and expanding the number of regional dredging teams, and improving integration with water quality, coastal management, and fisheries management programs.

Recommendation 12–4

The National Dredging Team should ensure vigorous and sustained implementation of the recommendations contained in its *Dredged Material Management: Action Agenda for the Next Decade*, moving toward more ecosystem-based approaches. Regional dredging teams, working with regional ocean councils, should establish sediment management programs that expand beyond single watersheds to larger regional ecosystems.

Improving Understanding, Assessment, and Treatment

An enormous constraint to improved sediment management is a poor understanding of sediment processes in the marine environment and a paucity of effective management techniques. This is particularly true for contaminated sediment.

Coordinated Strategy Needed

Numerous ongoing research programs exist to improve the nation's understanding of sediments and sediment management techniques, but they are often fragmented, uncoordinated, and inadequately funded. Despite some scientific advances, these programs have not produced the needed engineering models, innovative management techniques and technologies, or comprehensive information about the source, movement, location, volume, quality, and appropriate use or disposal of sediment on a regional and national basis.
The National Shoreline Management Study, a USACE initiative launched in 2002, holds promise for yielding information to better coordinate and synthesize federal sediment activities. The study is examining why, where, and to what extent U.S. shorelines erode or accrete and will investigate other aspects of sediment management, such as economic and environmental issues and the roles of stakeholders in shoreline management. The results could help establish national priorities for shoreline management, but only if there is a mechanism for translating those results into action. In addition to maintaining the National Shoreline Management Study, which looks primarily at physical shoreline processes, USACE should significantly expand support for research and monitoring of ecological and biological functions and processes.

The U.S. Geological Survey (USGS) plays an important role by collecting, analyzing, interpreting, and disseminating data on sediment flows and chemistry independent of any regulatory or operational concerns. Thus, USGS can be instrumental in providing a reliable scientific foundation for a new approach to managing sediments.

Recommendation 12–5
The U.S. Army Corps of Engineers, working with U.S. Department of the Interior agencies, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency, in consultation with state and local governments, should develop and implement a strategy for improved assessments, monitoring, research, and technology development to enhance sediment management.

The enhanced sediment monitoring called for in Recommendation 12–5 is an integral part of the national monitoring network described in Chapter 15.

USACE’s role in major construction projects that significantly alter watersheds brings with it an obligation to understand the potential impacts of these activities prior to their implementation. Current project-by-project planning and funding, along with severely limited discretionary funds for broader ecosystem research, have made this extremely difficult. Existing funding formulas also severely limit post-project monitoring, precluding long-term analyses of project outcomes and adoption of adaptive management.

Recommendation 12–6
Congress should modify its current authorization and funding processes to require the U.S. Army Corps of Engineers (USACE), or an appropriate third party, to monitor outcomes from past USACE projects and assess the cumulative, regional impacts of USACE activities within coastal watersheds and ecosystems. Such assessments should be peer-reviewed consistent with recommendations from the National Research Council.

Contaminated Sediment
The characterization, containment, and treatment of contaminated sediment in marine environments, whether through removal or treatment in place, continue to be technically difficult and prohibitively expensive. Thus, the best defense against damage from contaminated sediment is to prevent its creation or escape. Unfortunately, because reductions from upland point and nonpoint sources remain a major challenge, additional marine sites will most likely continue to be affected.

Recent EPA and National Research Council reports recognize the difficult ecological and economic problems associated with contaminated sediment management and stress the importance of adopting an adaptive management approach to deal with such problems.11-12 Scientifically sound methods for identifying contaminated sediment and developing innovative technologies for source reduction, as well as improved dredging and treatment of this material, are critical steps toward improving the economic and ecological
health of coastal areas. To be successful, these efforts will require new resources and effective regional planning. The contaminated sediment science plan, issued by EPA in draft form in 2002 but never finalized, appears to provide a sound framework for identifying and ranking the science and approaches needed for improved management of contaminated sediment, and for promoting improved coordination within EPA and among the many other federal entities with contaminated sediment responsibilities.

Recommendation 12–7
The U.S. Environmental Protection Agency, working with other appropriate entities, including state and local governments, should build upon EPA's 2002 draft contaminated sediments science plan to develop and conduct coordinated strategies for assessment, monitoring, and research to better understand how contaminated sediment is created and transported. The strategies should also develop technologies for better prevention, safer dredging or onsite treatment, and more effective post-recovery treatment of contaminated dredged material.

References

3. Ibid.

CHAPTER 13

SUPPORTING MARINE COMMERCE AND TRANSPORTATION

Marine commerce and transportation are vital to the nation’s economy and security. The waterborne movement of cargo and passengers requires an efficient marine transportation system that is smoothly connected to the nation’s inland highway and rail infrastructure to meet current and future demands. In addition, improving the nation’s marine transportation system depends on improved interagency coordination, including between marine transportation and other important ocean and coastal activities, enhanced emergency preparedness and security at the nation’s ports, and improved strategic planning to ensure that increased levels of marine commerce are managed in the most effective, safe, secure, and environmentally responsible manner possible.

Connecting People, Places, and Products

The U.S. marine transportation system is the nation’s link to global commerce and an essential and growing component of the national economy. The movement of manufacturing jobs from the United States to overseas, the nation’s dependence on raw materials from other countries, global competition to provide high-quality goods at competitive prices, and consumer demand have combined to increase the nation’s dependence on the import of foreign materials and goods. At the same time, increasing affluence in foreign nations, coupled with worldwide population growth, has stimulated international demand for U.S. agricultural and manufactured products.

Value of the Marine Transportation System

The world’s oceans and inland waterways are the highways of choice for the global movement of this vast international trade. As the world’s largest trading nation, the United States imports and exports more merchandise than any other country (Table 13.1) and has one of the most extensive marine transportation systems in the world. U.S. marine import-export trade accounts for nearly 7 percent of the nation’s gross domestic product. Domestically, coastal and inland marine trade amounts to roughly one billion tons of cargo, worth more than $220 billion a year.

The U.S. marine transportation system is a complex public–private partnership with many participants. It consists of state, territorial, local, and privately owned facilities managed, financed, and operated by federal, state, territorial, and local governments.
The system is a highly complex and interconnected mix of waterways, ports and terminals, water- and land-based intermodal connections, vessels, vehicles, equipment, personnel, support service industries, and users. This system provides a number of services, including: supporting the waterborne movement of foreign and domestic cargo; moving passengers and vehicles through numerous ferry systems; serving recreational boating, commercial fishing vessels, and cruise liners; and generating millions of jobs for Americans and for the nation’s international trading partners. The U.S. marine transportation system also plays an important national security role as a point of entry for foreign shipments and a conduit for the movement of military equipment, supplies, and personnel to and from overseas locations.

Components of the Marine Transportation System

Each element of marine transportation is a complex system within itself and is closely linked with all the other components. More detailed information about the U.S. marine commerce and transportation sectors is provided in Appendix 5.

Ports
The nation’s marine, Great Lakes, and inland ports are critical components of the overall transportation infrastructure (Figure 13.1). Their efficiency and capacity are essential to U.S. importers, exporters, consumers, and domestic suppliers. The majority of U.S. international marine commerce flows through a relatively small number of ports that have the capacity to accommodate large vessels. Out of a total of 326 ports nationwide, 10 of them handle 85 percent of all containerized ship-borne cargo, with the ports of Los Angeles and Long Beach accounting for nearly 40 percent of all such cargo. Ports in Hawaii, Alaska, and the U.S. territories and commonwealths play a special role because they are the primary economically viable link for the movement of commodities to and from these areas.

With international and domestic marine cargo projected to double over the next twenty years, a key issue will be the ability of the nation’s intermodal transportation system—its waterways, railways, highways, and airports—to move cargo into and out of U.S. ports (Figure 13.2). Some of the nation’s larger ports are already facing significant obstacles to moving cargo due to inadequate intermodal connections, particularly connections between ports and highways. Complicating this situation is the potentially competing demands being placed on the nation’s ports and waterways by passenger ferries, cruise liners, fishing vessels,
and recreational boating. With the possible exception of fishing vessels, all other marine sectors are expected to continue to show significant growth.

Vessels

Ships entering and leaving U.S. ports include a mix of foreign and U.S.-registered vessels, and a broad variety of vessel types and sizes ranging from large container ships, tankers, and bulk carriers, to medium-sized barges, passenger ferries and cruise liners, and smaller fishing and recreational boats. As the number and size of vessels increase, additional pressures will be placed on the nation’s ports and waterways. (For a discussion of issues related to vessel safety and environmental protection, see Chapter 16.)

The vast majority of international trade is carried on foreign-registered and foreign-crewed vessels that can be operated at considerably lower cost than U.S.-registered vessels crewed by U.S. merchant mariners. The top twenty international merchant fleet nations operate more than 28,000 vessels worldwide. While the United States is ranked fourteenth, its share of the international fleet is only 454 vessels, or about 1 percent of the total. In contrast, the domestic U.S. marine fleet numbers more than 30,000 tugboats, towboats, and barges. The domestic fleet is protected from foreign competition in U.S. waters by the Merchant Marine Act, more commonly known as the Jones Act.

As international marine commerce has grown, ships have grown in size to accommodate increased amounts of cargo. The container ships of the 1960s could carry only a few hundred containers (commonly measured in 20-foot equivalent units, or TEUs). Today, 5,000 TEU vessels are quite common, and the largest container vessels can carry more than 8,000 TEUs, requiring navigation channels up to 50 feet deep. Bulk cargo ships are also increasing in size. For example, ultra-large crude oil carriers, known as super tankers, are approaching lengths of 1,500 feet and widths of 300 feet, requiring channels deeper than 90 feet.

The U.S. marine transportation system also moves millions of passengers every year on cruise liners and ferries. The cruise industry has experienced constant growth worldwide since 1980. Globally, there were more than nine million cruise passengers with a little more than 70 percent, or 6.4 million passengers, embarking from U.S. ports in 2002 (see Figure 16.1), and 176 U.S. and foreign flag cruise ships operated in the North American cruise industry. This annual growth rate of just over 8 percent is expected to increase as the demand for cruise vacations grows.

The 168 U.S. passenger ferries, operating in thirty-five states, transported nearly ninety million people for work, leisure, and other purposes in 1999. Continued population growth in coastal metropolitan areas, coupled with increased vehicle traffic on the nation’s highway systems, makes commuter passenger-vehicle ferries attractive transportation options for the future in selected areas. The U.S. passenger ferry industry has shown consistent growth, largely because coastal municipalities and states have invested in ferry systems to ease highway congestion.

Shipbuilding and Repair

Shipbuilding in the United States has historically been considered a strategic industry, supporting both military and commercial interests. Despite this important domestic role, the
U.S. shipbuilding and repair industry is in serious decline. Employment is about 50 percent of what it was in the early 1980s, and companies have had to consolidate to survive.

Currently, the U.S. shipbuilding and repair industry consists of about 250 private companies and 5 publicly-owned and operated repair yards. In 2002, the United States had only 24 major commercial shipbuilding yards capable of building vessels over 122 meters in length, and only nine of these were actively building ships. Combined, they accounted for only about 1.5 percent of total world ship tonnage on order that year. Much of the U.S. commercial shipbuilding and repair industry works in niche markets, building and repairing mid-sized vessels including ferries, offshore oil and gas supply boats, research and patrol boats, small to mid-size container ships, tugboats, towboats, barges, fishing boats, luxury yachts, and U.S. military vessels. Although high operating costs prevent the U.S. shipbuilding and repair industry from being competitive internationally, the Jones Act insulates the U.S. industry from foreign competition on contracts related to the U.S. domestic and military fleets.

Navigational Aids
Aids to navigation—including buoys, warning lights, maps and charts, hydrographic and environmental data, and communications, positioning, and control systems—are essential to the protection of life and property and the enhancement of marine efficiency, especially as the number of larger and faster vessels visiting U.S. ports increases. Particularly important are recent advances in highly accurate and dependable navigation technology that have revolutionized safe marine passage, including harbor approaches and entrances, and avoidance of shallow water, bottom obstacles, and other vessels. Today's satellite-based global positioning system enables a wide range of mariners to plot a course within a few yards of their actual position. In addition, the National Oceanic and Atmospheric Administration (NOAA) has developed a suite of tools that promote safe and efficient navigation in major U.S. ports and harbors. These include navigation information products, such as georeferenced Electronic Navigational Charts, and real-time capabilities for tides and currents, such as the Physical Oceanographic Real Time System. NOAA's navigation products are especially useful to mariners in meeting real-time navigation requirements to avoid collisions and groundings and in determining the best delivery routes.

Figure 13.2 Goods Traveling through U.S. Ports Are Transported Nationwide

Network Flows (tons)

- 1 to 250,000
- 250,001 to 500,000
- 500,001 to 1,000,000
- More than 1,000,000

Highways are major arteries for the flow of international freight throughout the United States. As seen in these two maps, the ports of Los Angeles/Long Beach and New York and New Jersey are hubs for the distribution and collection of truck cargo traveling throughout the nation.

Harbors, Channels, and Waterways
The nation’s network of harbors, channels, and intracoastal and inland waterways is a vital component of both the U.S. marine transportation system and the overall U.S. intermodal infrastructure. In addition to providing corridors for international trade, this network links U.S. inland ports with coastal and Great Lakes ports, enabling the waterborne movement of domestic cargo, much of which is destined for the international market.

Dredging harbors, channels, and waterways to maintain and increase water depth and to widen and lengthen channels to accommodate wider and deeper-draft ships is critical for the successful operation of the nation’s ports. In 2001, the federal government spent $868 million on dredging projects to maintain and deepen the nation's harbors and channels.12 (See Chapter 12 for a discussion of the complex issues associated with dredging and other sediment management projects.)

Personnel
The U.S. marine transportation system requires a highly skilled and diverse workforce to handle increasingly computerized equipment and vessels, sophisticated electronic navigational aids, and new port technology for the movement of cargo. The U.S. Merchant Marine Academy, the six state-operated marine academies, and other marine education and training facilities in the United States offer training that covers virtually all facets of the U.S. marine transportation system, including at-sea ship operations, port management, marine business, facilities, and safety; and environmental engineering and protection. As the U.S. system becomes more complex, training requirements will increase. In this area as in many others, the nation should be positioned to meet the demand for the highly skilled workforce of the future.

Positioning the U.S. Marine Transportation System for the Future
For the nation’s marine transportation system to meet current and future demands, ongoing maintenance, improvement, and expansion will be required. A key prerequisite for a robust system is better coordination, planning, decision making, and allocation of resources at the federal level. In particular, it will be essential to enhance the connections between this system and other modes of transportation, such as highways, railways, and airports. At the same time, in moving toward an ecosystem-based management approach, planning for the movement of cargo and passengers should be coordinated with the management of many other ocean and coastal uses and activities, and with efforts to protect the marine environment.

Environmentally sound management of port operations is critical to the viability of port areas as natural resources as well as economic engines and to the integration of ports into an ecosystem-based management approach. The U.S. Environmental Protection Agency’s (EPA’s) Green Ports Program is an example of an existing mechanism that incorporates environmental stewardship into port operation practices and that has been implemented by numerous U.S. ports along the Pacific, Gulf of Mexico, Atlantic, and Great Lakes.
coasts. One issue that may have specific consequences for marine transportation is climate change, whether gradual or abrupt, and the changes in environmental conditions that might result, such as decreased polar ice coverage, increased frequency or intensity of storms, and changes in sea-level.

Federal Roles

Within the federal government, responsibility for marine commerce and transportation is spread among numerous agencies, primarily the U.S. Department of Transportation (DOT), U.S. Coast Guard, U.S. Army Corps of Engineers, NOAA, U.S. Customs and Border Protection, and EPA. These agencies have many roles, including vessel traffic management, national security, marine safety, waterway maintenance, environmental protection, and customs.

In 2004, a National Research Council (NRC) report concluded that federal responsibilities for the marine transportation system are highly dispersed, decentralized, poorly coordinated, and do not correspond well with the structure and function of such system. Unlike the highway system, which is primarily the responsibility of DOT's Federal Highway Administration, and the U.S. aviation system, which is the responsibility of DOT's Federal Aviation Administration, the marine transportation system does not have a clearly defined lead federal agency. Statutory, regulatory, and policy differences among federal agencies with roles in marine transportation lead to fragmentation, competition, and in some cases, an inability to work collaboratively due to conflicting mandates. The NRC report was based on an analytical framework that examined four key federal interests: safety, security, commerce, and environmental protection. Federal policy makers can use this framework to identify critical needs within the system and target efforts to meet those needs most efficiently.

National leadership and support will be needed to achieve better integration within the federal government, better links with the rest of the nation's transportation infrastructure, and coordination between marine transportation and other important ocean and coastal uses and activities. The logical agency to assume this responsibility, as it does for the highway, aviation, and railway systems, is DOT.

Recommendation 13–1

Congress should designate the U.S. Department of Transportation (DOT) as the lead federal agency for planning and oversight of the marine transportation system and DOT should submit regular reports to Congress on the condition and future needs of the system. The National Ocean Council should identify overlapping functions in other federal agencies and make recommendations concerning the advisability of transferring those functions to DOT.

Even with one clearly mandated lead federal agency, coordination will be needed among the federal and non-federal participants in the marine transportation system, given the significance of domestic and international trade to the nation and the complexity of the components that make up the system. In an effort to address this, eighteen federal agencies with responsibilities for various aspects of the U.S. marine transportation system (Box 13.1) signed a memorandum of understanding in 2000 that created the Interagency Committee for the Marine Transportation System.

The committee's goal is to enhance information exchange among the member agencies; its safety, security, and environmental subcommittees also serve as forums for the resolution of shared issues. However, the ability of the committee to engage in more substantive policy or budgetary planning is very limited. To become more effective, the responsibility and accountability of the committee will need to be elevated.
Recommendation 13–2

Congress should codify the Interagency Committee for the Marine Transportation System and place it under the oversight of the National Ocean Council (NOC).

Under the oversight of the NOC’s Committee on Ocean Resource Management, the Interagency Committee for the Marine Transportation System should:

- be chaired by the U.S. Department of Transportation.
- improve coordination among all participants in the U.S. marine transportation system.
- promote the integration of marine transportation with other modes of transportation and with other ocean and coastal uses and activities.
- recommend strategies and plans for: better informing the public of the importance of marine commerce and transportation; devising alternate funding scenarios to meet short- and long-term demands on the marine transportation system; matching federal revenues derived from marine transportation with funding needs to maintain and improve the system; and delineating short- and long-term priorities.

Because marine transportation also involves many actors outside the federal government, the Marine Transportation System National Advisory Council was created to serve as a forum for coordination among nonfederal participants in the marine transportation system and a venue for providing input to the federal government on important national issues (Box 13.2). This nonfederal advisory body can play a useful role as an advisor to the National Ocean Council as well as to DOT, where its charter resides. It could also be helpful in improving collaborations between coastal management programs and the transportation planning and priority setting process.

Links to the National Transportation Infrastructure

An important step in allowing the U.S. marine transportation system to grow, while minimizing increased congestion, delays, and costs to U.S. businesses and consumers, is to improve the movement of cargo into and out of ports. Existing intermodal connections are inadequate to meet the expected increase in foreign and domestic trade. The nation's transportation infrastructure is largely an agglomeration of competing transportation modes, each focusing on its own priorities. While this approach has produced an extensive infrastructure, a national strategy is needed to enhance the connections among these modes, including the nation's ports, and ensure greater overall effectiveness.

Recommendation 13–3

The U.S. Department of Transportation should draft a new national freight transportation strategy to support continued growth of the nation’s economy and international and domestic trade. This strategy should improve the links between the marine transportation system and other components of the transportation infrastructure, including highways, railways, and airports. Based on the new strategy, investments of national transportation funds should be directed toward planning and implementation of intermodal projects of national significance.

In developing the national freight transportation strategy, DOT should emphasize strategic planning with states, regions, and the public sector, as is currently being carried out for the U.S. highway system.

The movement of cargo by inland and coastal waterways, known as short sea shipping, is an emerging mode of transporting cargo. Significant increases in short sea shipping between U.S. ports would help to alleviate highway and landside port congestion by decreasing the volume of truck and railway cargo entering and leaving U.S. ports. It would also serve to bolster the U.S. shipbuilding industry and the U.S. Merchant Marine as demand increased for U.S. port-to-port conveyance.
Recommendation 13–4

The U.S. Department of Transportation should conduct a thorough analysis and assessment of the potential societal and economic benefits of increased short sea shipping.

Information Needs

Planning for the future of the U.S. marine transportation system requires accurate and timely information, including estimates of the volume of current and future cargo transportation, their origins and destinations, and the capacity of the various transportation modes. Such information is essential to understand the strengths and weaknesses of the current system and the challenges and opportunities for improving its effectiveness. Transportation planners and coastal managers also need better information to improve connections between marine and landside transportation systems and to improve the overall management of the wide range of interrelated ocean and coastal uses and activities that includes the marine transportation system.
Recommendation 13–5
The U.S. Department of Transportation (DOT), working with other appropriate entities, should establish a national data collection, research, and analysis program to provide a comprehensive picture of freight flows in the United States and to enhance the performance of the nation’s intermodal transportation system. DOT should periodically assess and prioritize the nation’s future needs for ports and intermodal transportation capacity to fulfill the needs of the nation’s expected future growth in marine commerce.

The freight information collection program should include:
• economic models that project trade and traffic growth and determine the impacts of growth on U.S. ports and waterways and the inland infrastructures connected to them.
• models and guides to identify bottlenecks and capacity shortfalls.
• consistent, nationally accepted definitions and protocols for measuring capacity.
• innovative trade and transportation data collection technology and research to fill critical data gaps.
• assessment of the social and economic ramifications of marine transportation investments as compared to other transportation investments.

Emergency Preparedness
Natural disasters, labor disputes, terrorist attacks, ship collisions, spills of hazardous materials, and many other human and naturally caused events can disrupt the flow of marine cargo and passenger services, causing severe economic and social ramifications nationally and internationally. Diminished port capacity might also affect vital military operations. A strategic scenario of a terrorist event conducted in 2002 demonstrated the potential for $60 billion in losses in the case of a twelve-day closure of all ports in the nation. Labor disputes can also present significant interruptions in port operations. A ten-day lockout of workers at twenty-nine West Coast ports in October 2002 caused an estimated $15.6 billion in losses to the national economy, and demonstrated the cascading consequences of a major port shutdown.

Port Security
In the wake of the September 11, 2001 attacks, a major challenge has emerged to increase security at the nation's ports, including enhanced control of the six million imported containers and many hazardous cargo tank ships that move through U.S. ports annually. The U.S. Department of Homeland Security is coordinating extensive efforts to address port security, including the development of a National Maritime Transportation Security Plan, area-based security initiatives, and requirements for certain vessels and port facilities to conduct security threat assessments, develop security plans, designate security officers, perform drills, and take appropriate preventive measures.

Ship Collisions and Groundings
Ship collisions, groundings, and other types of underwater obstructions in and near ports can cause port closures, particularly when safe navigation is impeded. Cleanup operations in response to spills associated with such incidents may complicate the restoration of traffic flow. Further constraining the ability to plan for and respond to such problems is the lack of adequate salvage capabilities nationwide.

Natural Disasters
There are many historical examples of natural disasters—such as hurricanes, earthquakes, tsunamis, and droughts—affecting safe navigation and port operations. A 1994 tropical rainfall in Houston, Texas, caused the closure of the Houston Ship Channel for several days due to flooding, dangerous currents, pipeline breaks and fires, shoaling, and channel obstruc-
tions. Similarly, in September 2003, Hurricane Isabel forced closures and limited operations at major ports and shipping channels along the Mid-Atlantic coast over the period of a week. Escalating traffic flow combined with the increased potential for emergency port closures call for enhanced emergency preparedness and improved contingency planning for U.S. ports.

Recommendation 13–6

The U.S. Department of Transportation (DOT) should incorporate emergency preparedness requirements in developing a national freight transportation strategy. Because this will require input from many agencies and stakeholders, DOT should work closely with the U.S. Department of Homeland Security, Federal Emergency Management Agency, National Oceanic and Atmospheric Administration, U.S. Environmental Protection Agency, ports, and marine industries.

Emergency preparedness planning should focus on:
- prevention of threats to national security and port operations.
- response and recovery practices, including assessments of available resources such as salvage and harbor clearance capacity and alternative port capacity.
- technological requirements for security screening, cargo movement and tracking, and traffic management.
- research and development needs related to innovative technologies that can minimize interruptions and security risks to port operations.
- identification of resources needed to implement prevention, response and recovery strategies for the nation’s ports.

References

11 Ibid.

PART V

CLEAR WATERS AHEAD: COASTAL AND OCEAN WATER QUALITY

CHAPTER 14
Addressing Coastal Water Pollution ... 204

CHAPTER 15
Creating a National Monitoring Network ... 226

CHAPTER 16
Limiting Vessel Pollution and Improving Vessel Safety 236

CHAPTER 17
Preventing the Spread of Invasive Species .. 252

CHAPTER 18
Reducing Marine Debris .. 264
CHAPTER 14

ADDRESSING COASTAL WATER POLLUTION

Coastal waters are subject to cumulative impacts from a variety of pollutants—from near and far, and from point, nonpoint, and airborne sources. For this reason, any solution must be founded on an ecosystem-based and watershed management approach involving a broad range of agencies, programs, and individuals. Solutions will also require a substantial financial investment and will take time. Over the last few decades, great strides have been made in controlling water pollution from point sources, although further improvements could be realized through increased funding, strengthened enforcement, and promotion of innovative approaches such as market-based incentives. However, substantial enhancement of coastal water quality will require significant reductions in nonpoint source pollution—a technical and political challenge. Establishing measurable pollution reduction goals for coastal areas is needed, as is coordination of the many related agencies and programs to effectively target the various laws, programs, funds, training, technical assistance, incentives, disincentives, and other management tools to address nonpoint source pollution of coastal waters.

STOPPING THE DEGRADATION OF COASTAL WATERS

Coastal waters are one of the nation’s greatest assets, yet they are being bombarded with pollution from all directions. The heavy concentration of activity in coastal areas, combined with pollutants flowing from streams far inland and others carried through the air great distances from their source, are the primary causes of nutrient enrichment, hypoxia, harmful algal blooms, toxic contamination, sedimentation, and other problems that plague coastal waters. Not only do degraded waters cause significant ecological damage, they also lead to economic impacts due to beach closures, curtailed recreational activities, and additional health care costs. Reducing water pollution will result in cleaner coastal waters, healthy habitats that support aquatic life, and a suite of economic benefits.

The U.S. Environmental Protection Agency’s (EPA’s) 2002 National Water Quality Inventory found that just over half of the estuarine areas assessed were polluted to the extent that their use was compromised, either for aquatic life, drinking water, swimming, boating, or fish consumption. The interagency 2004 Draft National Coastal Condition Report II rated coastal waters along most of the continental United States as being in fair condition, with poor conditions in the Northeast and Puerto Rico regions (Figure 14.1).
The protection of coastal waters will require managers to address a range of human activities that generate pollution in many locations and a variety of pollutants following different pathways. Management that is ecosystem-based and that considers entire watersheds will help guide this daunting task.

The complex array of laws, agencies, and programs that address water pollution, and the number of parties involved, will require greatly enhanced coordination among federal agencies, primarily EPA, the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Agriculture (USDA), and U.S. Army Corps of Engineers (USACE). Greater coordination is also needed between the federal government and managers at the state, territorial, tribal, and local levels, watershed groups, nongovernmental organizations, private stakeholders, and the academic and research communities. The case of nutrient pollution, discussed in Box 14.1, illustrates many of the challenges involved in improving coastal water quality.

Reducing Point Sources of Pollution

With strong public support, government and private sector actions over the past three decades have made great strides in controlling water pollution from identifiable point
2000 National Research Council report called nutrient pollution the most pervasive and troubling pollution problem currently facing U.S. coastal waters.\(^i\) Although nutrients such as nitrogen and phosphorus are necessary to marine ecosystems in small quantities, human activities on the coasts and inland areas have greatly increased the flow of nutrients, in some cases to harmful levels (Figure 14.2).

Nutrient pollution defies simple categorization and is difficult to control because it can come from point, nonpoint, and atmospheric sources, from near and far. The main sources include runoff from agricultural land, animal feeding operations, and urban areas, discharges from wastewater treatment plants, and atmospheric deposition of chemicals released during fossil fuel combustion. Human activities have approximately doubled the amount of reactive nitrogen cycling through the biosphere compared to pre-industrial conditions, with most of this increase occurring during the last thirty years.\(^ii\) The largest human additions of nitrogen result from an increased use of inorganic fertilizers.\(^iii\)

Nutrient pollution leads to a host of ecological and economic impacts including: fish kills due to oxygen depletion; loss of important and sensitive coastal habitats, such as seagrasses; excessive and sometimes toxic algal blooms; changes in marine biodiversity; increases in incidents of human illness; and reductions in tourism. The greatest impacts occur in estuaries and nearby coastal regions. Nutrient pollution has been particularly severe along the lower Atlantic Coast and in the Gulf of Mexico. The infamous “dead zone” in the Gulf of Mexico is an area of seasonal oxygen depletion caused by nutrients draining from the Mississippi River Basin.

Smaller dead zones are becoming increasingly frequent in other areas, including Lake Erie. The severity and extent of nutrient pollution are expected to worsen in more than half of the nation’s estuaries and coastal waters by 2020.\(^iv\) Without concerted, coordinated, and sustained action to reduce nitrogen sources, nutrient pollution will be a continuing problem in the nation’s coastal waters.

Addressing such pollution will require prompt establishment of standards for nutrient loads, including both nitrogen and phosphorus, by the U.S. Environmental Protection Agency and the states.

sources, such as industrial facilities and wastewater treatment plants, whose discharges can be monitored as they emerge from the end of a pipe. Even so, opportunities remain to further reduce point source impacts on U.S. coastal waters and improve compliance with existing environmental requirements.

Existing Management Tools

Point source pollution is primarily addressed through a few EPA programs, including the National Pollutant Discharge Elimination System (NPDES), the Total Maximum Daily Load (TMDL) Program, and the Clean Water State Revolving Fund.

The National Pollutant Discharge Elimination System

Over the past thirty years, the Clean Water Act, including its NPDES program, has led to dramatic reductions of polluted effluents. EPA typically delegates administration of this program to the states, and the state or EPA then regulates polluters by issuing permits that reflect federal standards for discharges. If the regulatory agency determines that a particular water body is not meeting water quality standards, permittees discharging to those waters may be required to implement more stringent controls.

The Total Maximum Daily Load Program

The TMDL program, which is carried out by states, territories, and authorized tribes with oversight and technical assistance from EPA, establishes the maximum amount of a pollutant, from point and nonpoint sources, that can be present in a water body while still meeting water quality standards. States must list waters that continue to exceed water quality standards even after application of required levels of pollution control technology, and then establish TMDLs for these listed water bodies. States are directed to develop a TMDL for each pollutant of concern and then implement plans to achieve and maintain those TMDLs by allocating reductions among all sources. EPA must review and approve state lists and TMDLs. To include a margin of safety, states are required to take seasonal variations into account.

Clean Water State Revolving Funds

Under the Clean Water Act, the federal government has provided significant financial support for water quality infrastructure improvement. From 1970 to 1995, funding was provided under the Federal Construction Grants Program to build wastewater treatment plants and collection systems, without any requirement for repayment. In 1987, in a major shift in policy, Congress established and began to target federal funding toward the State Revolving Funds, in which the federal government provides capitalization grants for a more self-sustaining, state-administered revolving loan fund (Figure 14.3). States are required to provide 20 percent in matching funds. States decide which projects are the highest priorities for funding, the borrowers repay the loans, and the program loans the money again to other borrowers. States provide below-market interest rates and other financial incentives to towns, counties, nonprofit organizations, farmers, and homeowners for water quality improvement projects. The funds finance capital construction costs—not operations and maintenance—and are mostly used to build or improve wastewater treatment plants and related sewer systems.

This program is widely considered a cost-effective, long-term mechanism for meeting infrastructure demands. From 1998 to 2002, the funds provided an average of $3.8 billion per year for water quality improvement. Since the program’s inception, the federal government’s investment of $22.4 billion has resulted in a total of $43.5 billion being provided for infrastructure projects.\(^1\) State Revolving Funds are crucial to restoring, maintaining, and improving the nation’s water quality.
Major Point Sources

The major point sources of pollution to the nation’s waterways include wastewater treatment plants, sewer system overflows, septic systems, industrial facilities, and animal feeding operations.

Stormwater, which is formally classified as a point source, is grouped with nonpoint sources in this chapter. Stormwater differs considerably from most industrial or urban point sources and, like other nonpoint sources, is driven primarily by precipitation. Nevertheless, sewage and stormwater will need to be addressed together in making wastewater management decisions.

Wastewater Treatment Plants

Municipal wastewater comes primarily from individual households and from manufacturing and commercial activities. Wastewater entering a treatment plant may contain organic pollutants, metals, nutrients, sediment, bacteria, viruses, and toxic substances. Wastewater treatment plants have substantially met their original goal of removing most pathogens, organic materials, and suspended solids; however, nutrients and many chemicals are not effectively removed through primary and secondary treatment processes. The effluent from treatment plants can be discharged directly into rivers, estuaries, coastal waters, or the ocean. Even discharges into waters far upstream can have serious impacts on the coast.

Nutrient pollution has had a major impact on coastal waters, contributing to toxic algal blooms, loss of seagrass habitat and coral reefs, and oxygen depletion. Unfortunately, primary and secondary wastewater treatment have not been effective in adequately removing nitrogen and phosphorus. In many heavily developed areas, wastewater treatment is unlikely to achieve nutrient-related standards and additional controls will be needed to
meet water quality goals. Decisions to require additional controls on wastewater treatment plants will need to be linked to the TMDL analysis described above, with appropriate allocation of nutrient reductions among all point and nonpoint sources that contribute to nutrient loads in the water body.

Advanced—or tertiary—treatment technologies, which can remove most nitrogen and phosphorus from wastewater treatment plant discharges, cost approximately 25 percent more than secondary treatment. These advanced technologies are being implemented in regions where wastewater discharges are significant sources of nutrient pollution, such as Tampa Bay and Chesapeake Bay. One recent success in developing and applying advanced treatment was at a Stamford, Connecticut wastewater treatment plant where a novel biological nutrient process removed much of the nitrogen at very little cost.

Ultimately, water conservation by users is the least expensive and most direct method of minimizing wastewater. In some locations, water quality impacts may also be avoided by re-using treated wastewater for beneficial purposes, such as maintaining landscaping or watering golf courses.

Primary and secondary wastewater treatment have been largely ineffective in removing many of the trace chemicals present in industrial and residential wastewater. These chemicals—including pharmaceuticals, antibiotics, hormones, insecticides, fire retardants, and detergents—are then discharged to surface waters. Although many of these substances may break down in the environment over time, continuous loading may maintain concentrations above levels at which biological effects occur. Designed to produce biological effects in humans, such compounds may also have unforeseen impacts on aquatic life. For example, the effluent from wastewater treatment plants has been shown to disrupt endocrine functions in some aquatic organisms.

The U.S. Geological Survey’s Toxic Substances Hydrology Program has recently completed the first comprehensive study on the distribution of these compounds in surface waters of the United States. Significant concentrations of many commonly used chemicals, including prescription and over-the-counter pharmaceuticals, have been detected in some coastal and ocean waters. The national monitoring network called for in Chapter 15 should track the presence of newly-detected wastewater contaminants such as residues from pharmaceuticals and antibiotics.

Recommendation 14–1

The U.S. Environmental Protection Agency (EPA), working with states, should require advanced nutrient removal for wastewater treatment plant discharges that contribute to degradation of nutrient-impaired waters as needed to attain water quality standards. EPA should also determine the extent of the impact of chemicals in wastewater from residential and industrial sources, including pharmaceuticals.

In particular, EPA should:

- support research and demonstration projects for biological nutrient removal and other innovative advanced treatment processes to eliminate nitrogen and phosphorus from wastewater discharges.
- ensure that information about innovative advanced treatment processes and technologies is widely disseminated.
- support development of technologies to reduce concentrations of pharmaceuticals, personal care product ingredients, and other biologically active contaminants in wastewater treatment plant discharges.

Sewer System Overflows

Combined sewer systems were designed to collect domestic sewage, industrial wastewater, and rainwater runoff or snowmelt in the same pipes. While these systems provided human health benefits at the time they were constructed, they have a major drawback:
when total water volumes exceed the system’s capacity, the overflow enters receiving
waters without treatment. Sanitary sewer systems, which are designed to transport only
domestic sewage and industrial wastewater, can also under some circumstances overflow,
discharging untreated wastewater.

EPA estimates that at least 40,000 sewers overflow every year, discharging wastewater
directly into rivers, estuaries, and oceans. In addition to causing human health problems
and closures of beaches and shellfishing areas, human sewage may be a contributing fac-
tor in the decline of coral reefs. Major new construction will be required to control sewer
system overflows.

Septic Systems

About 25 percent of the U.S. population is served by residential septic systems and about
33 percent of new homes use these systems. If not properly managed, septic systems can
become a significant source of coastal pollution, particularly pathogens and nutrients.
Septic systems can contaminate aquifers and coastal waters either by direct overflow from
improperly operating systems or by migration of pollutants through groundwater to sur-
face waters. The threat can be severe in places like Florida and Hawaii, especially if the
ground is highly permeable and the water table close to the surface. Government policies
and subtle socioeconomic factors may be encouraging new development that relies on
septic systems rather than centralized wastewater treatment, even in locations where pop-
ulation density would support centralization. To protect coastal waters, it is important to
ensure that existing and new septic systems are properly designed, located, constructed,
maintained, and inspected.

Recommendation 14–2

The U.S. Environmental Protection Agency (EPA), working with states, should increase techni-
cal and financial assistance to help communities improve the permitting, design, installation,
operation, and maintenance of septic systems and other on-site treatment facilities. State and
local governments, with assistance from EPA, should adopt and enforce more effective build-
ing codes and zoning ordinances for septic systems and should improve public education
about the benefits of regular maintenance.

Industrial Facilities

While some industrial plants are connected to wastewater treatment plants, others dis-
charge directly into receiving waters. Discharges to wastewater treatment plants must
comply with certain pretreatment requirements established by the facility operator. Direct
discharges must have a NPDES permit which establishes limits on pollutants in the efflu-
ent. Initially, permits are based on the use of best available technology. However, in cases
where the use of best available technology is insufficient to meet water quality standards,
further action may be required.

Although the NPDES program and pretreatment requirements have made significant
progress in abating industrial sources of pollution, these sources remain a significant
cause of environmental degradation in some areas. Industrial discharges can contain
nutrients, mercury, lead, sulfur, oils, corrosives, and other toxic chemicals. Another group
of contaminants entering coastal waters from industrial sources is polychlorinated
biphenyls (PCBs), used mainly for insulating heavy electrical equipment. Although these
compounds are no longer manufactured and new uses are severely restricted, improper
disposal and continued use of older PCB-containing products persist. In many cases, dis-
charges from factories and power plants are also warmer than surrounding waters, result-
ing in thermal pollution that can disrupt local ecosystems. Industrial facilities also con-
tribute to atmospheric deposition, discussed later in this chapter.
Animal Feeding Operations
Many animal feeding operations (for example, for beef cattle, hogs, or poultry) are located in coastal areas or in upstream areas that flow into coastal waters; these businesses have become major contributors to coastal water pollution. Along the East Coast, many feeding operations are concentrated in the coastal plain, which is home to an economically important and ecologically sensitive network of wetlands, rivers, estuaries, and coastline.

In the United States, there are approximately 238,000 confined animal feeding operations, which produce an estimated 500 million tons of manure every year—more than 3 times the amount of sewage produced by humans. The animal manure generates discharges of solids and liquid effluent to groundwater and surface waters. Ammonia and other gases also volatilize from manure in storage facilities or on fields, resulting in atmospheric transport and deposition of pollutants. Pollutants originating at animal feeding operations include nutrients, ammonia, pathogens, hydrogen sulfide, methane, hormones, pesticides, and antibiotics.

Although some discharges from animal feeding operations resemble dispersed non-point sources of pollution, the larger concentrated animal feeding operations (CAFOs) are defined and regulated as point sources under the NPDES program of the Clean Water Act. EPA issued new effluent guidelines and permitting regulations for CAFOs in December 2002. Under these new regulations, all CAFOs (about 18,500 nationwide) will be required to obtain NPDES permits from EPA or a state by 2006. These regulations are expected to greatly reduce the amount of nutrients and sediment entering coastal waters. States that have appropriate legal authority may impose requirements in addition to those in the EPA CAFO regulations, such as regulating operations that are not large enough to be regulated under the EPA regulations, requiring increased monitoring and reporting, and requiring animal processors to be co-permittees along with their contractors who raise the animals.

Recommendation 14–3
The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture (USDA) should support research on the removal of nutrients from animal wastes that may pollute water bodies and on the impact of pharmaceuticals and other contaminants on water quality. EPA and USDA should also develop improved best management practices that retain nutrients and pathogens from animal waste on agricultural lands. Where necessary to meet water quality standards, states should issue regulatory controls on concentrated animal feeding operations in addition to those required by EPA.

Improving the Control of Point Sources
To control point source pollution effectively, the nation will need to maintain a long-term commitment to investments in infrastructure, improve the enforcement of water pollution standards, and promote market-based incentives and other innovative approaches.

The Need for Long-term Infrastructure Investments
The gap between existing and needed funding for wastewater and drinking water improvements is large, and serious adverse human health and environmental effects are likely if the challenges presented by an aging public infrastructure are not addressed. Capital spending for public wastewater treatment infrastructure is currently about $13 billion per year, and annual operations and maintenance costs are around $17 billion. EPA estimates that, over the next twenty years, the total additional investment needed for wastewater treatment infrastructure could exceed $270 billion, and for drinking water infrastructure could reach almost $265 billion. Sewer system overflows will be particularly costly to correct. These costs for infrastructure improvements are in addition to the
almost $1 billion per year required to close the widening national funding gap between the resources states have and the funding they need to fully implement water quality programs under the Clean Water Act.12

Given expected shortfalls in funding for wastewater-related construction, dramatic increases will be needed in the State Revolving Funds. Improving coastal water quality will require long-term financial investments by federal, state, and local governments, as well as by ratepayers.

Recommendation 14–4
The U.S. Environmental Protection Agency (EPA), working with state and local governments and other stakeholders, should develop and periodically review a comprehensive long-term plan to maintain and upgrade the nation’s aging and inadequate wastewater and drinking water infrastructure, anticipating demands for increased capacity to serve growing populations, correction of sewer overflows, and more stringent treatment in the coming decades. To implement this plan, Congress should significantly increase the Clean Water and Drinking Water State Revolving Funds.

Promoting Market-based Incentives
One powerful incentive-based approach to reducing water pollution in many watersheds is EPAs water pollutant trading policy. Under this policy, a source can be reduced beyond required levels, creating a credit that can then be sold to another source discharging the same pollutant to the same body of water. EPA has had a water pollutant trading policy in place since the 1990s, primarily for use among wastewater treatment plants.

EPA's trading policy takes a very cautious approach to considering trades of any toxic pollutant. Also, EPA does not support any trading that would result in locally high concentrations of pollutants exceeding water quality standards. For example, any trading of credits for total nitrogen will need to be designed to avoid excessive concentrations of ammonia in any location.

Recommendation 14–5
The U.S. Environmental Protection Agency, working with states, should experiment with tradable credits for nutrients and sediment as a water pollution management tool and evaluate the ongoing effectiveness of such programs in reducing water pollution.

Improving Enforcement
Many major point source facilities are exceeding water pollution permit limits. A significant number of serious offenders are exceeding pollution limits for toxic substances and many violators have been subject to only light penalties or no enforcement at all. In view of this, there is a strong need for improved oversight of states’ permitting and enforcement programs and for more funds and personnel at the state level to properly implement and enforce the NPDES program.

Recommendation 14–6
The U.S. Environmental Protection Agency, working with states, should modernize the National Pollutant Discharge Elimination System’s monitoring and information management system and strengthen the program’s enforcement to achieve greater compliance with permits.

Increasing the Focus on Nonpoint Sources of Pollution
While considerable progress has been made in reducing point sources of pollution, further progress toward improved coastal water quality will require significant reductions in non-point source pollution. This pollution arises when rainfall and snowmelt carry contami-
nants over land, into streams and groundwater, and
down to coastal waters. Nonpoint source pollutants
include: fertilizers and pesticides from rural farms
and urban lawns; bacteria and viruses from livestock
and pet waste; sediments from improperly managed
construction sites and timber harvesting; oil and
chemicals flowing over streets, parking lots, and
industrial facilities; and a variety of pollutants being
blown along airborne pathways. Ninety percent of
impaired water bodies do not meet water quality
standards at least in part because of nonpoint source
pollution (Figure 14.4).

Existing Management Tools

Decreasing polluted runoff from agricultural, urban,
and construction sites will be a significant challenge.
Numerous federal agency programs address nonpoint
sources of pollution, and some of the most important
programs are discussed briefly here. (Appendix D
includes additional program information.)

The Total Maximum Daily Load Program
As discussed earlier in this chapter, the TMDL program establishes the maximum amount
of a pollutant that can be present in a water body while still meeting the water quality stan-
dards. Because control of point sources has already received so much attention, the TMDL
program is shifting its focus to controlling nonpoint sources. As a first step, the program
requires states to identify water bodies that are not meeting water quality standards even
after all point sources have installed their required pollution control technologies.

Although the TMDL program has been criticized as lacking effective compliance mech-
nisms for nonpoint source pollution, the program does provide valuable quantitative infor-
mation on pollution amounts and impacts within a watershed. This information can be used
to generate greater public awareness and support for water quality initiatives and to identify
the most effective use of funds, such as those available through agricultural conservation
programs, to address nonpoint sources within a particular watershed. While TMDLs specify
limits for individual pollutants, EPA has been working with states and watershed managers
to consider the impacts of multiple pollutants in a larger watershed management context,
consistent with comprehensive ecosystem-based management initiatives.

Beaches Environmental Assessment and Coastal Health Act
Research two decades ago demonstrated a high correlation between swimming-related ill-
esses, such as gastroenteritis, and the presence of bacteria in the water. Congress enacted
the Beaches Environmental Assessment and Coastal Health Act of 2000 (BEACH Act) to
address this problem. The BEACH Act amended the Clean Water Act to require states to
set appropriate water quality standards for coastal recreational waters and authorized EPA
to award grants to eligible states, territories, tribes, and local governments in support of
programs to test and monitor such waters. EPA awarded approximately $10 million annu-
ally to eligible entities starting in 2002. However, compliance has not been uniform and
not all affected states and territories have adopted the criteria for pathogens required by
the BEACH Act. Full implementation of the statute will result in cleaner waters and better
public awareness about coastal water quality.
National Nonpoint Source Pollution Program
Under the National Nonpoint Source Pollution Program, established under Section 319 of the Clean Water Act, EPA provides matching grants to states to develop and implement statewide programs for managing nonpoint sources. Grants may be used for a wide range of activities, including technical and financial assistance, education and training, monitoring, watershed planning, technology transfer, demonstration projects, and state and local regulatory programs. States must prepare an assessment of waters where the control of nonpoint source pollution is necessary to meet water quality standards, identify the significant sources, and specify control measures. States must also develop a program that sets forth the best management practices necessary to remedy the problems.

Coastal Zone Management Act
One of the hallmarks of the Coastal Zone Management Act (CZMA) is that it requires each participating coastal state to incorporate the requirements of the Clean Water Act into the state's coastal management program. This provision has proved to be very useful in coordinating these separate federal programs at the state level.

In addition, the 1990 amendments to the CZMA created a program specifically to address nonpoint sources of coastal pollution. Section 6217 of the Coastal Zone Act Reauthorization Amendments (CZARA) requires all states with a federally-approved coastal management program to develop a plan that includes enforceable management measures to control nonpoint sources affecting coastal waters. Administration of this program is assigned to both EPA and NOAA to combine their experiences with the Clean Water Act and Coastal Zone Management Act programs. The nonpoint source pollution control program created by Section 6217 relies on implementation of best management practices, compiled by EPA. Of the states eligible to participate in the coastal management program, approximately half have received final approval of their coastal nonpoint programs and half have received conditional approval.

U.S. Department of Agriculture Conservation Programs
Agricultural conservation programs have been growing in importance, scope, and funding. In 2002, Congress dramatically increased funding for these programs, dwarfing the resources of the EPA and NOAA nonpoint programs. The agricultural conservation programs generally involve cash payments to farmers to implement conservation and best management practices on productive farm and ranch lands, retirement of land through permanent or long-term easements, and conservation and restoration of wetlands and grasslands. These programs present an opportunity to decrease nonpoint source pollution and improve aquatic habitats and natural resources—the challenge will be to ensure that the programs are targeted to maximize their benefits.

The Environmental Quality Incentives Program—the largest agricultural conservation program—will receive approximately $5.8 billion in funding through fiscal year 2007. This program offers financial and technical assistance to help eligible participants install or implement structural and management practices on eligible agricultural land. Farmers engaged in livestock or agricultural production on eligible land may participate in this program.

Another important USDA program is the Conservation Security Program, which will provide financial and technical assistance to implement stewardship measures. This program is anticipated to have its first signup in the summer of 2004 in eighteen high risk watersheds. It has the potential to improve water quality by encouraging conservation on land in active production and rewarding farmers who have been good stewards.
Major Nonpoint Sources

The majority of the diffuse pollution entering rivers, estuaries, coastal waters, and ultimately the oceans is from agricultural and stormwater runoff. Stormwater discharges were mentioned in connection with municipal wastewater pollution because they are technically classified as point sources. However, they behave quite differently from industrial or urban wastewater discharges, and like other nonpoint sources, are driven primarily by precipitation. Thus, they are discussed again here in conjunction with other nonpoint sources.

Agricultural Sources

There are more than 368 million acres of crop land in the United States. Agricultural activities can be a significant source of nonpoint pollution in rivers, lakes, and estuaries and a major contributor to groundwater contamination and wetlands degradation. Soil disturbance, irrigation, and application of herbicides, pesticides, fertilizers, and animal wastes to crop fields can lead to excess sediment, nutrients, pathogens, and salts in coastal waters.

Excessive sedimentation decreases water clarity, smothers fish spawning areas and coral reefs, and carries pollutants into water bodies. (A more complete discussion of sediment management is provided in Chapter 12.) But arguably the most significant impact from agricultural activities is the transport of nutrients, primarily nitrogen and phosphorous, into coastal waters (Box 14.2).

USDA is a very important participant in the nonpoint source management process because of the funding it can provide to address agricultural sources. The state conservationist in each state, an employee of USDA’s Natural Resources Conservation Service, is a key player in allocating these funds. State- and county-level committees make recommendations to the state conservationist about best management practices to be rewarded and the appropriate level of cost sharing. There are concerns that funds may still go to farmers and ranchers who follow harmful practices, and that many deserving recipients do not receive adequate financial or technical assistance. The USDA Farm Service Agency, the USDA Cooperative State Research, Education, and Extension Service’s Land Grant University System partnership, and farmers themselves also need to be more actively involved in broader watershed and coastal ecosystem-based management efforts so their actions can be coordinated with the many others that affect coastal water quality.

Recommendation 14–7

The U.S. Department of Agriculture (USDA) should align its conservation programs and funding with other programs aimed at reducing nonpoint source pollution, such as those of the U.S. Environmental Protection Agency and the National Oceanic and Atmospheric Administration. In particular, USDA’s Natural Resources Conservation Service should:

- require that its state conservationists coordinate with representatives of federal and state water quality agencies and state coastal management agencies, and participate in watershed and coastal management planning processes, to ensure that funding for agricultural conservation programs complements and advances other federal and state management programs.
- provide enhanced technical assistance in the field to better support growing agricultural conservation programs.

Urban and Suburban Stormwater Runoff

Stormwater runoff poses another serious threat to U.S. coastal waters. Housing developments, shopping centers, and roads have been built in areas once covered by natural vegetation and wetlands. These developments have increased impervious surfaces, decreased the land available to absorb rain and snow, accelerated runoff into streams, and altered the hydrology of coastal watersheds. Many areas have lost billions of gallons of drinking water due to reductions in groundwater recharge.
AN OCEAN BLUEPRINT FOR THE 21ST CENTURY

Stormwater picks up a variety of substances on its way to coastal waters, including oil, chemicals, heavy metals, pesticides, trash, and pet waste. These pollutants alter the water chemistry and can harm ecosystems. As water runs across impervious surfaces, its temperature becomes elevated, accelerating the growth of algae and harming fish and other aquatic life that have specific water temperature tolerance limits. Larger volumes of water rushing into streams also erode streambanks, streambeds, and the surrounding land, transporting excess sediment that can damage coastal habitat, harm aquatic life, and reduce light penetration into the water column.

It is estimated that aquatic ecosystem health becomes seriously impaired when more than 10 percent of the watershed is covered by impervious surfaces.15 Impervious surfaces cover 25–60 percent of the area in medium-density residential areas, and can exceed 90

percent at strip malls or other commercial sites. An inch of rain on a 1-acre natural meadow would typically produce 218 cubic feet of runoff. The same rainstorm over a 1-acre paved parking lot would produce 3,450 cubic feet of runoff, 16 times more than the natural meadow.

Stormwater-related problems impose measurable economic costs. Drinking water sources can become polluted and excess sediment can increase dredging costs for navigational purposes. Poor stormwater management may increase flooding, causing property damage from flash floods and leading to higher insurance rates. Stormwater is also a source of bacterial contamination, leading to increased disease incidence, thousands of beach closures in the United States each year, and loss of revenues from coastal tourism and sport fishing. Millions of dollars are spent on treating the symptoms of stormwater pollution but much less is spent on efforts to control its causes.

Improving the Control of Nonpoint Sources

The nation has a number of opportunities to reduce the impacts of nonpoint sources of pollution on coastal waters. These include coordination of federal nonpoint programs so they are mutually supportive, more targeted and aggressive use of the State Revolving Funds, broader implementation of incentives and disincentives, and improved monitoring to assess compliance and overall progress. (Improved monitoring is described in Chapter 15.) State and local governments also have important roles to play in land use planning and stormwater management decisions.

In addition to these mechanisms to address nonpoint source pollution, regulatory controls such as the TMDL program have made progress in meeting state water quality standards. State water quality agencies have a major role in establishing water quality standards and in developing TMDLs where necessary to address impaired water bodies and allocate necessary reductions among point and nonpoint sources. EPA reports that there are 28,739 impaired water bodies in the United States. Within those bodies, there are 53,049 distinct impairments (e.g., pathogens, metals, nutrients) for which 10,313 TMDLs have been developed and approved. States have made significant progress in developing TMDLs during the last several years although much work remains to be done.

Aligning Federal Nonpoint Programs and Goals

The management of nonpoint source pollution in coastal areas includes a mix of planning requirements, state actions, direct funding incentives, and grant programs to encourage standard setting and implementation. Some programs are directed by EPA; one is jointly directed by NOAA and EPA; USDA and USACE both have programs with substantial
impacts; and state and local governments play major roles. Currently, there is no mechanism to ensure that the diverse programs are effective, are being adequately coordinated, and are working toward common goals. Addressing nonpoint source pollution will require mechanisms at both the national and regional levels to develop goals and coordinate efforts in both coastal and inland watersheds to meet those goals. These goals should build on water quality standards developed by states under the Clean Water Act.

Recommendation 14–8
The National Ocean Council (NOC), working with states, should establish reduction of nonpoint source pollution in coastal watersheds as a national goal, with a particular focus on impaired watersheds. The NOC should then set specific, measurable objectives to meet human health- and ecosystem-based water quality standards. The NOC should ensure that all federal nonpoint source pollution programs are coordinated to attain those objectives.

Coordination among agencies, however, will not be enough. Some combination of incentives and enforcement techniques will be needed to ensure progress. States must have enforceable policies, similar to those called for in the CZARA Section 6217 nonpoint source pollution control program. However, states also need funding and incentives to reward those that adopt proactive nonpoint source control programs, such as are provided under the Clean Water Act Section 319 program. Both programs have positive attributes that, if strengthened and perhaps combined, could more effectively address nonpoint source pollution.

For example, under Section 319 of the Clean Water Act, states that make satisfactory progress toward fulfilling their plans to implement nonpoint source controls are eligible for federal grants—an effective incentive. However, Section 319 does not direct states to actually require or enforce best management practices or any other mandatory controls in their management plans.

In the CZARA Section 6217 nonpoint source pollution control program, the emphasis to date has been on developing approvable, enforceable state programs, with less focus on implementation. If a state fails to submit an adequate CZARA plan to EPA and NOAA, or fails to implement an approved plan, the only recourse for EPA and NOAA is to withhold Clean Water Act and CZMA grant funds, including the very funds that could help address nonpoint pollution problems. To avoid this counterproductive result—and encourage states to continue to participate in the CZMA program, of which CZARA is one part—EPA and NOAA have postponed deadlines for submission of an approvable CZARA plan. Another significant limitation to the CZARA program has been inadequate federal assistance to states in preparing and implementing their plans.

Recommendation 14–9
The National Ocean Council should strengthen efforts to address nonpoint source pollution by evaluating the nonpoint source pollution control programs established under Section 6217 of the Coastal Zone Act Reauthorization Amendments and under Section 319 of the Clean Water Act and making recommendations to Congress for improvements to these programs, including their possible consolidation.

Improvements to the programs should:
- require enforceable best management practices and other management measures throughout the United States, with increased federal support for states to develop and implement those practices and measures.
- eliminate counterproductive financial disincentives.
- enhance cooperation and coordination between federal and state water quality and coastal management agencies.
Expanding Uses of State Revolving Funds
Currently, the State Revolving Funds are primarily used for addressing municipal point source pollution, but they can also be tapped to address nonpoint sources by funding watershed-based activities, including control of agricultural and urban runoff. However, because of the already large gap between existing wastewater infrastructure needs and available funds, State Revolving Funds would need to be substantially supplemented (as called for in Recommendation 14–4) to meet additional nonpoint source demands.

Creating Incentives to Reduce Agricultural Runoff
Because of the many individuals involved, and their geographic and socioeconomic diversity, an incentive-based strategy may be a good approach for reducing pollution from agricultural sources. A number of agricultural conservation programs (some of which are described above) provide incentives to farmers and ranchers to set aside areas of land, purchase better equipment, and employ best management practices.

Several additional forms of incentives could encourage farmers and ranchers to follow practices that would reduce nonpoint source pollution. Some examples include the following:

- Congress and USDA could develop incentives to reward farmers and ranchers by providing special services or technology for good performers.
- Congress could enact tax incentives for farmers and ranchers who implement best management practices that reduce nutrient and soil runoff, as specified by EPA, USDA or others.
- Congress and USDA could establish insurance programs for agricultural producers who apply fertilizer at or below the agronomic rates recommended by the local Land Grant University to compensate the producers if crop yields decrease as a result.
- Federal farm aid could be tied to implementation of best management practices to reduce nonpoint source pollution.

Efforts to reduce nonpoint source pollution through incentives are already underway. For example, the Sand County Foundation launched a pilot program to test market-based incentives for reducing nitrogen discharges from agricultural lands in targeted watersheds in the Upper Midwest and to gauge farmers’ receptiveness to such incentives.

Other kinds of market-based programs would allow farmers to create nutrient credits by changing cropping practices or implementing best management practices, as specified by EPA, USDA, or others. These credits could then be sold to a wastewater treatment plant or other nutrient source discharging to the same water body to offset some of its own nutrient outflow and help meet water quality limits.

Authorizing Federal Agencies to Impose Disincentives
While the use of incentives has many benefits, there are times when the federal government has an obligation to take action if a state is failing to protect water quality. Existing non-point source programs do not include the necessary federal authority to do so. In the end, if a state continues to fail in controlling nonpoint source pollution, the federal government should be able to step in to protect the public resource. In addition to invoking regulatory authority, the federal government may also have to apply appropriate financial disincentives. Reasonable disincentives might include withholding federal funds for programs that contribute to degradation of water quality, such as federal highway construction, agricultural subsidy programs, or USACE development projects in watersheds that are already impaired. Funding for federal programs that promote water quality should be maintained to encourage continued progress, including the CZARA Section 6217 and EPA Section 319 programs.

Federal regulatory action and financial disincentives to protect water quality should only be invoked if a state chronically fails to make meaningful progress toward controlling nonpoint sources, similar to the precedent established for similar situations under the
Clean Air Act. In other words, the federal government should only assume the lead to address nonpoint source pollution when all else fails. It is important for federal regulatory authority and financial disincentives to be phased in over time and be predictable and clearly communicated. Additionally, the standards for triggering federal financial disincentives or regulatory involvement need to be designed with care and consider mitigating circumstances, such as whether the failure to attain water quality standards in a state is due to water quality problems that originate in upstream states.

Recommendation 14–10
To ensure protection of coastal resources nationwide, Congress should provide authority under the Clean Water Act and other applicable laws for federal agencies to establish enforceable management measures for nonpoint sources of pollution and impose financial disincentives related to programs that result in water quality degradation if a state persistently fails to make meaningful progress toward meeting water quality standards on its own.

Monitoring to Assess Compliance
After best management practices are employed and incentive programs are underway, ongoing monitoring will be essential to determine whether these efforts have been effective. (A detailed discussion of monitoring is provided in Chapter 15.)

Thinking about Land Use
Land use decisions dramatically affect the health of coastal waters. When the siting and design of new development considers potential impacts and balances them with socioeconomic factors, measurable improvements can be made. In addition to its positive impacts on water quality, low-impact development can bring economic advantages. For example, developers are often able to realize additional profits and quicker sales on units that are adjacent to a landscaped stormwater control structure such as a constructed wetland.

Unfortunately, local zoning ordinances and building codes can also pose significant barriers to low-impact development. For example, ordinances that control the design of curbs, gutters, and streets can significantly affect stormwater runoff—for better or for worse. Not only do some local zoning ordinances and building codes erect barriers to low-impact development, but some states and local governments do not even have codes and ordinances to require land use planning and decision making.

Greater public awareness of the connection between land use and water quality will help move decision makers in the right direction. One program that provides education on the effects of planning, zoning, and land use on water quality is Project NEMO—Nonpoint Education for Municipal Officials. Project NEMO is a University of Connecticut program supported by many different partners including EPA, NOAA, USDA, the National Aeronautics and Space Administration, and the U.S. Fish and Wildlife Service, as well as a myriad of state and local governments and organizations. The national NEMO network, adapted from the Connecticut original, now numbers 34 projects in 32 states. While this program has had successes, it reaches only a small fraction of the tens of thousands of relevant decision makers across the nation.

Another program that provides education and training to coastal managers and decision makers is the National Estuarine Research Reserve System (NERRS) Coastal Training Program. This program, developed in partnership with Sea Grant, state coastal management agencies, and other federal, state, and local organizations, provides scientific information and skill-building opportunities to individuals who are responsible for making decisions that affect coastal resources. It targets a range of audiences, including land use planners, elected officials, and regulators, and focuses on a number of issues, including water quality.
Recommendation 14–11
The U.S. Environmental Protection Agency, the National Oceanic and Atmospheric Administration, and other appropriate entities should increase assistance and outreach to provide decision makers with the knowledge and tools needed to make sound land use decisions that protect coastal water quality. State and local governments should adopt or revise existing codes and ordinances to require land use planning and decision making to carefully consider the individual and cumulative impacts of development on water quality, including effects on stormwater runoff.

Managing Stormwater Runoff
EPA regulates three types of stormwater discharge sites under the Clean Water Act NPDES program: municipal separate storm-sewer systems; industrial facilities; and construction sites. These discharges require permits and require that the discharger develop a stormwater pollution prevention plan specifying which best management practices will be used.

Since 1990, Clean Water Act regulations, known as the Phase I rule, have required cities and municipalities of 100,000 or more residents, ten categories of industrial activity, and construction projects disturbing five acres or more to obtain NPDES stormwater permits. In 1999, EPA released the Phase II rule, under which NPDES permits will be needed by communities with a population greater than 10,000 or a density higher than 1,000 people per square mile, and by construction sites that disrupt one to five acres of land. The Phase II rule became effective in March 2003.

The primary method for controlling stormwater runoff is the application of best management practices. Structural best management practices are measures—such as constructing detention basins, wet ponds, or wetlands—that help control the quantity and quality of stormwater. Nonstructural best management practices are generally preventive actions that rely on behavioral changes, such as modifying the use of fertilizers, sweeping streets, and educating the public. EPA and the American Society of Civil Engineers have jointly developed a national database of stormwater best management practices as a tool for local stormwater designers and planners.

While best management practices can be effective, these tools may not be sufficient on their own. In urban areas, construction activities still contribute significantly to sediment loadings and, where impervious surfaces are prevalent, stormwater flows directly into surface waters and sewer systems. A comprehensive approach will be required to minimize disturbance to the natural hydrology, minimize water flow over surfaces, and maintain water quality. Rigorous monitoring will also be needed to determine whether water quality standards are being achieved and to allow management approaches to be modified as needed to reach desired water quality goals. Effective implementation of EPA’s NPDES Phase II stormwater control program will require additional personnel to carry out the needed oversight and enforcement.

Recommendation 14–12
The U.S. Environmental Protection Agency (EPA), working with state and local governments, should strengthen implementation of the National Pollutant Discharge Elimination System Phase I and II stormwater programs. Improvements should include:

- local codes or ordinances that are designed to achieve the management goals for a particular watershed and require use of EPA-approved best management practices.
- monitoring to determine whether goals and state water quality standards are being met and to identify ongoing problems.
- an adaptive management approach to ensure that efforts are effective and that best management practices are modified as needed.
- improved public education.
- increased enforcement of legal requirements and personnel sufficient to implement stormwater management programs.
Collaboration at the Watershed Scale

As discussed in Chapter 9, watersheds are often the appropriate geographic unit for addressing water-related problems because they acknowledge upstream and downstream connections and consider the cumulative impacts of activities taking place in the watershed. These features are particularly important in addressing nonpoint source pollution.

Collaborative watershed groups have had significant successes in addressing nonpoint source pollution. These groups bring together stakeholders reflecting the diverse interests that may be represented in a watershed: agriculture, timber, and industry; sport and commercial fishing interests; recreational users and tourism-related businesses; environmental and citizen groups; and local, state, tribal, and federal governments. While such public/private sector collaborations can complement more traditional water pollution control strategies, they are often hampered by limited financial resources, institutional instability, and lack of technical expertise. Another limitation is that, because watersheds cross political boundaries, controlling authorities and programs may be different in different parts of the watershed.

Addressing nonpoint source pollution on a watershed basis makes good sense for environmental, financial, social, and administrative reasons. In addition, regional ocean councils can play an important role in helping to support the collaborative efforts of watershed groups. Collaborative watershed approaches can build a sense of community, reduce conflicts, increase commitment to the actions necessary to meet common goals and ultimately improve the likelihood of sustaining long-term water quality improvements.

As recommended in Chapter 9, Congress should amend appropriate legislation to provide better support for watershed management initiatives. The National Ocean Council can play a role in improving the effectiveness of federal support for watershed initiatives by coordinating agency management and technical assistance for watershed groups, overseeing development of an accessible clearinghouse of information on watershed best management practices, and coordinating the distribution of federal grants and program funds in support of coastal watershed initiatives.

International Efforts

Nonpoint source pollution is an important, and increasingly visible, international issue. The health, well-being and, in some cases, the very survival of coastal populations around the world depend upon the viability of coastal and marine systems. Nonpoint source pollution threatens the health of these systems and the important economic activities, such as fishing and tourism, that they support. Public health is also adversely affected through contamination of seafood, direct contact, such as through bathing, and the use of seawater in desalination and food-processing plants.

Ongoing efforts to reduce nonpoint source pollution internationally include the United Nations Environment Program’s (UNEP’s) establishment of fourteen regional seas programs worldwide as part of the 1993 Global Program of Action for the Protection of the Marine Environment from Land-Based Sources (GPA). Many nations, including the United States, are moving forward with initiatives to implement the GPA. However, broader application of GPA measures will depend on increased foreign technical assistance and funding. The U.S. Agency for International Development, NOAA, and EPA provide limited technical and training assistance through UNEP for nations where sewage treatment, monitoring, research, and law enforcement capacity are insufficient. (For a listing of ocean-related international agreements, see Table 29.1.)

As part of the GPA, UNEP launched the Hilltops to Oceans initiative (H2O) at the 2002 World Summit on Sustainable Development. Overall objectives of H2O include facilitating international recognition of the links between fresh-water and marine environments, and
assisting in the implementation of actions needed to reduce, remediate, and prevent pollution and degradation of the coastal and marine environment.

The United States is particularly involved in the coordination, integration, and management of marine pollution programs in the wider Caribbean region, including programs for addressing upstream sources and protecting wetlands, mangrove swamps, coral reefs, and offshore areas. At the 2002 Summit, the United States launched the White Water to Blue Water initiative with a coalition of partners that includes the United Kingdom, France, Canada, the Netherlands, Caribbean island governments, nongovernmental organizations, and the private sector. The ultimate goal of the initiative is to improve the capabilities of all coastal nations to manage watershed and coastal ecosystems for sustainable development. Participants hope that success in implementing the pilot phase in the Caribbean will encourage other regions in Africa and the South Pacific to follow suit.

Addressing Atmospheric Sources of Pollution

Atmospheric deposition of pollutants can also harm water quality, aquatic resources, and human health. Atmospheric deposition accounts for between 10 and 50 percent of the nitrogen entering estuaries along the East Coast and the Gulf of Mexico. Major atmospheric pollutants include nutrients, metals such as lead and mercury, pesticides, polycyclic aromatic hydrocarbons, dioxins, furans, and persistent toxic substances. Certain persistent toxins, such as DDT and PCBs, have even been measured in remote locations, such as the Arctic and Antarctic, demonstrating the extent of dispersal of pollutants by the atmosphere. Atmospheric deposition is also a significant source of pollution in the Great Lakes; as much as 90 percent of some toxic chemicals entering the Great Lakes are believed to be the result of atmospheric deposition. Sources of atmospheric deposition are quite varied and include agriculture, incineration, coal-fired power plants, industrial facilities, and motor vehicles, as well as natural sources such as forest fires, lightning, and volcanoes.

Improving Control of Atmospheric Sources

Addressing atmospheric deposition requires controlling multiple sources within a particular water body’s airshed, defined as the geographic area responsible for 75 percent of the air pollutants that reach that body of water (Figure 14.6). The airshed can be ten, twenty, or even several hundred times larger than the area of the watershed. To add to the complexity, different pollutants exhibit different physical and chemical behaviors in the atmosphere, so the airshed of a particular body of water may vary depending on the pollutant of interest.
The federal government is taking some positive steps to address atmospheric deposition. For example, in 2001, EPA developed the Air-Water Interface Work Plan, which identifies over 20 actions that EPA will take over the next several years to reduce atmospheric deposition of pollutants—including nitrogen compounds and toxics—into water bodies nationally, using the authorities of both the Clean Air Act and the Clean Water Act.23 The plan is based in large part on a number of existing Clean Air Act regulatory programs that have not been fully implemented, including, for example: the maximum achievable control technology (MACT) standards for emissions of toxic pollutants from sources, such as industrial facilities and coal-fired power plants; the nitrogen oxides (NOx) reductions under the Acid Rain program for power plants; a separate program to reduce NOx emissions to meet the National Ambient Air Quality Standards; and controls on automobiles, trucks, vessels, and other mobile sources that will reduce emissions of both NOx and toxics.

Recommendation 14–13

The U.S. Environmental Protection Agency, working with states, should develop and implement national and regional strategies to reduce the sources and impacts of atmospheric deposition to water bodies, building upon plans such as the EPA Air-Water Interface Work Plan.

Control of atmospheric deposition is currently hampered by relatively poor data on sources, atmospheric transport routes, and sites where pollutants are ultimately deposited. While several monitoring programs exist, relatively few are in coastal areas. Reducing atmospheric deposition would be greatly aided by better data, analysis, and information on emission sources, fate and transport, and related environmental and human health consequences. (A further discussion of monitoring needs is provided in Chapter 15.)

Because of the potential range of atmospheric transport of pollutants, widespread international cooperation will also be needed.24 For example, atmospheric deposition of mercury will require concerted international action in addition to domestic measures. Mercury contamination in fish is a human health concern because of potential neurotoxic effects, particularly for pregnant women and children, and depending on the location, it can come from a wide variety of sources.

Recent studies have demonstrated that air pollution from human activities in Asia can be carried across the Pacific Ocean by prevailing mid-latitude winds, with potentially significant impacts on the concentration and number of air pollutants in North American coastal areas. This impact is likely to increase along with the growth of Asian economies. EPA, in conjunction with a number of research organizations, is currently conducting a modeling study of intercontinental pollution transport from Asia and its potential effects on regional air quality. In the Caribbean, studies are also underway to assess impacts in a number of areas, from human health to coral reef health, caused by hundreds of millions of tons of dust carried through the air from Africa each year.25

International action to control contamination by persistent organic compounds and other pollutants is carried out under multilateral treaties such as the Stockholm Convention on Persistent Organic Pollutants and the Convention on Long-Range Transboundary Air Pollution, as well as bilateral agreements between the United States and Canada and Mexico. Additional international agreements may be needed to address specific issues, such as mercury.

Recommendation 14–14

The United States should work with other nations to develop and implement international solutions to better address the sources and impacts of transboundary atmospheric deposition, and to initiate needed research programs.
References

9. Ibid., 7176, 7239.

CHAPTER 15
CREATING A NATIONAL MONITORING NETWORK

Ongoing monitoring is essential to assess the health of ocean and coastal ecosystems and detect changes over time. More than any other measure, monitoring provides accountability for management actions. The nation needs a coordinated, comprehensive monitoring network that can provide the information necessary for managers to make informed decisions, adapt their actions as needed, and assure effective stewardship of ocean and coastal resources. In developing such a network, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Geological Survey, and other agencies as appropriate, should coordinate and expand their efforts to ensure adequate monitoring in coastal areas and the upland regions that affect them. Input from states, territories, tribes, counties, and communities—where much of the monitoring will be conducted—is also essential. In addition, because of the inherent overlap among inland, coastal, and open-ocean monitoring and observing, the national monitoring network should be closely linked with the Integrated Ocean Observing System and, ultimately, incorporated into a broad Earth observing system.

Recognizing the Value of Monitoring

The nation’s coasts suffer from thousands of beach closures a year, oxygen depletion, nutrient enrichment, toxic contamination, sedimentation, harmful algal blooms, habitat degradation, invasions by exotic species, and many other problems. Yet, a comprehensive network to monitor these changes and their causes, facilitate estimates of their economic impact, and measure the success of management efforts, is lacking. Long-term status and trends monitoring is critical to assess and reduce the impacts of human activities on coastal waters. Increased monitoring is needed not only along the nation’s coasts, but also inland from where pollutants make their way downstream, ultimately impacting coastal waters. A national monitoring network will be needed to provide information not only on water quality, but also on other measures of aquatic ecosystem health, such as sediment loadings, biological conditions, and water flow (Box 15.1).

A national monitoring network is also essential to support the move toward an ecosystem-based management approach that considers human activities, their benefits, and their potential impacts within the context of the broader biological and physical envi-
CHAPTER 15: CREATING A NATIONAL MONITORING NETWORK

Monitoring information will be of direct benefit to many people including managers, fishermen, scientists, water providers, and others. Formulating management actions based on better monitoring will ultimately improve beach quality, allowing the public to enjoy trips to the beach with fewer disappointments due to beach closures. Monitoring information will be particularly helpful to coastal managers who need to understand the scope of the problems before they can effectively respond. After responding, monitoring information will also help assess the effectiveness of the selected management approaches.

There are currently a number of disparate monitoring efforts and questions have been raised about the comparability and accuracy of information produced by these programs and the practical value of the information to stakeholders. Baseline information at the scale, resolution, and frequency necessary to manage is generally lacking.

Federal and state agencies around the country will need to work closely together to achieve a fully effective national system. Designing and implementing an effective monitoring network will require input and coordination among federal and state agencies, as well as academic and research institutions, nongovernmental organizations, and volunteer groups.

Monitoring at the Federal Level

A number of monitoring programs are currently conducted by federal agencies, state governments, research institutions and academia, nongovernmental organizations, and individual volunteers. Existing monitoring programs vary in many respects, including sam-

Box 15.1 Ocean and Coastal Monitoring Needs

Long-term environmental monitoring is essential to determine baselines, measure change, and assess overall ecosystem health. Throughout this report, enhanced monitoring is called for to improve the management and protection of marine resources, as well as to protect human health. The creation of a national monitoring network that encompasses not only coastal waters, but also upstream watersheds, will allow the nation to track critical factors such as those listed below.

In close coordination with coastal and ocean observing systems, the national monitoring network should help document:

- Concentrations of industrial, municipal, and agricultural contaminants.
- Conditions of natural, cultural, and economic resources in coastal areas.
- Quantity, quality, and timing of stormwater flows.
- Presence of pathogens and chemical toxins in organisms, including fish and seafood consumed by humans.
- Rates, locations, and composition of atmospheric deposition.
- Impacts of flooding, coastal hazards, and sea-level rise.
- Status of coastal habitats to support conservation and restoration efforts.
- Impacts on ecosystem and human health from pollution.
- Introductions and spread of invasive species.
- Impacts of offshore activities.
- Performance of marine protected areas.
- Sources and quantities of marine debris.
- Extent, productivity, and functioning of coral communities.
pling design and intensity, parameters tested, analytical methodology, data management protocols, and funding. Even when the same properties are measured, different data management protocols may make the integration of that information difficult. Consequently, while a number of monitoring programs exist, they are not designed to support a comprehensive and coordinated national monitoring network. To make matters worse, budget constraints have resulted in significant reductions in monitoring of coastal areas.

Responsibility for monitoring and assessing natural resources is divided among a number of agencies whose activities are focused on achieving specific programmatic objectives or agency missions.

Federal Programs

The primary federal agencies involved in monitoring include the National Oceanic and Atmospheric Administration (NOAA), the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (EPA). The U.S. Department of Agriculture (USDA) and the U.S. Army Corps of Engineers also conduct some limited monitoring.

The mission of NOAA’s National Status and Trends Program is to determine the status of, and detect changes in, the environmental quality of the nation’s estuarine and coastal waters. The program conducts long-term monitoring of contaminants and other environmental conditions at approximately 350 sites. In addition, since 1995, NOAA’s National Estuarine Research Reserve System has operated the System-wide Monitoring Program dedicated to the collection of long-term environmental information in support of local coastal management. The primary goal of this monitoring program is to develop quantitative measurements of short-term variability and long-term changes in water quality, biotic diversity, and land-cover characteristics of estuarine ecosystems. The program supports coastal zone management through collection of real-time and near real-time data, standardized national data management and quality assurance and quality control procedures, and long-term information collection for a suite of water quality and weather parameters. NOAA also assists coastal states in monitoring harmful algal blooms by partnering with regional management and scientific institutions through the Monitoring and Event Response for Harmful Algal Blooms (MERHAB) program. MERHAB-sponsored projects enhance existing water and shellfish monitoring programs by applying new technologies that allow for proactive detection of coastal harmful algal bloom events.

USGS operates the National Streamflow Information Program, a network of some 7,000 stream gages nationwide. About 6,000 of these stations are linked to an Earth satellite-based communications system. The majority of the stream-gaging stations are jointly funded in partnerships with more than 800 state, local, and tribal governments or other federal agencies. The data are available in real time to conduct water resource projects and for NOAA’s National Weather Service to forecast floods. Streamflow data are needed at many sites on a daily basis for forecasting flow extremes, assessing current water availability, and managing water quality and quantity. In addition, USGS conducts long-term water quality and quantity monitoring through the National Stream Quality Accounting Network at fixed locations on large rivers around the country. USGS also operates the National Water Quality Assessment, which uses a regional focus to study status and trends in water, sediment, and biota in forty-two major river basins and aquifer systems. This effort has made considerable progress toward assessing current water quality conditions and long-term trends. In addition, USGS’s Biomonitoring of Environmental Status and Trends Program conducts monitoring of effects of water quality on biota of large rivers. The Contaminant Biology Program develops biomarkers and other tools that can be used within monitoring programs for measuring exposure and effects. This program also conducts studies to determine the effects of emerging contaminants.
EPA's Environmental Monitoring and Assessment Program aims to develop the tools and science needed for a state-based statistical monitoring framework to determine trends in the condition of all the nation's aquatic ecosystems. This program uses a probabilistic sampling design that relies on data from many sites of similar habitat type as the best estimate for overall condition of that habitat. A variety of information is collected through this program, including water column parameters, sediment chemistry and toxicity, and measurements of benthic communities. EPA also conducts monitoring through its National Estuary Program. As National Estuary Program sites were created, they included an extensive characterization phase and an estuary-specific monitoring plan. Although most continue monitoring to evaluate the effectiveness of their implementation efforts, there is no program-wide monitoring strategy. Finally, EPA is authorized to support microbiological testing and monitoring of coastal recreational waters through the Beaches Environmental Assessment and Coastal Health Act, which was designed to reduce the risk of disease to users of the nation's coastal recreational waters.

Several agencies monitor atmospheric deposition, the process by which chemicals in the air are deposited onto the Earth's surface in wet and dry forms, contributing significantly to coastal water pollution. The National Atmospheric Deposition Program, a cooperative effort of many different groups, measures deposition of a number of pollutants at more than 200 sites. The Mercury Deposition Network, one component of this program, measures mercury levels in wet deposition. EPA's Clean Air Status and Trends Network also measures dry deposition at about eighty sites. In addition, the Interagency Monitoring of Protected Visual Environments (IMPROVE) is a cooperative measurement effort to aid the creation of federal and state implementation plans for visibility in 156 national parks and wilderness areas.

Shortcomings in Federal Programs

Notwithstanding the many programs described above, their combined efforts do not add up to a comprehensive, coordinated national monitoring network. One severe limitation of current efforts is the lack of monitoring in coastal waters.

National monitoring has been greatly reduced, particularly in coastal areas, due to funding cuts at USGS and many partner agencies. The USGS National Streamflow Information Program has eliminated a number of stream gages, including long-term gages that are critical for studying climate change. To fully realize its potential, the stream-gaging network will need to be modernized and gaps in coverage filled. Funding cuts have also affected USGS's water quality monitoring programs, resulting in reductions in the number of sampling sites and sampling frequency. USGS's National Water Quality Assessment's coverage has been reduced in recent years, leaving out much of the coastal region. A 2001 National Research Council report concluded that while this program has downsized in a logical manner, it cannot continue this trend and still be considered a national program for assessing water quality.4

Budget constraints have also affected the National Stream Quality Accounting Network. At its peak in 1978, this program included 520 fixed-station sampling sites on moderate and large rivers, which provided monthly estimates of flow rates, suspended sediment, nutrients, trace metals, indicator bacteria, and phytoplankton. About 140 of the sites were located in areas helpful to estimating the input of water and materials to estuaries.5 Currently, this program focuses only on monitoring the water quality of the nation's largest rivers—the Mississippi, Columbia, Colorado, Rio Grande, and Yukon—with a total of only thirty-two stations. Most coastal regions are left out of the monitoring network altogether (Figure 15.1).
NOAA’s National Status and Trends Program is limited by the number of sites sampled per state and the lack of full representation of estuarine habitats in those states. The program samples mollusks for contaminants only every other year, and even less frequently for sediments.

Of the more than 200 sites in the National Atmospheric Deposition Program, very few are located in coastal areas. Less than 20 percent of sites in the Atmospheric Integrated Research and Monitoring Network, a sub-network of the National Atmospheric Deposition Program, are located in coastal areas.

Much of the monitoring in the United States is conducted by states, territories, non-governmental organizations, and volunteers. There is considerable variation in the ways states select monitoring sites, the kinds of tests they perform, the methods they use to determine causes and sources of pollution, and the analytical approaches they choose to evaluate water quality. As a result, reports on the quality of a particular water body often differ on either side of a state line. These disparities diminish the usefulness of state monitoring programs for regional or national assessments. To be fully effective, monitoring data collected by state, territorial, tribal, and local governments, nongovernmental organizations, and volunteers will need to be coordinated with the national monitoring network.

Promoting Interagency Coordination

Several interagency initiatives have been proposed for achieving a more coordinated monitoring strategy. The Intergovernmental Task Force on Monitoring Water Quality was established in 1992 to review national monitoring activities and to develop an integrated national monitoring strategy. Chaired by EPA, with USGS as vice chair, the Task Force recommended, among other proposals, the development of closer working relationships among organizations that monitor and use water information and the development of comparable technical methods.

The National Water Quality Monitoring Council was formed in 1997 as the successor to the Task Force, with the mandate to implement its strategy. Jointly chaired by EPA and USGS, the Council is composed of thirty-five representatives from federal, state, tribal,
local, and municipal governments, watershed groups, academia, and the private sector. The Council serves as the major national forum for the coordination of consistent and scientifically defensible federal and state water quality monitoring methods and strategies. Its focus has been on fresh water monitoring, but many of the methods it has developed could also be applied to marine environments.

The National Science and Technology Council’s Committee on Environment and Natural Resources has also promoted an initiative to integrate and coordinate environmental monitoring efforts. From this initiative came the 1997 report, Integrating the Nation’s Environmental Monitoring and Research Networks and Programs: A Proposed Framework. The framework is designed to produce the necessary scientific data and information to produce integrated environmental assessments.

The Coastal Research and Monitoring Strategy Workgroup was formed in 1999 with representatives from federal, state, tribal, and nongovernmental organizations. NOAA, EPA, USGS, and USDA led the development of the Workgroup’s Coastal Research and Monitoring Strategy, published in 2000, which called for addressing problems of coastal water quality and coastal resources by replacing single-issue, single-agency, single-discipline problem solving with a coordinated, multi-agency, interdisciplinary approach.

While these interagency initiatives are moving in the right direction, they have not resulted in the comprehensive and coordinated national monitoring network resource managers need, particularly in coastal areas. Significant obstacles include a lack of: focus on the coast; participation by agencies with relevant responsibilities; follow-through; and commitment at the highest levels of government.

Ensuring Comprehensive, Coordinated Coverage

The nation’s coastal margin is the most densely populated and developed region of the nation, and its waters have been significantly degraded by pollution. Yet, in recent years, due largely to lack of funding, monitoring has been extremely sparse along the coasts. Much remains unknown about the status of coastal environments, and increased monitoring will be required to make informed management decisions about this economically and ecologically valuable region. A long-term, comprehensive monitoring network can establish a baseline to facilitate the analysis of ecosystem change. It would also create an information base to allow managers to understand whether their strategies were effective in meeting their goals. While expanded monitoring will be needed, it will also be important to disseminate and use the substantial data that have already been collected.

The connections between coastal and upstream waters dictate that any monitoring network must be national in scope, with flexibility to allow for regional differences. For example, geographically isolated islands must be accommodated to allow for differences in scale, climate, temperature regimes, and limited fresh-water resources, compared to many mainland areas.

Despite decades of monitoring by many agencies, the nation still lacks a coordinated national network. It will be necessary to coordinate and strengthen federal monitoring efforts and then use a partnership effort among state, local, territorial, tribal, and federal agencies, as well as academic and research institutions, marine labs, nongovernmental organizations, and volunteer groups where appropriate. States will need to be active partners in this effort through a coordinated monitoring strategy that builds on and takes advantage of work already underway by states and federal agencies.

Because of the inherent overlap between inland, coastal, and open-ocean monitoring and observing, the national monitoring network should be closely linked with the Integrated Ocean Observing System (IOOS; discussed in detail in Chapter 26) and ultimately with a broad Earth observing system. The national monitoring network will provide the capability to observe, analyze, and forecast natural and human-induced changes
that affect watershed, estuarine, and coastal ecosystems. The IOOS will provide the nation with similar information for the coasts and open-ocean environments. Because these systems will overlap in coastal areas, they should be closely coordinated to ensure compatibility of information. At some point, the national monitoring network and the IOOS should both become components of a true Earth observing system that links land, air, and water around the globe.

Because the land, air, and sea are all interconnected, increased monitoring of atmospheric deposition will be critical to any monitoring network. Monitoring atmospheric deposition in coastal areas is particularly important because these areas receive significant input of toxics and nutrients.

Recommendation 15–1
The National Oceanic and Atmospheric Administration, U.S. Geological Survey, and U.S. Environmental Protection Agency, working with states and other appropriate entities, should develop a national monitoring network that coordinates and expands existing efforts, including monitoring of atmospheric deposition. The network should be built on a federally funded backbone of critical stations and measurements to assess long-term trends and conditions, with additional stations or measurements as needed to address regional characteristics or problems.

Recommendation 15–2
The National Oceanic and Atmospheric Administration should ensure that the national monitoring network includes adequate coverage in both coastal areas and the upland areas that affect them, and that the network is linked to the Integrated Ocean Observing System, to be incorporated eventually into a comprehensive Earth observing system.

Creating an Effective Monitoring Network

In addition to coordinating and expanding current efforts, an effective national monitoring network should have specific goals and objectives that reflect user needs and are helpful in assessing the effectiveness of management approaches. The overall system design should determine what and where to monitor, including the definition of a set of core variables. Technical expertise is needed to standardize procedures and establish quality control, data management, and reporting protocols. It is important for the national monitoring network to be periodically assessed and modified as necessary. Most important, the data collected through the national monitoring network should be useful to managers and stakeholders in evaluating management measures, determining best management practices, and making continual improvements in reaching ecosystem goals.

System Goals and Objectives

The national monitoring network should set clear, specific goals and objectives that reflect national, state, regional, territorial, tribal, and local needs. The goals and objectives should be geared toward the assessment of management approaches, including best management practices, and be based on pressing management issues. Successful monitoring should target issues that policy makers, scientists, managers, and the public consider important, providing a basis for possible management actions. Thus, in designing a coordinated national monitoring network, input will be needed from all of these sectors. However, attempts to be everything to everybody will result in an unfocused and ultimately unsuccessful program. Monitoring results should support adaptive management, allowing decision makers to support approaches that demonstrate measurable success in attaining ecosystem goals and revise practices that are falling short of achieving those goals.

Not only will the monitoring of ocean water quality protect the health of the beachgoing public, it will provide an important tool in measuring water quality problems and will raise awareness about this important issue for coastal ecosystem health.

—Christopher J. Evans, Executive Director, Surfrider Foundation, testimony to the Commission, June 2002
System Design

Sampling protocols are central to the design of an effective national monitoring network. Because regular sampling of all areas for all contaminants would be unacceptably costly, only a subset of locations can be monitored. The network's designers need to determine what, where, and how often to sample, examining existing monitoring systems at the federal, state, territorial, tribal, local, and private levels to determine gaps. Designers must agree on a set of core variables to be measured at every station, with flexibility for stakeholders to measure additional variables to meet regional and local needs. Along with core variables, determining consistent national indicators will allow decision makers to assess ecosystem health and conduct long-term evaluations. Some efforts have been made to establish a set of national indicators. For example, in 2002, the H. John Heinz III Center for Science, Economics, and the Environment issued *The State of the Nation's Ecosystems*, which described national indicators that provide a very broad perspective on national trends and conditions.

To be effective, it is critical for a national monitoring network to incorporate various types of measurements, including a broad-scale census of fundamental properties, issue- and resource-specific surveys, and intensive monitoring at higher resolution to support the scientific study of ecosystem processes. The network should include both effects-based monitoring, which measures the current condition of the environment, and stressor-oriented monitoring, which measures parameters that are known or suspected to be associated with a decline in environmental health. In addition, it is desirable for the network to combine probabilistic sampling, which allows for statistically valid assessments of environmental conditions in monitored and unmonitored areas, with fixed-station sampling, in which specific areas are repeatedly sampled over an extended period of time. Probabilistic sampling is beneficial because it allows reliable general conclusions to be made about a site or a region. Fixed-station sampling also has its advantages because sampling one area repeatedly allows for long-term trend analyses. Because both of these sampling methods are beneficial in different ways, an ideal monitoring network would combine the two approaches.

Technical Coordination

The monitoring system needs to include standardized procedures and techniques. In some cases, new measurement technologies will be needed, for example with respect to monitoring beach water quality or assessing the sources of pathogens affecting beaches. Quality assurance and quality control guidelines should be established so that management approaches can be assessed on comparable terms. Data management protocols should be established and uniform data storage formats specified so information can be broadly disseminated and easily accessed and understood by agency personnel, the scientific and management communities, and the general public.

Periodic Review and Modification

The monitoring network's design will need to be evaluated periodically to make sure it is measuring variables that are useful for assessing the health of an ecosystem, to add new variables when necessary, and to make any other changes that would improve its operation. While establishing and standardizing a core set of measurements is important, it is also critical to review this core set periodically to ensure that new substances are added as needed. As new chemicals are detected in the environment and wildlife, their toxicological significance should be assessed and they should be considered as possible additions to the suite of routinely monitored compounds (Box 15.2).
Design Based on User Input

The national monitoring network will require not only federal coordination, but also significant input from state, territorial, tribal, and local governments, as well as academic and research institutions, nongovernmental organizations, and volunteer monitoring groups. The monitoring network should be designed with regional needs in mind, in a way that answers the questions of greatest interest to the end users. To maximize the value of monitoring information, users should be fully included from the start in designing the network. The regional ocean information programs, discussed in Chapter 5, are appropriate entities to provide the monitoring network with input concerning regional information needs.

Recommendation 15–3

The National Oceanic and Atmospheric Administration, U.S. Geological Survey, and U.S. Environmental Protection Agency, working with states and other appropriate entities, should ensure that the national monitoring network has clear goals, specifies core variables and an appropriate sampling framework, and is periodically reviewed and updated. These agencies should also work with the regional ocean information programs to determine regional and local information needs.

Specifically, the national monitoring network should include the following elements:

- clearly defined goals that fulfill user needs and provide measures of management success.
- a core set of variables to be measured at all sites, with regional flexibility to measure additional variables where needed.
- an overall system design that determines where, how, and when to monitor and includes a mix of time and space scales, probabilistic and fixed stations, and stressor- and effects-oriented measurements.
- technical coordination that establishes standard procedures and techniques.
- periodic review of the monitoring network, with modifications as necessary to ensure that useful goals are being met in a cost-effective way.

Box 15.2 Keeping Up With New Contaminants

In recent years, a number of studies have demonstrated the presence of contaminants that had not previously been measured in the environment. These include many commonly-used compounds such as insecticides, pharmaceuticals, antibiotics, hormones, fire retardants, detergents, and other industrial chemicals that are produced in high volumes and can be introduced to the environment during their production, use, or disposal. They have likely been present in the environment since they entered commerce, but the technologies for their detection have only recently become widely available.

Analytical techniques rarely permit the detection of every chemical within an environmental sample. Therefore, monitoring efforts typically look for compounds from a pre-selected list. In the 1970s, EPA established a list of 129 priority pollutants (there are currently 126) that were chosen out of thousands of candidates based on their presumed prevalence in surface waters and their ability to be analyzed. This list still remains the standard for environmental assessments, although it ignores many highly relevant chemicals.

Some of the recently-detected compounds are long-lived and can accumulate to high concentrations in the environment, wildlife, and humans. They have also become widely dispersed, spreading even to distant Arctic areas. Most of these compounds have only recently been considered as environmental contaminants, so information on their toxicology is still lacking. As analytical technologies improve and new contaminants continue to be found, it will be important to understand the presence and toxicologic significance of these compounds in the environment and to update the list of priority pollutants to include such compounds.
Making Data Accessible and Useful

A coordinated national monitoring network will produce an enormous amount of data. However, for these data to be helpful, they must be processed and converted into timely information products that are useful and accessible to a broad community of decision makers, the public, and other potential end users. These information products should take full advantage of previously collected monitoring data, as well as data from a variety of other sources.

Monitoring data, whether newly collected or mined from old sources, should become part of a broad national environmental data management system. Such a system can combine data from many sources, including the IOOS (as discussed in Chapter 26), to create information products. The process of receiving, managing, and translating data is described in greater detail in Chapter 28; it will be key to merging monitoring and IOOS data to create seamless products across the land/ocean interface.

References

CHAPTER 16

LIMITING VESSEL POLLUTION
AND IMPROVING VESSEL SAFETY

Vessel activities create significant benefits, but they also present risks to people and the environment that need to be effectively addressed. Limiting pollution, improving safety, and addressing potential security threats associated with vessel operations depend on responsible owners and operators, conscientious crews, enforceable national and international standards, and development of new technologies and management approaches. There is also a need for heightened awareness and better real-time information about the full array of offshore activities to ensure safety, security, and environmental quality.

Assessing the Benefits and Risks of Vessel Activities

Commercial and recreational vessel activities contribute substantially to the U.S. economy. Ships carry more than 95 percent of the nation’s overseas cargo and 9 to 15 percent of its domestic freight. The U.S. cruise industry and its passengers generated almost $12 billion in annual spending in 2002, and recreational boaters spend an estimated $30 billion a year. However, as with all industries, the many benefits derived from vessel operations are accompanied by safety and environmental risks that require effective government oversight. A 1995 U.S. Coast Guard study identified human error as the cause of approximately 80 percent of all maritime casualties. Recent events—such as an oil spill from a barge in Buzzards Bay, Massachusetts that caused significant economic and environmental damage and a Staten Island, New York ferry accident that resulted in multiple fatalities—demonstrate that protecting the environment and enhancing safety require continued focus and vigilance.

It is worth noting that many of the pollutants associated with vessels also have land-based sources. In fact, 80 percent of all ocean pollution originates from land-based activities, including many of the types of pollution commonly associated with vessel activities. For example, spills due to shipborne oil transportation, including spills from tankers, account for only about 9 percent of the human input of petroleum into North American waters. Nevertheless, the existence of other sources does not diminish the importance of finding better ways to reduce vessel pollution.

Improving commercial vessel safety, security, and environmental protection is an international concern. Foreign flag vessels, subject primarily to the jurisdiction and control of other governments, carry more than 90 percent of international commercial freight entering and departing the United States and account for 95 percent of passenger ships.
and 75 percent of cargo ships operating in U.S. waters. Consequently, it is critical for the United States to participate in worldwide efforts to manage vessel operations. The principal forum for developing international regulations and guidelines on vessel safety, security, and environmental protection is the United Nations International Maritime Organization (IMO). The IMO consists of 164 member nations, including the United States, whose combined fleets represent more than 98 percent of world vessel tonnage.

Strengthening Vessel Safety, Security, and Environmental Compliance

Vessel owners and operators and government agencies responsible for oversight of vessel operations share responsibility for continued improvement in vessel safety, security, and environmental compliance. Improvements to date have been based on a combination of voluntary and regulatory measures, including a broad array of guidelines and mandatory regimes for domestic and international operations. Over the past few years, attention has been focused on better implementation, oversight, and enforcement of existing requirements. The success of all these efforts will depend on a broad domestic and international framework with several components. A key factor is a strong voluntary commitment on the part of vessel owners and operators to build a culture that incorporates safety, security, and environmental protection as important and valued aspects of everyday vessel operations. Another important component is an international commitment to effective oversight and enforcement, both by those with primary responsibility for vessel operations and by receiving ports.

A Culture of Compliance and Safety

Voluntary partnerships between U.S. government agencies and vessel owners and operators are an important, non-regulatory means of promoting vessel safety and encouraging compliance with environmental regulations. For example, the Coast Guard’s Prevention Through People program focuses on the human component of vessel operations to identify risks and develop solutions to common problems, emphasizing the industry’s lead role in safety management.

Such partnerships have been credited for reductions in vessel accidents and oil spills. However, the process of building a culture of safety also requires a strong commitment within industry. Safety and environmental plans should be effectively incorporated into routine vessel operations, including investments in improved workplace safety and training. Also important are reliable means of measuring the success of these initiatives, as reflected in crew and company performance, including extensive use of third-party audits. The Coast Guard has developed incentives that reward companies and vessels that have excellent performance records. The most effective incentives are those that facilitate cargo delivery or other vessel operations, such as reduced government oversight or inspections, which translate directly into lower operational costs.

Recommendation 16–1

The U.S. Coast Guard should encourage industry partners engaged in vessel management to develop stronger voluntary measures, particularly those that reward crew member contributions, as part of a continuing, long-term effort to build a culture of safety, security, and environmental compliance in routine vessel operations.

Despite these positive developments, effective oversight and enforcement will remain critical to improved safety and environmental protection. While most vessel owners and operators comply with international and domestic requirements to develop safety manage-
ment plans, the evidence of continuing accidents, criminal prosecutions for falsifying
documents, and intentional violation of environmental protection laws indicate that some
owners and operators are not effectively implementing these plans. Coast Guard experi-
ence has found that performance-based inspections, focusing on demonstrations of crew
competencies and incorporation of vessel safety management plans into daily operations,
provide the best means of evaluating the effectiveness of implementation efforts.

Effective oversight and enforcement also play an important role in identifying and tak-
ing action against the small percentage of owners, estimated to control 10 to 15 percent of
the world fleet, that cause significant environmental damage by disregarding or intention-
ally violating safety and environmental regulations. Thorough inspections and enforce-
ment operations and appropriate penalties can help discourage such illegal conduct.

Vessel oversight and enforcement took on a dramatic new dimension after the terrorist
attacks in September 2001, when a series of new security requirements were developed to
address vulnerabilities in the U.S. marine transportation system. In 2002, Congress enacted
the Maritime Transportation Security Act (MTSA), establishing a comprehensive approach
to maritime security, and the IMO adopted a broad new security regime for international
shipping, which entered into force in July 2004. These initiatives are part of a broader
homeland security strategy that places a series of new demands on Coast Guard resources.

Concern has been expressed in Congress and elsewhere about the impact of increased
security responsibilities on other Coast Guard missions. U.S. General Accounting Office
(GAO) reports have documented a decline in resources in a number of other mission
areas, including marine safety and environmental protection, since September 2001, and
have called upon the Coast Guard to develop a comprehensive, balanced resource utiliza-
tion strategy.

A 2004 report by the National Research Council identified four key national interests
related to the marine transportation system: ensuring marine safety; protecting the marine
environment; facilitating commerce; and providing for national security. In planning for
future resource needs and allocation, it will be important to ensure that sufficient resources
are available to meet new security demands without diminishing the resources necessary
to sustain and strengthen marine safety and environmental compliance. For example,
performance-based vessel inspections, while the most effective means of verifying compli-
ance, are resource intensive. These inspections have played a critical role in identifying
and correcting potential problems, and in assessing the effectiveness of overall efforts to
improve safety and environmental compliance.

Recommendation 16–2
The U.S. Coast Guard should carry out sustained and strengthened performance-based inspec-
tions as a key component of vigorous enforcement of marine safety and environmental pro-
tection laws. Coast Guard activities in these areas should be coordinated with new demands
for vessel security inspections and other security requirements.

Flag State Oversight and Enforcement

Government responsibility for oversight and enforcement is vested primarily in the *flag
state*, the nation in which a vessel is registered and whose flag the vessel flies. Flag states
are responsible for ensuring their vessels’ compliance with applicable safety, security, and
environmental standards, and for verifying the accuracy of documents and certificates
issued under their authority. This responsibility requires flag states to have the necessary
domestic laws, administrative infrastructure, and qualified personnel in place to oversee
vessel inspections, ensure crew competency, investigate vessel accidents, and take appro-
appropriate regulatory and enforcement actions.
Although many flag states take their responsibilities seriously and are active participants within the IMO, some lack the willingness or capacity to adequately oversee and enforce international requirements. In many instances, flag states rely heavily on independent organizations, such as classification societies, for technical expertise and guidance concerning these responsibilities. These organizations may be designated to exercise authority on behalf of a flag state, in which case they are referred to as “responsible organizations.” Many of these organizations are highly professional and competent, but not all adhere to high standards of performance.

Some flag states, known as open registries, allow ship owners to register vessels and fly their flag without any genuine link between the nationality of the owner and the flag state. A few open registries have little interest in the duties of a flag state, other than to collect registration fees. These flag states become havens for owners of substandard vessels seeking to avoid meaningful oversight. The ability to rapidly change vessel registry from one flag state to another makes it easy for irresponsible owners to avoid effective flag state controls over their operations.

Over the past decade, the IMO has developed guidelines to improve flag state oversight and enforcement including a self-assessment program. However, less than one-third of IMO member nations have participated in the program, and a consistently low number of flag states submit mandatory reports to the IMO on actions taken to control pollution violations. An IMO research study completed in 2001 also found an unexpectedly high incidence of fraudulent crew certification documents, with over 80 percent of those surveyed having detected forged certificates in the last five years.

Mounting international security concerns have made effective flag state oversight and control even more urgent. Recently approved IMO security initiatives require flag states to enforce comprehensive new security measures for vessels flying their flag, including the implementation of vessel security plans, development of detailed and regularly updated vessel histories, and verification of vessel and crew security documentation.

The IMO also recently approved the establishment and development of a voluntary Model Audit Scheme to assess how effectively member states are implementing and enforcing convention standards and to provide feedback on audit results. The IMO has been working on a code that clearly enumerates flag state, port state, and coastal state responsibilities. The G-8 nations (the United States, France, Russia, the United Kingdom, Germany, Japan, Italy, Canada) and representatives from the European Union agreed to work together to accelerate the introduction of these IMO initiatives and expand technical cooperation programs to assist flag states in meeting their international obligations.

Recommendation 16–3

The United States should work with other nations to accelerate efforts at the International Maritime Organization to enhance flag state oversight and enforcement. These efforts should include implementation of:

- a code outlining flag state responsibilities and obligations.
- a voluntary audit regime, to be followed by adoption of a mandatory external audit regime for evaluating flag state performance.
- measures to ensure that responsible organizations, acting on behalf of flag states, meet established performance standards.
- increased technical assistance, where appropriate, for flag states that participate in self-assessments and audits.

We have seen over and over again how old, out-of-date ships flying flags of convenience have caused untold damage to the world’s oceans.
—Richard McCreary, Group President, Halter Marine, Inc., testimony to the Commission, March 2002
Port State Control

Nations have the authority to ensure that foreign flag vessels visiting their ports are in compliance with applicable international and domestic requirements. This verification process, exercised through port state control programs, has taken on added significance given the failure of some vessel owners and flag states to effectively exercise their oversight responsibilities.

U.S. Port State Control

The Coast Guard currently carries out a port state control program that allocates limited inspection resources to the highest-risk vessels, based on an assessment of the vessel owner, flag state, classification society, performance history, and vessel type. The assessment also considers whether the flag state is a party to important international conventions. In 2002, over 7,000 vessels from 81 flag states made more than 53,000 port calls in the United States. The Coast Guard conducted 10,518 inspections, leading to the detention of 179 vessels for serious violations.19

The Coast Guard’s QUALSHIP 21 program rewards foreign flag vessels that have attained particularly high levels of compliance with international safety and environmental requirements by reducing their Coast Guard inspections. This can expedite port calls and reduce costs. The Coast Guard is currently working to develop additional incentives for QUALSHIP 21 vessels.

The Coast Guard’s annual reports on port state control identify a small number of flag states whose vessels have consistently poor records, with repeated detentions for major safety and environmental compliance violations.20 Beginning in 2004, the U.S. port state control program will be expanded to include comprehensive vessel security inspections that will provide additional information on flag state performance.

Poor oversight by flag states places greater burdens on Coast Guard resources; the higher the potential risk presented by a vessel, the greater the need to assign resources to address that risk. More stringent action against irresponsible flag states may encourage vessel owners to register with flag states that have better oversight regimes and performance records, and reduce the burden on port state resources. One potential option would be to deny port entry to vessels registered with flag states, or under control of owners and operators, who demonstrate a repeated, material failure to enforce applicable security, safety, or environmental protection requirements.

International Port State Control

Port state control programs around the world can become more effective by sharing information on successful program management practices, and by sharing information on vessel histories and inspections. An international memorandum of understanding, signed by the Coast Guard, established EQUASIS, an independent, nonprofit database designed to provide global access to impartial information on individual vessels to help reduce substandard shipping. This database can be accessed free of charge by anyone, including port states and vessel operators. Although the Coast Guard actively participates in development of EQUASIS policy, and provides and uses information in the database, an appropriate funding mechanism is needed to allow regular U.S. support for this important information-sharing effort.

Recommendation 16–4

The U.S. Coast Guard, working with other nations, should establish a permanent mechanism to strengthen and harmonize port state control programs under the auspices of the International Maritime Organization. To assist port states, the Coast Guard should also support efforts to enhance an international vessel information database.
Reducing Vessel Pollution

Strengthening commitments to environmental protection, flag state oversight, and port state control will help prevent and reduce the impacts of vessel pollution. However, effective reduction of vessel pollution will also require the development of new control measures. Of particular concern are vessel waste discharges containing pathogens and nutrients, air emissions, and oil releases. (The role of vessels in the spread of invasive species is addressed in Chapter 17.)

Waste Stream Discharges

Every day, vessels ranging from large cruise ships to small recreational boats discharge wastes into coastal waters. The waste streams from recreational vessels primarily contain sewage, while cruise ships discharge both sewage and toxic substances. These wastes, if not properly disposed of and treated, can be a significant source of pathogens and nutrients with the potential to threaten human health and damage shellfish beds, coral reefs, and other aquatic life. According to the U.S. Environmental Protection Agency (EPA), the amount of bacterial pollution in the discharge of untreated sewage from just one recreational boat is equivalent to the amount in the treated sewage of 10,000 people during a similar time period.21

The Clean Water Act prohibits the discharge of untreated sewage in U.S. internal waters and within three miles of the coast. It also allows individual states to ask EPA to establish special no-discharge zones within which the discharge of even treated sewage is prohibited. The Clean Water Act also directs EPA and the Coast Guard to establish discharge and design standards for onboard toilets, referred to technically as marine sanitation devices (MSDs).

Concerns about the impacts of vessel waste and the effectiveness of Clean Water Act controls increased in the 1990s, along with the increase in cruise ships and recreational vessels. An Alaskan study conducted in 2000 found that most cruise ship MSDs failed to treat sewage to levels necessary to meet federal standards, despite claims by the manufacturers. Earlier that year, cruise lines had voluntarily adopted additional restrictions on the discharge of wastewater in Alaskan waters in response to growing concerns about potential wastewater impacts.22

Decreasing the detrimental effects of these discharges will require a number of actions, including modifications to current statutes and regulations to strengthen standards, improved public outreach and education, and additional research to better understand waste stream impacts.

Cruise Ships

The cruise industry has grown rapidly since the 1980s. By the end of 2002, 176 vessels were operating in the North American cruise industry, and U.S. ports handled 6.5 million cruise embarkations, an increase of over 10 percent from 2001.23 While perhaps slowing...
somewhat over the next several years, double-digit growth is predicted to continue in the near term. This is causing increased concern about the environmental impact of waste discharges from cruise ships. The United States accounts for about 70 percent of global cruise embarkations; thus, a large portion of cruise ship operations occur in or near U.S. waters (Figure 16.1).

Cruise ships can carry as many as 5,000 passengers and crew, generating large amounts of wastewater, including blackwater (sewage), graywater (drainage from dishwashers, showers, laundry, baths, and washbasins), and hazardous substances. Estimates indicate that a single cruise ship can generate from 140,000 to 210,000 gallons of blackwater and a million gallons of graywater per week. Of particular concern are the cumulative environmental impacts caused when cruise ships repeatedly visit the same environmentally sensitive areas.

Between 1993 and 1998, eighty-seven illegal discharge cases were brought against cruise lines in the United States, resulting in significant civil and criminal penalties. While the number of confirmed cases gradually declined during that period, new cases leading to additional civil and criminal penalties have continued over the past several years. Industry efforts to address this problem have included the voluntary adoption of comprehensive management plans for handling cruise ship wastes, participation in research partnerships with government and other public and private stakeholders to investigate the impacts of cruise ship pollution, and significant investments in new technologies to reduce environmental impacts. The cruise industry has also signed memoranda of understanding with individual states concerning management and oversight of cruise ship waste disposal programs.

In response to particular concerns about the impacts of cruise ship discharges in Alaska, a new federal statutory regime applicable only to Alaskan waters was developed in 2000, followed by a state statutory regime in 2001. These laws included wastewater discharge standards and provisions for sampling, testing, recordkeeping, and inspections, as well as flexibility to encourage voluntary application of innovative wastewater treatment technologies and methods. However, no comprehensive wastewater management regime is in place for all large passenger vessels operating in U.S. waters.

A new regime is needed that provides clear, uniform requirements for controlling the discharge of wastewater from large passenger vessels, as well as consistent interpretation and enforcement of those requirements. The benefits of the Alaskan approach should be extended to other sensitive ocean and coastal areas that experience significant cruise ship traffic. Any new regulatory regime should be science-based and incorporate new findings, such as those from recent EPA studies on the dilution and dispersal of discharges from vessels while underway, and Alaska Department of Environmental Conservation assessments of advanced wastewater treatment systems and cruise ship wastewater impacts. Effective enforcement will require that vessels maintain accurate records to allow the regulated community and enforcement officials to track the treatment and discharge of wastes.
Recommendation 16–5

Congress should establish a new statutory regime for managing wastewater discharges from large passenger vessels that applies throughout the United States.

This regime should include:

- uniform discharge standards and waste management procedures.
- thorough recordkeeping requirements to track the waste management process.
- required sampling, testing, and monitoring by vessel operators using uniform protocols.
- flexibility and incentives to encourage industry investment in innovative treatment technologies.

Recreational Vessels

Millions of recreational boats also discharge significant volumes of waste to coastal waters. Many recreational boaters rely on MSDs to treat waste before discharge or store waste until it can be pumped out at land-based facilities. MSD performance and design standards, however, have not been updated since the mid-1970s and do not account for new technology or the operational life of an MSD system. As a result, many MSDs currently used on recreational vessels do not provide adequate environmental protection, particularly with respect to pathogen discharges.

Recommendation 16–6

The U.S. Environmental Protection Agency should revise the Clean Water Act marine sanitation device (MSD) regulations to require that new MSDs meet significantly more stringent pathogen standards. Manufacturers should be required to warranty that new MSDs will meet these standards for a specific time period.

Waste Pumpout Facilities

Pumpout facilities are essential for handling waste from boats equipped with holding tanks. The combined use of holding tanks and transfer to shore-side pumpout facilities is currently the most effective way to address the impacts of recreational vessel wastes, particularly nutrients. For many recreational boaters, holding tanks are also the most cost effective and reasonable form of MSD. When a no discharge zone has been established, the use of pumpout facilities is often the only option available for recreational vessels that do not, or for safety reasons should not, venture offshore beyond state waters.

EPA is responsible for determining whether adequate pumpout facilities are available to recreational boaters before approving most state no-discharge zones. In addition, the Clean Vessel Act provides funding to states, through the U.S. Fish and Wildlife Service (USFWS), to purchase and install sewage pumpout stations and portable toilet waste dump stations, and to provide environmental education to boaters. Despite these programs, the current shortfall in adequate pumpout facilities makes it virtually impossible for boaters to comply with prohibitions against the discharge of untreated waste in some coastal areas.

Additional measures have been suggested to increase the number of pumpout facilities. Marina permits issued under federal or state law could include provisions requiring pumpout facilities, and voluntary installation and use of pumpout facilities could be encouraged as part of community education and outreach programs. States may also award grants to construct these facilities. An effective program requires sufficient oversight to ensure that existing pumpout facilities remain operational and readily accessible to recreational boaters. Education and outreach programs, as well as incentive programs, could also be used to encourage voluntary upgrading of MSDs.
Recommendation 16–7

The U.S. Environmental Protection Agency (EPA) should conduct a thorough assessment, including field inspections, to verify the availability and accessibility of functioning pumpout facilities in existing no-discharge zones and prior to the approval of any new no-discharge zones. The U.S. Fish and Wildlife Service and EPA, working with states, should coordinate their efforts to increase the availability of adequate, accessible, and operational pumpout facilities, particularly in no discharge zones.

Air Emissions

Commercial Vessels

Most large commercial ships are powered by marine diesel engines that use fuels containing high concentrations of contaminants. These engines have high emissions on a per engine basis and contribute to high ozone and particulate matter levels in many coastal and port areas. A study of global impacts from large vessel air emissions indicates that approximately 80 percent of vessel air emissions occur within 200 miles of the coast, and that a major part of these emissions are concentrated in a few areas in the Northern Hemisphere, primarily along the east and west coasts of the United States, in the North Pacific, and in northern Europe. International and domestic marine trade is predicted to more than double in the next twenty years, reinforcing the need to expeditiously develop and implement measures to abate vessel-generated air pollution.

International initiatives to curb emissions from very large vessel engines have focused on IMO development of a new Annex to the International Convention for the Prevention of Pollution from Ships (MARPOL). (For a listing of significant ocean-related international agreements, see Table 29.1.) Annex VI, which is scheduled to enter into force in May 2005, establishes limits on nitrogen oxide emissions and addresses the sulfur content of fuel, ozone-depleting substances, volatile organic compounds from refueling, and shipboard incineration. Annex VI also allows nations to establish Sulfur Oxide Emission Control Areas and efforts are already underway to seek this designation for certain European waters.

Recommendation 16–8

The United States should ratify MARPOL Annex VI and work for International Maritime Organization (IMO) adoption of even stricter air emission standards that reflect advances in marine engine technology, availability of cleaner fuels, and improved operational practices. The U.S. Environmental Protection Agency, working with other appropriate entities, should use Annex VI criteria and guidelines to evaluate U.S. ocean and coastal areas with impaired air quality, and seek IMO designation of appropriate areas as Sulfur Oxide Emission Control Areas.

In May 2004, EPA announced two new initiatives as part of its ongoing Clean Diesel Program. These regulatory measures are designed to improve air quality through a combination of emission controls and cleaner fuels. Cleaner fuel standards will reduce the sulfur content of diesel fuel from its currently uncontrolled level of approximately 3,000 parts per million to 500 parts per million in 2007, and to 15 parts per million by 2012 for fuel used in marine engines. EPA is also proposing stricter emission standards for all new commercial, recreational, and auxiliary marine diesel engines except the very large Category 3 engines used for propulsion on sea-going vessels, which are subject to separate regulations. The new standards could apply to designated marine engines by 2011. Implementation of these regulations, which are designed to complement each other, should result in significant reductions in harmful emissions. EPA estimates that full implementation of these two regulatory initiatives will result in particulate matter reductions of 95 percent, nitrogen oxides reductions of 90 percent, and the virtual elimination of sulfur oxides from marine engines that meet the new standards.
Voluntary actions can provide a useful complement to regulatory measures in reducing vessel air emissions, although they often involve increased costs to vessel owners and operators. New engine types that consume less fuel and emit less pollution are voluntarily being installed and evaluated. Some vessel owners and operators are currently replacing high-sulfur fuels with more expensive, low-sulfur fuels. Economic incentives can encourage such actions by helping to offset the costs. Several incentives were suggested during the development of EPA’s large marine engine emission regulations. At the state and port levels, these include differentiated port fees based on a vessel’s environmental profile, matching grant programs, and the greater use of shore power where it is determined to be safe, cost-effective, and environmentally advantageous. Future possibilities include market-based measures such as pollution credit trading programs, including trading between fixed and mobile sources. Europe is also considering market-based measures to reduce emissions, such as relating port fees to vessel emission levels, linking fuel taxes with fuel quality, and developing emission trading mechanisms.

Recommendation 16–9

The U.S. Environmental Protection Agency, working with other appropriate entities, should investigate and implement incentive-based measures that could lead to measurable voluntary reductions in vessel air emissions.

Recreational Vessels

At the other end of the spectrum, the millions of smaller recreational boats with gasoline-fueled, spark-ignition engines may contribute more than 10 percent of total hydrocarbon emissions in some areas of the nation, contributing to ozone formation and associated health problems. EPA has issued regulations under the Clean Air Act to reduce these emissions by requiring the use of significantly improved two-stroke engine designs or substitution with four-stroke engines, either of which will significantly reduce air emissions. EPA estimates that by 2025, after the new engines are in widespread use and the old engines have been largely retired, there will be a 75 percent reduction in hydrocarbon emissions from recreational vessels. Environmental benefits could be achieved even more rapidly if incentives were provided for boat owners to retire old engines ahead of schedule.

EPA can also work with state government, recreational boating associations, and marinas to expand education and outreach programs that urge recreational boaters to properly maintain engines and fuel systems to optimize combustion and to replace old two-stroke engines more rapidly.

Oil Releases

Vessels can release oil into the marine environment in a variety of ways, including accidental spills of oil and fuel, release of oil during normal engine operations, and intentional discharges. Two recent devastating spills off the coast of Europe involving older single-hull tankers—the *Erika* in 1999 and the *Prestige* in 2002—clearly demonstrate the challenges presented as ship operators and government agencies work to prevent future spills.

Single-Hull Vessel Phase-outs

One of the major initiatives developed to prevent oil spills is the phase-out of single-hull tankers and barges and their replacement by double-hull vessels. In December 2003, IMO adopted amendments to MARPOL, scheduled to enter into force in 2005, that accelerate international phase-out schedules for single-hull tankers and introduce a ban on carriage of heavy oils by certain single-hull tankers. The IMO provisions reflect similar actions that entered into force in the European Union in October 2003.
Prior to recent international actions, concerns had been raised in the United States about sufficient oil carriage capacity, as regulations under the Oil Pollution Act (OPA) required phase-outs of single-hulls. (The international phase-out schedule differs in certain respects from the schedule under OPA.) A 2000 GAO report analyzed domestic capacity in the U.S. fleet and determined that the industry had sufficient capacity in the near term, but that future capacity was less clear and merited regular examination. As the European and IMO initiatives took shape, additional concerns were raised about their impacts, including the limitations on carriage of heavy oils and the possible diversion of single-hull tankers from the European to U.S. trade. Building on recommendations in the GAO report, the U.S. Department of Transportation and the U.S. Coast Guard need to continue to assess issues related to the phase-out of single-hull vessels. The assessments should address the capacity to meet U.S. demand for double-hull vessels and include evaluations of the impacts of recent MARPOL amendments.

Aging Infrastructure

While vessel spills are the leading source of oil releases associated with the oil transportation industry, there is also growing concern about the threats posed by aging pipelines and other oil transportation facilities. Reflecting these concerns, Congress and the Department of Transportation’s Office of Pipeline Safety have introduced new statutory and management measures designed to improve pipeline safety. The most effective long-term approach to protection of the marine environment from transportation-related oil spills is a comprehensive, risk-based assessment of potential threats, prioritization of responses, and a coordinated plan of action among agencies responsible for different segments of the oil transportation industry.

Recommendation 16–10

The U.S. Department of Transportation, U.S. Coast Guard, U.S. Environmental Protection Agency, and Minerals Management Service, in consultation with states, should conduct a risk-based analysis of all oil transportation systems that identifies and prioritizes sources of greatest risk. Based on that analysis, the agencies should develop a comprehensive, long-term plan for action to reduce overall spill risks and the threat of significant spills.

Pollution Prevention and Response

U.S. efforts to reduce oil spills from vessels have been very successful, largely due to requirements established by OPA, and initiatives by industry working with the Coast Guard and other agencies (Figure 16.2). Following the enactment of OPA in 1990, oil released through vessel spills in the United States dropped by more than 60 percent, from over 14 gallons per million shipped between 1983 and 1990 to 5 gallons per million between 1991 and 1998. While barge spills have also declined dramatically in the last decade, a 2002 National Research Council report indicated that between 1990 and 1999 the amount of oil released into U.S. waters from barge spills, particularly from spills of heavy distillates, exceeded spills from other vessel sources, including tankers.

Sunken and abandoned vessels also pose environmental dangers. These wrecks may still contain significant amounts of oil or other hazardous substances and represent an increasing threat of gradual or sudden releases to the environment as the vessels age and deteriorate. When a spill does occur, the United States has a well-developed National Response System (NRS) to manage threats from oil discharges, hazardous chemical releases, and other toxic spills. The NRS includes: a National Response Team made up of sixteen federal agencies; Regional Response Teams, with federal, state, and territorial representatives; area committees; and local emergency planning committees under supervision of their state emergency response commissions. National, regional, and area contingency plans provide an organizational structure, develop policy guidance, and coordinate federal, state, and...
local responses to discharges and threats of discharges. Federal on-scene coordinators manage response resources and efforts during an incident. The need remains for continued vigilance, dedication of resources, prioritization of threats, and development of additional preventive actions to reduce the number and impacts of oil spills in U.S. waters.

Places of Refuge

A *place of refuge* is the term given to a port or protected coastal area that can accommodate ships in distress and help prevent or mitigate the impact of spills. In 2001, the *Castor*, a fully laden tanker that had developed a structural problem in the Mediterranean, was forced to remain at sea for thirty-five days until it was finally allowed into sheltered waters for cargo transfer and repairs. Many believe that the catastrophic impacts of the 2002 *Prestige* oil spill off the coast of Spain may have been avoided or significantly reduced if the distressed vessel had been allowed into sheltered waters to transfer its cargo, rather than being towed farther out to sea.

In December 2003, the IMO approved new guidelines on places of refuge for distressed ships when human life is not threatened. The guidelines are based on the premise that the best way to prevent damage from the progressive deterioration of a vessel is to transfer its cargo and fuel, and that this is best accomplished in a place of refuge. The guidelines provide a framework for assessing individual cases and taking appropriate action. However, recognizing that the potential economic and environmental consequences of bringing a distressed vessel to the coast are likely to attract political involvement, the guidelines also recommend actions to facilitate communication and decision making during the time of crisis.

Additional work is needed in the United States to create an effective process within the National Response System for responding to vessels seeking refuge. While this will be difficult, the nation cannot afford to wait until an incident like the *Prestige* disaster is underway before seeking good solutions. A series of government and industry forums have identified many issues to be addressed, among them: establishing a single point of contact for ship-to-shore communications; identifying available salvage, lightering, and technical resources in local areas; identifying the responsible decision makers at federal,

Figure 16.2 The Oil Pollution Act Curbs Spills in U.S. Waters

While the number of oil spills has decreased steadily since the early 1970s, the volume of oil spilled fluctuated significantly between 1973 and 1990. However, following the *EXXON Valdez* spill in 1989 and the resulting passage of the Oil Pollution Act of 1990, the amount of oil released into the environment has been significantly reduced.

Source: Environmental Research Consulting, Cortlandt Manor, NY.
state, and port levels; resolving financial protection, liability, and compensation issues; and deciding whether potential places of refuge should be designated in advance. There is a broad consensus that contingency plans should: allow for consistent implementation at the national, regional, and port levels; provide specific direction on how to receive and act upon requests for assistance in a timely and coordinated manner; and establish clear lines of authority and responsibility for deciding whether to grant a ship’s request for refuge.

Recommendation 16–11
The U.S. Coast Guard, working with the spill response and marine salvage communities, should develop comprehensive policy guidance and contingency plans for places of refuge in the United States. The plans should clearly delineate decision-making authorities and responsibilities and provide for coordinated and timely assessments and responses to vessels seeking a place of refuge.

Oil from Recreational Vessels
The millions of recreational vessels and personal watercraft with two-stroke outboard motors are estimated to be a substantial source of petroleum contamination in U.S. waters, although the true magnitude of the problem remains unclear. The National Research Council has estimated that two-stroke outboard motors may release anywhere between 0.6 and 2.5 million gallons of oil and gasoline into U.S. coastal waters every year. Oil from Recreational Vessels

Petroleum products also spill into coastal waters when boaters are refueling. Most of the approximately ten million gasoline-fueled recreational motorboats and personal watercraft have older two-stroke engines that will continue to discharge air and water pollutants until they are retired. Actions to reduce air pollutants from recreational vessel engines (discussed above), including upgrades for two-stroke engines, replacement with four-stroke engines, owner incentives, and general boater education, will also reduce discharges of oil, gasoline, and fuel additives.

Innovative programs can also help to reduce the impacts of other types of oil releases resulting from small vessel operations. For example, the state of Texas, participating ports, the private sector, and local governments, have constructed fixed and mobile bilge water reclamation facilities for commercial fishing vessels and recreational vessels to use for disposal of oily bilge water. The service is provided at no cost to the vessel owners and the oil is recycled. The program, started in 1996, is rapidly expanding and is reported to have collected over 500,000 gallons of used oil and more than 600,000 gallons of contaminated water. The federal government can encourage such innovative programs by collecting and disseminating information on successful efforts and providing partial support.

Recommendation 16–12
The National Ocean Council should coordinate federal agency efforts to reduce the release of air and oil pollutants from small vessel operations through a combination of outreach and education, development of incentives to encourage early replacement of older two-stroke engines, and support for innovative pilot programs at the federal, state, and local levels.

Increasing Knowledge to Guide Change

A common theme in any pollution prevention strategy is the need to acquire a better understanding of the impacts of various forms of pollution and the potential for new control technologies. Research can help identify the degree of harm represented by different human activities and can assist in prioritizing limited resources to address the most significant threats. Research must also be at the heart of any science-based approach toward
developing new regulatory and non-regulatory measures to control vessel pollution. Useful research directions include investigations of:

- Processes that govern the transport of pollutants in the marine environment.
- Small passenger vessel practices, including the impacts of stationary discharges.
- Disposal options for concentrated sludge resulting from advanced sewage treatment on large passenger vessels.
- Cumulative impacts of commercial and recreational vessel pollution on particularly sensitive areas, such as coastal areas with low tidal exchange and coral reef systems.
- Impacts of vessel air emissions, particularly in ports and inland waterways where the surrounding area is already having difficulty meeting air quality standards.

These examples represent only a small fraction of the research that is needed to increase the understanding of, and the ability to respond to, potential threats to the marine environment from vessel pollution.

Recommendation 16–13
The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, U.S. Coast Guard, and other appropriate entities should support a vigorous, coordinated research program on the fates and impacts of vessel pollution. Research results should be used to guide management priorities, develop new control technologies, determine best management practices, and create more effective regulatory regimes as needed.

Improving Awareness of Ocean Activities

Vessel safety and environmental protection depend not only on appropriate operation of each vessel, but on the safe movement and management of all vessel traffic. Effective vessel traffic management takes place within the larger context of other coastal and ocean uses and requires accommodation between those uses and navigation.

The rapidly increasing variety and number of offshore uses, and the potential for conflicts between competing interests operating in the same area, will increase the need for information concerning the nature and extent of offshore activities. In today's highly interdependent world, efforts to ensure national security, maintain environmental quality, and manage the use of marine resources will require unprecedented awareness of activities, trends, conditions, and anomalies in the maritime domain, including those that may require some intervention.

The Coast Guard, which has a leading role in developing increased maritime domain awareness, defines it as “the effective understanding of anything in the marine environment that could adversely affect America’s security, safety, economy, or environment.” For the Coast Guard, maritime domain awareness applies to a broad range of maritime activities, including security, search and rescue efforts, fisheries enforcement, drug interdiction, illegal human migration, marine safety, and environmental protection.

While much of the recent effort to increase maritime domain awareness has grown out of concerns for national security, heightened by the September 11, 2001 terrorist attacks, the information gained will benefit a variety of other national interests. For instance, the expanded use of the Automated Identification System not only tracks and identifies vessels for security purposes, but provides information to assist safe navigation and help reduce the risk of accidents that could adversely impact the marine environment. The information can also help identify areas of vessel congestion or potential conflicts with other uses, thus serving as a valuable management tool.

The development of greater maritime domain awareness coincides with efforts to develop more comprehensive, ecosystem-based management approaches for ocean and
coastal activities. Close coordination of these efforts will help ensure that the information products developed through maritime awareness can be integrated into other monitoring and observing networks to support a broad variety of management needs.

Recommendation 16–14

In developing and implementing maritime domain awareness initiatives, the U.S. Coast Guard should work with the National Ocean Council to ensure that, in addition to their other intended purposes, these initiatives provide effective support for ocean and coastal management needs.

References

20. Ibid.
24. Ibid.
25 Ibid.
37 Ibid.
42 Ibid.
CHAPTER 17

PREVENTING THE SPREAD OF INVASIVE SPECIES

The introduction of invasive species into marine and Great Lakes ecosystems costs the nation millions, or possibly billions of dollars a year in economic and ecological damage. A major source of aquatic nuisance species is the discharge of ballast water from ocean-going ships. Numerous federal agencies are involved in efforts to prevent the introduction of such species and many laws and regulations have been developed to combat the problem, but more needs to be done to reduce this threat. Preventing introductions of invasive species or limiting their impact, will require streamlined programs and increased coordination among agencies, establishment and enforcement of domestic and international ballast water management standards, an educated public, and adequate funding.

Acknowledging the Problem

The introduction of invasive species into ports, coastal areas, and watersheds has damaged marine ecosystems around the world, costing millions of dollars in remediation, monitoring, and ecosystem damage. Invasive species are considered one of the greatest threats to coastal environments, and can contribute substantially to altering the abundance, diversity, and distribution of many native species. Although not every non-native species becomes an invader (Box 17.1), the sudden availability of new habitat and absence of its natural predators can lead to runaway growth that pushes out other species. Unlike many forms of pollution that degrade over time, invasive species can persist, increase, and spread.

The cost to the U.S. economy of terrestrial and aquatic invasive species has been difficult to determine. Of the few studies that exist, one estimates the damages at $137 billion a year. Of the more than $600 million spent in 2000 to address this problem, the U.S. Department of Agriculture (USDA) received approximately 90 percent for predominantly land-based efforts, while less than 1 percent was dedicated to combating aquatic invasive species. Yet the sea lamprey has decimated a Great Lakes fishery, and aquatic plants, such as hydrilla and water chestnut, have significantly disrupted navigation. One infectious oyster disease, commonly known as MSX and most likely introduced through the experimental release of a Japanese oyster to Delaware Bay in the 1950s, has devastated populations of native oysters along the East Coast.
CHAPTER 17: PREVENTING THE SPREAD OF INVASIVE SPECIES

The history of the European green crab in the United States illustrates the trajectory of many invasive species. Native to the coasts of the North and Baltic seas, the green crab has been introduced to new environments through ballast water discharge, use as fishing bait, and packaging of live seafood. The green crab was first seen in San Francisco Bay in 1989, and has now become widespread on both the Atlantic and Pacific coasts. A number of ecosystems invaded by this small crab have been significantly altered. It competes with native fish and bird species for food and may also pose a threat to Dungeness crab, clam, and oyster fisheries.

The problem of invasive species may be exacerbated by climate change. Warming temperatures can alter aquatic habitats and species distributions, making native populations more susceptible to invasion.

Assessing Existing Approaches

More than a decade has passed since the first legislation was enacted to combat invasive species, yet unwanted organisms continue to enter the United States where they can cause economic and ecological havoc. Invasive species policies are not keeping pace with the problem primarily because of inadequate funding, a lack of coordination among federal agencies, redundant programs, and outdated technologies.

Federal Statutes

The Nonindigenous Aquatic Nuisance Prevention and Control Act (NANPCA), as amended in 1996 by the National Invasive Species Act, is the primary federal law dealing with aquatic invasive species and ballast water management. NANPCA established the Aquatic Nuisance Species Task Force, which includes representatives from the relevant federal agencies and thirteen nonfederal stakeholders. Co-chaired by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service (USFWS), the Task Force is responsible for facilitating cooperation and coordination among federal, regional, and state agencies. The legislation also addresses research, prevention, species control, monitoring, and information dissemination.

The Task Force encourages states to develop plans for managing invasive species, and NANPCA provides the appropriate federal agencies with authority to issue regulations to carry out their responsibilities under the law. To comply with NANPCA, the U.S. Coast...
Guard has established regulations and guidelines to address introductions of non-native species through the uptake and discharge of ballast water from ships.

Resource allocation for managing invasive species varies widely among federal, state, and local agencies. While NANPCA authorizes federal funding to help states implement their approved Aquatic Nuisance Species Management Plans, the appropriation has historically been substantially less than the authorization and has not been effective in motivating states to complete management plans. Since 1996, when this provision was included in NANPCA, only fourteen states have established plans (Figure 17.1).

NANPCA also encourages the formation of regional panels, which operate under goals outlined in the Act. The panels develop priorities and working groups to explore invasive species issues applicable to their areas and make recommendations for regional action. Six regional panels have been established (Figure 17.2).

The National Invasive Species Council, consisting of ten federal departments and agencies, was established by executive order in February 1999 to provide national leadership on managing terrestrial and aquatic invasive species. In 2001, the Council produced a management plan with significant input from a nonfederal advisory committee.7

The Lacey Act allows the U.S. Department of the Interior (DOI) to regulate the importation of animals found to be injurious to wildlife. However, the Act is more often used to
respond to an existing invasive species problem than to promote proactive approaches for preventing their introduction.

The Plant Protection Act and animal quarantine laws authorize the USDA’s Animal and Plant Health Inspection Service to prohibit certain plants and animals from entering the United States, and to require inspection, treatment, quarantine, or other mitigation measures. The Service can pre-clear shipments of certain organisms by requiring inspection and quarantine in the country of origin.

State and Federal Programs

NOAA’s National Sea Grant College Program, in cooperation with USFWS and the Aquatic Nuisance Species Task Force, coordinates and funds aquatic invasive species research, outreach, and education, and administers a research and development program in ballast water management technology. Other NOAA programs address shellfish diseases and threats to essential fish habitat, including the control and removal of invasive species.

The U.S. Army Corps of Engineers (USACE) has several programs that address the interactions between invasive species and federal navigation routes, including the
Aquatic Plant Control Program, the Zebra Mussel Program, and the Removal of Aquatic Growth Program. USACE is also authorized to implement a 50/50 federal cost share with state and local governments for managing invasive species in navigable waterways not under federal control.

The Federal Insecticide, Fungicide, and Rodenticide Act gives the U.S. Environmental Protection Agency (EPA) regulatory authority over the use of chemicals to combat invasive species. EPA may require an environmental assessment for invasive species control activities if these chemicals are involved. And DOI's National Wildlife Refuge System program reviews strategies and recommends pilot projects involving invasive species.

In addition to these federal programs, much of the actual monitoring, management, and control of invasive species falls under regional and state jurisdiction. The Great Lakes Panel on Aquatic Nuisance Species, convened in 1991 with membership representing the eight Great Lakes states, federal and regional agencies, tribal authorities, local communities, and user groups, continues its leadership role as a regional panel, supporting initiatives to prevent, detect, and respond to invasive species. Some states, such as California, have laws that address the illegal transport of certain species, the control of infected, diseased, or parasitized aquatic species, and the marine aquariums pet trade.

Identifying Major Pathways for Introduction of Non-native Species

The discharge of ballast water is considered a primary pathway for introduction of non-native species. Other ship-related sources, such as sea chests (openings in ship hulls used when pumping water), ships' hulls, anchors, navigational buoys, drilling platforms, and floating marine debris, are also important. Other pathways include intentional and unintentional human introductions of fish and shellfish, and illegally released organisms from the aquaculture, aquarium, horticulture, and pet industries. There is also increasing concern that expanding trade through exotic pet dealers, including on the Internet, is exacerbating the invasive species problem, including the introduction of new diseases. Although not all non-native species become invasive (threatening native species, the larger ecosystem, or commercial, agricultural, or recreational activities) their potentially devastating effects call for significant measures to restrict introduction as much as possible.

Ballast Water

Ships carry ballast water to aid in stability, trim (or balance), and structural integrity. An estimated 7,000 species are carried in ships' ballast tanks around the world. While most of them perish during the voyage, even a few survivors can be enough to establish a reproductive population when discharged into a waterway. Under certain conditions, non-native species can compete with native species and become pests in their new environment.

Currently, ships entering U.S. waters with no ballast on board are exempt from some management requirements. However, even seemingly empty ballast tanks often contain residual water and sediments that can release non-native species to receiving waters when the ships take on and discharge water during a coastal or Great Lakes passage.

Intercontinental voyages are not the only way to introduce non-native species through ballast water discharge. The spread of non-native species from one port to another within U.S. waters is of increasing concern on the East and West coasts. Unfortunately, the Coast Guard's jurisdiction is limited to vessels entering U.S. waters from outside the exclusive economic zone (EEZ). Recently enacted law in California authorizes state authorities to order ballast water discharge in certain areas outside state waters prior to docking at California ports. Other coastal states are also considering taking action.
Global Trade in Marine Organisms

Human releases of living marine resources serve as another pathway for the introduction of non-native species. Live fish and shellfish importers, aquaculture facilities (discussed in Chapter 22), and retail pet stores routinely transport, raise, and sell non-native species in the course of business. Along the way, specimens can escape, be disposed of in an unsafe manner, or unknowingly serve as a vector for the introduction of other organisms. Live worms and other bait, packing material, seaweed, and seawater used to transport living organisms may also introduce non-native species into new environments.10

Making Prevention the First Line of Defense

Recognizing the economic and biological harm caused by invasive species, and acknowledging the difficulty of eradicating a species once it is established, aggressive steps should be taken to prevent such introductions.

Ballast Water Management

Exchanging ballast water in the middle of the ocean to reduce the risk of transferring organisms from one ecosystem to another is the primary management tool currently available for ships to control the introduction of invasive species, although this approach is not helpful in controlling domestic port-to-port contamination.

The Coast Guard began implementing ballast water management regulations in 1993 and mandated ballast water exchange for vessels bound for the Great Lakes. However, the lack of similar requirements across the nation led several states, including California, Oregon, and Washington, to also make ballast water exchange mandatory for ships entering their state waters. As a result, ships entering U.S. waters have to contend with different requirements depending on their port of entry. To strengthen invasive species management, the Coast Guard has issued regulations mandating ballast water exchange by vessels entering the United States from outside the EEZ.

However, new technologies may also provide alternatives to mid-ocean ballast water exchange by finding ways to eliminate stowaway species in ballast water. To encourage development, testing, and adoption of these technologies, the Coast Guard is establishing an enforceable treatment standard and a shipboard testing program. This approach will establish a required level of protection against the spread of non-native species and speed progress toward an ultimate goal of preventing all introductions of organisms, including bacteria and viruses.

Recommendation 17–1

The U.S. Coast Guard’s national ballast water management program should include a number of important elements: uniform, mandatory national standards which incorporate sound science in the development of biologically meaningful and enforceable ballast water treatment; a process for revising the standard to incorporate new technologies; full consultation with the U.S. Environmental Protection Agency, both during and after the program’s development; and an interagency review, through the National Ocean Council, of the policy for ships that declare they have no ballast on board.
Investments in new treatment technologies, including technologies to minimize the uptake of sediments in ships’ ballast tanks, will help avoid the high cost of eradicating or managing invasive species. Although NANPCA directed DOI and NOAA, in cooperation with the Coast Guard, to conduct projects that demonstrate technologies and practices for preventing introductions through ballast water, this program has been chronically underfunded. The current limited program supports some technology development, but is unable to demonstrate the real-world effectiveness of these technologies for treating ballast water. To ensure ongoing improvements, government and industry will need to work together to develop and test innovative treatment technologies that are environmentally and economically viable.

Recommendation 17–2

The National Ocean Council should commission a credible, independent, scientific review of existing U.S. ballast water management research and demonstration programs and make recommendations for improvements.

The review should consider the following issues:

- how federally funded research and demonstration programs can best promote technology development, support on-board ship testing, and move technologies from research to commercial use.
- what the best role is for industry and how industry can be engaged in onboard testing of experimental ballast water management technologies.
- what kind of peer review process is needed for scientific oversight of technology development, selection of demonstration projects, and testing of experimental treatment systems.
- what is an adequate funding level for a successful ballast water research and demonstration program.

Controlling Other Pathways

Ballast water is a clearly identifiable source that can be managed through traditional regulatory means, but other sources of invasive species, such as the shellfish importing, aquaculture, aquarium, horticulture, and pet industries, are far more diffuse and less amenable to federal controls. Preventing introductions through these pathways will require a mix of federal and state legislation, and public education.

Public education is a vital component of a prevention strategy. Individuals must understand that their actions can have major, potentially irreversible, economic and ecological consequences. Increasing the public’s awareness, and suggesting actions that boaters, gardeners, scuba divers, fisherman, pet owners, and others can take to reduce introductions, can help prevent the spread of invasive species.

Currently, a number of unconnected education and outreach programs exist—generally focusing on individual species—but a more coordinated, national plan is needed. As international markets continue to open and Internet use grows, access to the purchase and importation of non-native animals and plants from all over the globe is likely to increase. Some industry representatives have expressed concern that efforts to prevent introductions of non-native species may interfere with the flow of free trade. The need to protect public health and ecosystems will have to be balanced against these interests.

Recommendation 17–3

The U.S. Departments of Agriculture, Commerce, the Interior, and Homeland Security should more actively employ existing legal authorities to prohibit imports of known or potentially invasive species. The National Ocean Council should recommend any changes to such legal authorities that might result in more effective prevention efforts.
Recommendation 17–4
The National Ocean Council, working with the Aquatic Nuisance Species Task Force and the National Invasive Species Council, should coordinate public education and outreach efforts on aquatic invasive species, with the aim of increasing public awareness about the importance of prevention.

The education and outreach effort should be pursued on several fronts:

• connect local, regional, and national outreach and education efforts, including recommendations from the U.S. Invasive Species Management Plan and programs initiated by industries that deal with non-native species.

• provide the public, importers and sellers, pet store and restaurant owners, divers, and others with information about the harm caused by invasive species and safer methods of shipping, owning, and disposing of non-native species.

• require the aquaculture, horticulture, pet, and aquarium industries to clearly inform customers of the potential hazards of releasing non-native species.

Accelerating Detection and Response

Only the most draconian prevention strategy could hope to eliminate all introductions of non-native species and thus prevent even the possibility of a problem. Yet no effective mechanism is in place for detecting and rapidly responding to new aquatic invasive species. Currently, both states and regional panels are encouraged to develop detection and rapid response plans; however jurisdictional questions and limited resources have hindered development and implementation of such plans.

Of the approximately $149 million in federal funding spent in 2000 for invasive species rapid response, the U.S. General Accounting Office estimates that USDA spent about $126 million on threats to crops and livestock.11 In contrast, DOI and NOAA together spend about $600,000 annually on responses to threats from aquatic invasive species. The inadequacy of this funding level becomes even more obvious when the costs of a single eradication effort are considered.

In June 2000, Caulerpa taxifolia, dubbed a “killer algae,” was discovered near a storm drain in the Agua Hedionda Lagoon in southern California. Efforts to eradicate the algae, primarily by injections of chlorine under tarps placed over the infested areas, were overseen by the Southern California Caulerpa Action Team. The initial eradication effort cost $500,000, with another $500,000 allocated for surveys and treatment of remaining infestations. The eradication efforts will not be deemed successful until five years pass, during which an average of more than $1 million per year will be spent for periodic surveying and spot treatments.12

Other examples abound. Control of the invasive zebra mussel, an organism first introduced through ballast water discharge, cost municipalities and industries almost $70 million a year between 1989 and 1995.13 Over the next ten years, the zebra mussel invasion will cost an estimated additional $3.1 billion, including costs to industry, recreation, and fisheries. Florida’s ongoing cost of managing the invasive hydrilla plant is more than $17 million a year.14

Recommendation 17–5
The National Invasive Species Council and the Aquatic Nuisance Species Task Force, working with other appropriate entities, should establish and implement a national plan for early detection of invasive species and a well-publicized system for prompt notification and rapid response. The plan should:

• provide risk assessments for potentially invasive species, including possible pathways of introduction.
• conduct a comprehensive national biological survey and monitoring program for early
detection, building upon recent progress in this area by academia, the U.S. Geological
Survey, the National Oceanic and Atmospheric Administration, and the U.S. Environmental
Protection Agency.
• determine the threshold needed to trigger a rapid response and develop environmen-
tally sound rapid-response, eradication, and control actions.
• designate resources for implementing surveys and eradication programs.
• develop partnerships among government and industry to fund and implement
response actions.

Improving the Control of Invasive Species

As biological invasions continue, there is a pressing need to improve the control of invasive
species by reducing the overlaps and redundancies caused by the involvement of multiple
agencies with insufficient interagency coordination. More than twenty federal entities,
under ten departments or independent agencies, have some responsibility for invasive
species management.

Coordinated Action

The Aquatic Nuisance Species Task Force and the National Invasive Species Council have
made a start in coordinating federal agencies and states. Yet different priorities among the
agencies constrain full cooperation in funding and implementing invasive species programs.
The ability to establish cross-agency goals is limited, and neither the Task Force nor the
Council has established clear performance-oriented objectives in their work plans.

Management of invasive species is particularly complicated because the initial source
of the non-native species, the path of introduction, and the resulting ecological and
economic impacts may be quite far removed from each other. This increases the need for
close coordination among different jurisdictions. Although national standards are impor-

Box 17.2 Federal Departments and Agencies with
Roles in Invasive Species Management

- **U.S. Department of Agriculture**
 - Agriculture Research Service
 - Animal and Plant Health Inspection Service
 - Cooperative State Research, Education, and Extension Service
 - Economic Research Service
 - Farm Service Agency
 - Forest Service
 - Natural Resources Conservation Service
- **U.S. Department of Commerce**
 - National Oceanic and Atmospheric Administration
- **U.S. Department of Defense**
 - U.S. Army Corps of Engineers
- **U.S. Environmental Protection Agency**
- **U.S. Department of Homeland Security**
 - U.S. Coast Guard
 - U.S. Customs and Border Protection
- **U.S. Department of the Interior**
 - Bureau of Indian Affairs
 - Bureau of Land Management
 - Bureau of Reclamation
 - U.S. Fish and Wildlife Service
 - U.S. Geological Survey
 - Minerals Management Service
 - National Park Service
 - Office of Insular Affairs
- **National Science Foundation**
- **Smithsonian Institution**
- **U.S. Department of State**
- **U.S. Department of the Treasury**
tant for ballast water, coordinated regional or state actions may be more appropriate for other pathways. The Task Force promotes the development of state plans, but has had only marginal success in bringing resources to the regional panels and local authorities for implementation.

While most management plans focus on unintentional introductions, a noticeable gap in regulatory authority exists in the area of intentional introductions of non-native species for commercial purposes. A recent example is the controversial proposal to introduce a Chinese oyster (*Crassostrea ariakensis*) into the Chesapeake Bay to replace the vanishing native oyster and revive the moribund oyster industry there. A 2003 National Research Council report concluded that a rigorous, consistent risk assessment protocol will be needed to evaluate such proposals, but there is currently no authority or mechanism for conducting such assessments.15

Clearer policies will also be necessary as the aquaculture industry expands. Voluntary self-regulation by participants in the aquaculture industry is likely to be ineffective because the costs of control are relatively high, it is difficult to trace an invasive species to a specific source, and the negative consequences of an introduction are felt by those outside the industry. (The need for a marine aquaculture regulatory regime is discussed in Chapter 22.)

Recommendation 17–6
The National Ocean Council (NOC) should review and streamline the current proliferation of programs for managing aquatic invasive species in marine environments, and should coordinate federal, regional, and state efforts. Consolidated plans should be implemented to develop risk assessment and management approaches for intentional and unintentional species introductions that minimize the potential of invasions at the lowest cost.

Specifically, the NOC should:
- review the effectiveness of existing programs and legal authorities and clarify the lines of responsibility and enforcement authority, including responsibility for intentional introductions of non-native species.
- develop long-term goals and measures for evaluating effective performance.
- estimate funding needs to prevent the introduction of invasive species, including support for regional and state programs.
- determine whether, in the long term, a single agency should be charged with preventing the entry of, monitoring, and containing invasive species in coastal and marine waters.

International Partnerships
The movement of invasive species is clearly a global concern, and successful programs will require strong international cooperation and coordination. In 2004, the International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, designed to control the spread of invasive species carried in ships’ ballast water. The convention contains requirements for ballast water management, but also allows countries to establish additional, more stringent national or regional standards. The implications of this new convention for U.S. ballast water policy are currently under discussion. The United States should continue to pursue national legislative and regulatory remedies to limit ballast water introductions into the Great Lakes and U.S. coastal waters, while recognizing that international solutions provide the best long-term strategy for addressing the global threat presented by ships’ ballast water.

The United States can work with its closest neighbors, Canada and Mexico, to develop a North American strategy, craft regional invasive species management programs, and encourage key commercial sectors to develop voluntary codes of conduct and other self-regulatory mechanisms. Based on national and regional experiences, the United States can then promote international progress through appropriate conventions and treaties.
Recommendation 17–7
The United States should take a leading role in the global effort to control the spread of aquatic invasive species by working internationally to develop treaties, agreements, and policies to minimize the introduction and establishment of such species.

Research Needs

The study of aquatic invasive species in marine environments is a relatively new research area. Although invasive species have dramatically changed ecosystem structures, threatened native species, and caused hundreds of millions of dollars in economic damage, little is understood about how or why certain species become invasive, what pathways of introduction are most important, and whether certain factors make an ecosystem more susceptible to invasions. Currently, U.S. investment in research on invasive species, monitoring to detect invasions, and development of new techniques for identification and eradication falls far short of the economic cost to the nation caused by this problem. Enhanced monitoring to detect invasive species should be part of the national monitoring network described in Chapter 15.

Recommendation 17–8
The National Ocean Council should coordinate the development and implementation of an interagency plan for research and monitoring to understand and prevent the spread of aquatic invasive species. The results should be used to improve management decisions and avoid future economic losses.

New research and monitoring efforts should focus on:
- gathering baseline taxonomic information and strengthening taxonomic skills; performing quantitative assessments of ecosystems; identifying invasive pathogens and vectors of introduction; and determining how invasive species disrupt ecosystem functions.
- understanding the human dimensions behind species introductions, including human behavior, decision making, and economics.
- developing new options for minimizing invasions, including innovative technologies, and translating these findings into practical policy options for decision makers.

References

11 Ibid.

CHAPTER 18

REDUCING MARINE DEBRIS

The trash and other waste that drifts around the global ocean and washes up on the nation's shores pose a serious threat to fishery resources, wildlife, and habitat, as well as human health and safety. Marine debris is difficult to address because it comes from a wide variety of sources, both on and off the shore. While marine debris is a global problem requiring international cooperation, many of its negative impacts are experienced at the local level and require local involvement. Because of its role as the nation's lead ocean agency, re-establishing a marine debris program within the National Oceanic and Atmospheric Administration would help address its broad range of issues, as would better coordination at all scales—international, national, state, and local. Greater commitment to public education and outreach, partnerships with local governments, communities, and industry, and enhanced research, monitoring, and source identification will also help reduce marine debris.

Assessing the Sources and Consequences of Marine Debris

Most trash has the potential to become marine debris; cigarette filters, plastic bags, bottles, cans, and straws can all be found scattered along beaches and in the oceans. Marine debris degrades slowly and is buoyant, often traveling for thousands of miles in ocean currents. Approximately 80 percent of debris is washed off the land, blown by winds, or intentionally dumped from shore, while 20 percent comes from vessels and offshore platforms.1 Shoreline and recreational activities were sources of the majority of debris found during the 2002 International Coastal Cleanup (Figure 18.1).2 Litter associated with cigarette smoking was the second largest source. Ocean-based activities, including cruise ship operations, commercial fishing, recreational boating, commercial shipping, military vessel operations, and offshore oil drilling, were also a significant source of debris. Cargo lost overboard from freighters poses another concern. Large containers have broken open and released their contents—including everything from sneakers to computer monitors—into the ocean.

Another growing concern is that plastic materials, accumulating in the ocean over decades, are breaking down into microscopic particles that are now washing up on beaches, floating in coastal and ocean waters, and settling in sediment. A single one-liter soda bottle could break down into enough fragments to put one fragment on every mile of beach.
beach in the entire world. A study done in the North Pacific found plastic particles in the stomachs of eight of eleven seabird species caught as bycatch. Not only can these tiny plastic particles be ingested by marine life but, as they float around, they can also accumulate toxic chemicals, including DDT and PCBs. Plastic particles have been found to concentrate such chemicals to one million times the levels found in the water itself.

Marine debris poses a serious threat to wildlife, habitat, and human health and safety. Marine debris threatens wildlife primarily through entanglement and ingestion. A 1997 study found that at least 267 species have been affected by marine debris worldwide, including 86 percent of all sea turtle species, 44 percent of all seabird species, and 43 percent of all marine mammal species, as well as numerous fish and crustaceans. Entanglement can wound animals, impair their mobility, or strangle them. Birds, sea turtles, and marine mammals can swallow debris such as resin pellets, convenience food packaging, and plastic bags, which interfere with their ability to eat, breathe, and swim. Sea turtles often ingest floating plastic bags, mistaking them for jellyfish. “Ghost fishing”—entanglement of fish and marine mammals in lost fishing gear—represents a serious threat to marine life, including endangered species such as Hawaiian monk seals and North Atlantic right whales.

Coral reefs, seagrass beds, and other fragile coastal habitats have been harmed by trash in the oceans. Derelict fishing gear, pushed by wind and waves, can become snagged on coral reefs and other structures. This global problem is particularly evident in the Northwest Hawaiian Islands, which include 69 percent of all U.S. coral reefs by area. Floating debris can also transport non-native, potentially invasive species over long distances.

Marine debris also has significant consequences for people. Broken glass and medical waste on beaches, as well as ropes and lines dangling in the ocean, pose threats to beachgoers, boaters, and divers. Debris can damage boats and strand their occupants when propellers become entangled on lines, or engines stall when plastic bags are sucked into intake pipes. Beach closures and swimming advisories due to marine debris can have direct economic impacts by reducing coastal tourism. For example, New Jersey lost an estimated $2 billion in tourist revenue as a result of debris washing ashore in the 1987 and 1988 beach seasons. The state has chosen to invest $1.5 million annually in beach cleanup to avoid similar losses in the future.

Addressing Marine Debris Nationally

Existing Programs

Efforts to reduce marine debris must take place at all levels, from international to local. Internationally, marine debris is addressed by Annex V of the International Convention for the Prevention of Pollution from Ships (MARPOL), which prohibits all overboard disposal of plastics and limits other discharges based on the material and the vessel’s location and distance from shore. The Convention on the Prevention of Marine Pollution by
Dumping of Wastes and Other Matter (known as the London Convention) is another international agreement that addresses the problems of marine debris. (For a listing of ocean-related international agreements, see Table 29.1.)

Domestically, a number of federal laws focus on marine debris, including the Act to Prevent Pollution from Ships (which prohibits the disposal of all garbage within 3 nautical miles of the coast and enforces Annex V of MARPOL), the Marine Plastic Pollution Research and Control Act, the Clean Water Act, Title I of the Marine Protection, Research, and Sanctuaries Act (commonly referred to as the Ocean Dumping Act), the Beaches Environmental Assessment and Coastal Health Act, and the Shore Protection Act. (Appendix D includes a summary of ocean-related federal laws.) Some states also have their own laws to address marine debris. Other states have made substantial progress through voluntary programs.

Reductions in marine debris have been the focus of a number of agency initiatives and volunteer efforts, ranging from local adopt-a-beach programs to international beach cleanups. The Ocean Conservancy, a nonprofit ocean advocacy group, coordinates the annual International Coastal Cleanup campaign with support and funding from the U.S. Environmental Protection Agency (EPA) and private and corporate foundations. The one-day event takes place in September, with volunteers from all over the world collecting trash along the coasts and in the oceans. Since its inception in 1986, the campaign's original 2,800 volunteers have grown to almost 392,000 in 2002.

From 1986 to 2002, the International Coastal Cleanup removed 89 million pounds of debris from more than 130,000 miles of shoreline. Starting in 1995, more than 108,000 divers also collected 2.2 million pounds of trash in over 3,900 miles of underwater habitat. The program is effective not only because of the visibility it receives as the largest single-day volunteer event for the marine environment, but also because of the amount of data collected during the event. Debris collection results are posted by source, calling attention to the activities that create the most debris with the hope of improving prevention.

The vast data collection potential demonstrated during International Coastal Cleanup events led to development of the National Marine Debris Monitoring Program, implemented by The Ocean Conservancy with EPA funding. This program is designed to systematically assess the success of Annex V of MARPOL by identifying sources and trends of marine debris. Volunteers at 180 randomly selected study sites along the U.S. coast collect and submit monthly information on the incidence of 30 specific marine debris items.

EPA and The Ocean Conservancy also created the Storm Drain Sentries program in response to research indicating that storm drains are significant sources of marine pollution. This program raises public awareness of the consequences of dumping trash and other pollutants into sewer systems. Volunteers stencil educational messages on, and collect information on the types of contaminants found around, storm drains.

The Coral Reef Ecosystem Investigation is a multi-agency program, headed by the National Oceanic and Atmospheric Administration (NOAA), to assess, monitor, and mitigate the impact of marine debris on coral reef ecosystems of the U.S. Pacific Islands. The Coral Reef Ecosystem Investigation began as a pilot study in 1996, primarily to remove fishing gear in and around Hawaiian monk seal habitat. Since then, the program has grown to involve a number of federal, state, local, nongovernmental, and private partners in the large-scale removal of marine debris, including derelict fishing gear.

NOAA’s Role

Concerns about marine debris came to public attention during the 1980s, with mounting evidence of entanglement and other harm to marine mammals, sea turtles, birds, and fish, as well as images of medical waste and other trash washing up on beaches. In 1985, Congress appropriated $1 million in funding for the development of a comprehensive marine debris research and management program (which became the Marine Entanglement
Research Program), directed by NOAA in consultation with the U.S. Marine Mammal Commission. In 1995, a report by the National Research Council called for a long-term program to monitor the flux of plastics to the oceans and noted that NOAA would be best suited to lead such a monitoring effort. Despite this recommendation—and the ongoing problem of marine debris—the Marine Entanglement Research Program ended in 1996.

Although EPA has some programs to address marine debris (described above), the problem is also closely related to NOAA's mission and management responsibilities, including fisheries, marine mammals, endangered marine species, beach and shoreline management, and coral reefs. While NOAA currently addresses matters related to debris in the marine environment in connection with other activities, there is a need to coordinate, strengthen, and increase the visibility of such efforts within NOAA by creating a clear, centralized marine debris program within the agency.

Recommendation 18–1

The National Oceanic and Atmospheric Administration should establish a marine debris management program that expands on and complements the U.S. Environmental Protection Agency’s program in this area. The NOAA program should be closely coordinated with EPA’s activities, as well as with the significant efforts conducted by private citizens, state, local, and nongovernmental organizations.

In keeping with its mission, it would be logical for NOAA’s marine debris program to focus on reducing derelict fishing gear, addressing entanglement of marine life, and preventing debris from harming coral reefs while EPAs efforts continue to address beach and river cleanups. Also, because most of the debris that makes its way to the coasts and oceans comes from land, it makes sense for EPA to continue its national education efforts. Regardless of how the responsibilities are divided, the two programs should be closely coordinated so that gaps are filled and duplication is avoided.

Expanding Marine Debris Efforts

A marine debris program within NOAA will help bring greater attention to this problem. Efforts at both NOAA and EPA will need to focus on education and outreach, working with communities and industry, and improving source identification, monitoring, and research.

Education and Outreach

Reducing marine debris will require preventing litter from entering the marine environment in the first place by pursuing a long-term public education campaign. While existing education and cleanup initiatives have made a substantial contribution to improving the ocean environment, the volumes of trash that continue to appear on beaches and in the oceans indicate that many people and communities have not yet changed their behavior. While some consider their actions to be negligible when compared with those of large-scale polluters, the cumulative impact of continuous, small-scale insults can be significant. What's more, actions far inland can have impacts on distant coastal and marine waters. Because comprehensive monitoring and enforcement of individual behavior would be impractical and undesirable, people need the knowledge, training, and motivation to voluntarily change their behavior. (Public education and outreach opportunities are addressed in greater detail in Chapter 8.)

In addition to educating the general public, marine debris education campaigns can target the tourism industry, packaging companies, local government officials, recreational boaters, and commercial fishermen. For example, it is important to educate both commercial fishermen and recreational boaters who take items out to sea with them to ensure that they are returning to shore with their plastic and other trash. As the National Marine Fisheries Service conducts dockside inspections, there is an opportunity to deliver educa-
tional materials on marine debris to fishermen. Similarly, as the U.S. Coast Guard and the Coast Guard Auxiliary conduct recreational boating programs, they could distribute educational materials and remind recreational boaters to properly dispose of their trash. Many nongovernmental organizations whose membership is comprised of fishermen or boaters could also educate their members about the marine debris issue.

Working with Communities

Cigarette filters, food wrappers, caps, and lids accounted for nearly half of all debris collected in the 2002 International Coastal Cleanup. For the past thirteen years, cigarette filters have been the most commonly found debris item. It is apparent that implementation and enforcement of local anti-litter regulations have been inadequate.

Not only is trash left on beaches and shores, allowing it to wash into the oceans, litter is also washed off streets and parking lots, and through storm drains far inland. People generally have not made the connection between actions taken far from the coast and their impacts on the shore and ocean areas.

While public education can send the message not to litter, active management of debris entering and exiting sewer systems can also be improved by adding controls for local sewer systems, such as screens and netting, and making catch-basin modifications. Floatable controls can help reduce or eliminate solid waste emitted from sewer systems. Placing sufficient trash receptacles throughout communities can also make it easier for people to dispose of the materials that might otherwise end up in the marine environment.

Working with Industry

Cooperation with industry, especially companies whose products are ending up on the shores and in the oceans, presents another opportunity to reduce marine debris. Industry efforts to reduce the overall amount of packaging being produced and to develop more environmentally friendly materials can help. Because plastics comprise about 60 percent of the trash found on beaches and about 90 percent of the debris found floating in the water, industry support for reducing plastic trash and encouraging greater recycling rates could reduce the amount of litter reaching the coasts and oceans. Fishing gear manufacturers can also play a role in educating vessel owners and crews about the impacts of derelict gear.

Many companies are already supporting marine debris cleanup and education efforts. The Coca-Cola Company, Dow Plastics, and Philip Morris are all examples of companies that have helped sponsor the International Coastal Cleanup. Morton Salt, the maker of products used by many commercial shrimp boats to treat their catches at sea, took action after blue plastic bags with the Morton Salt label started washing up on Gulf of Mexico beaches. Since the company started printing reminders like “Stow It, Don’t Throw It” on the bags, fewer Morton Salt bags have been reported as washing up on shores.

In addition, the offshore petroleum industry, working in concert with the Minerals Management Service, has instituted marine debris education training for personnel working on offshore platforms, mobile drilling rigs, and other facilities in the Gulf of Mexico. This initiative requires the posting of marine debris reminder signs and the mandatory viewing by all personnel of a film demonstrating proper waste disposal practices and the impacts of marine debris on the ocean.

Source Identification, Monitoring, and Research Efforts

The implementation of effective control measures is currently hampered by a lack of consistent monitoring and identification of sources of debris. A 1995 National Research Council report found that most available data are obtained from beach surveys, with relatively little information on debris that ends up in the sea or on the seafloor. Collection of such data would require a systematic, international effort. Information about the behavior of debris in the marine environment and its ecological effects is even scarcer. These effects cannot be
established simply on the basis of available surveys, due primarily to the absence of a common framework for data collection, centralized data analysis, and information exchange. Once a framework and suitable information protocols are in place, these data should be linked with the national Integrated Ocean Observing System (discussed in Chapter 26).

Recommendation 18–2
The National Oceanic and Atmospheric Administration and U.S. Environmental Protection Agency should coordinate and implement expanded marine debris control efforts, including: enforcement of existing laws; public outreach and education; partnerships with local governments, community groups, and industry; monitoring and identification; and research.

Interagency Coordination
The Marine Plastic Pollution Research and Control Act of 1987 established an interagency marine debris coordinating committee with membership comprised of senior officials from NOAA, EPA, the Coast Guard, and the U.S. Navy. The committee was charged with furthering public outreach, education, and information sharing efforts. However, Congress allowed the committee to lapse in 1998, and it has not been re-established.

Although strengthening NOAA's work on marine debris through establishment of an office within the agency is an important step, an interagency committee under the National Ocean Council will still be needed to unite all appropriate federal agencies on this issue. Such a committee could support existing marine debris efforts by agencies and nongovernmental organizations.

Recommendation 18–3
The National Ocean Council (NOC) should re-establish an interagency marine debris committee, co-chaired by the National Oceanic and Atmospheric Administration and U.S. Environmental Protection Agency, and placed under the oversight of the NOC’s Committee on Ocean Resource Management.

Reducing Derelict Fishing Gear

One source of marine debris that requires special attention is derelict fishing gear, composed of both whole and large sections of nets, as well as discarded fishing line and plastic parts associated with traps and nets (Box 18.1). Whether intentionally discarded or unintentionally lost during storms or fishing operations, derelict fishing gear poses serious threats around the world, entrapping marine life, destroying coral reefs and other habitat, and even posing danger to humans. Currently, almost all of the fishing nets used outside of subsistence fisheries are made of synthetic fibers that are highly resistant to degradation. Although derelict fishing gear is a global problem, currently no international treaties or plans of action address it.

Recommendation 18–4
The U.S. Department of State and National Oceanic and Atmospheric Administration, working with the United Nations Food and Agriculture Organization and other appropriate entities, should develop a detailed plan of action to address derelict fishing gear around the world, to be implemented within large multi-national regions.

One approach taken by the National Marine Fisheries Service domestically is to require that all gear be marked to make it easier to identify the fishery of origin. Better enforcement of these rules, and international cooperation to require the marking of non-U.S. fishing gear, would help identify the fisheries that pose the largest problems of lost gear and entanglement.

In the past four years alone, federal, state, and non-governmental partnerships have hauled over 150 tons of nets and line off reefs in State waters in the Northwestern Hawaiian Islands.

—Gilbert Coloma-Agaran, Chairperson, Board of Land and Natural Resources, Hawaii, testimony to the Commission, May 2002
Ultimately, a strong public-private partnership will be needed to prevent, remove, and dispose of derelict fishing gear. Appropriate education and incentives can minimize the practice of throwing unwanted nets overboard and encourage all boaters to bring abandoned gear back to shore if possible. Other options include: assessing fees on net sales and imports to pay for their recovery; attaching locator devices to gear; providing incentives to industries that are developing biodegradable fishing gear; requiring sizeable deposits on nets when they are purchased; increasing gear recycling and reuse; and providing compensation to those who bring discarded gear back to shore.

Recommendation 18–5
The National Oceanic and Atmospheric Administration should work with all interested parties, governmental and private, to implement incentives or other effective programs for prevention, removal, and safe disposal of derelict fishing gear.

Ensuring Adequate Facilities for Disposal of Garbage from Ships

Annex V of MARPOL contains several provisions that address marine debris. Under its requirement for port reception facilities, ports in member nations must be prepared to receive garbage from ships. Unfortunately, many ports still do not provide adequate facilities for this purpose.

Another provision of Annex V allows Special Areas of the ocean to be designated where a higher level of protection is required than in other areas. Such Special Areas have been designated in many parts of the world, including areas of the Mediterranean, Baltic, Black, Red, and North Seas, the Antarctic, and the Wider Caribbean region, which includes the Gulf of Mexico and the Caribbean Sea. For a Special Area to receive extra protection, adequate port reception facilities must be in place to receive ship wastes. However, some important Special Areas, such as the Wider Caribbean region, are not yet eligible for increased protection because of inadequate facilities.

Recommendation 18–6
The U.S. Department of State should increase efforts internationally to ensure that there are adequate port reception facilities available for disposal of garbage from ships, particularly in Special Areas designated under Annex V of the International Convention for the Prevention of Pollution from Ships.

Box 18.1 Abandoned Fishing Nets Catch a Wave to Hawaii

The two most prevalent types of nets recovered in the Northwest Hawaiian Islands (measured by weight) are trawling nets and monofilament gill nets, despite the fact that no commercial trawl or gillnet fisheries exist in the area. The nets are carried to the islands via ocean currents from domestic and foreign fisheries in the North Pacific. Finding a solution to the problem of derelict fishing nets and other gear will require international cooperation.

References

PART VI

OCEAN VALUE AND VITALITY: ENHANCING THE USE AND PROTECTION OF OCEAN RESOURCES

CHAPTER 19
Achieving Sustainable Fisheries...274

CHAPTER 20
Protecting Marine Mammals and Endangered Marine Species..306

CHAPTER 21
Preserving Coral Reefs and other Coral Communities..320

CHAPTER 22
Setting a Course for Sustainable Marine Aquaculture......................................330

CHAPTER 23
Connecting the Oceans and Human Health..338

CHAPTER 24
Managing Offshore Energy and other Mineral Resources.................................352
The current fishery management regime’s emphasis on local participation, coupling of science and management, and regional flexibility is laudable. Nevertheless, the last thirty years have witnessed overexploitation of many fish stocks, degradation of habitats, and negative consequences for too many ecosystems and fishing communities. To ensure the long-term sustainability of U.S. fisheries, maximize social and economic benefits, and reinforce the principle that living marine resources are held in public trust for the benefit of all U.S. citizens, fishery management must be improved. While ultimately the management of fisheries should move toward a more ecosystem-based approach, specific reforms can produce some immediate improvements. These include increasing the role of science by separating allocation and assessment, better integration of ecosystem science, data collection, and processing with management and enforcement, and exploring the use of dedicated access privileges. Finally, improved regional coordination and planning will help put fishery management in the broader context of ocean and coastal management.

Contemplating Thirty Years of Fishery Management

When the Stratton Commission report was released in 1969, marine fisheries were largely unregulated and coastal states had primary responsibility for fishery management. The U.S. fishing industry was behind much of the world both in harvesting fish and technical sophistication. Distant fishing nations, such as Japan, Spain, and what was then the Soviet Union, dominated harvests on the coasts of North America, fishing just outside the 3 nautical mile limit of U.S. territorial waters.

But fishery harvests around the world were increasing in the 1960s, and many people believed they would continue to increase indefinitely. The Stratton Commission predicted that enhanced technology and intensified exploitation of new species could eventually increase worldwide landings from 60 million metric tons in 1966 to 440–550 million tons.¹ That Commission saw fisheries as an area of immense opportunity, and called for
the expansion of U.S. fishing capability. Unfortunately, events over the next few decades showed these predictions to be overly optimistic.

In 1970, landings of Peruvian anchoveta, the largest fishery in the world, fell by 10 million metric tons in one year—at the time, roughly 10 percent of world fishery landings. Although El Niño conditions in the Pacific Ocean are often cited as the cause, many scientists believe the collapse was exacerbated by excessive fishing effort. The following two decades also saw the North Atlantic cod fishery drastically decline; in the 1990s, Canada completely shut down its cod fishery. Instead of being able to expand worldwide fish landings by eight to ten times, as predicted by the Stratton Commission, it now appears that fish landings were already at or near their peak in the late 1960s.

In 1976, Congress approved the Magnuson–Stevens Fishery Conservation and Management Act (hereinafter, the Act or the Magnuson–Stevens Act) to manage and assert U.S. control over fishery resources within 200 nautical miles of the coast, later designated as the U.S. exclusive economic zone (EEZ). Eight Regional Fishery Management Councils (RFMCs or Councils) were created to develop management plans for fisheries in federal waters. The Act required regional plans to be consistent with broad national guidelines, such as the prevention of overfishing and the requirement to use the best available science, but otherwise granted considerable flexibility to the RFMCs. The Act’s supporters mistakenly assumed that once foreign fishing fleets were removed from U.S. waters, major fisheries management problems would be over.

In subsequent years, the domestic fishing industry rushed to enlarge its capacity to catch fish. New technologies were developed while programs such as the Capital Construction Fund and Fishing Vessel Obligation Guarantee Program provided incentives for U.S. fishermen to upgrade or buy new vessels. This led to an unprecedented and unforeseen expansion of U.S. commercial fishing power.

Recreational fishing has experienced similar growth. The U.S. Fish and Wildlife Service’s National Survey of Fishing, Hunting, and Wildlife-Associated Recreation is a comprehensive assessment of recreational angling, estimating numbers of anglers and expenditures directly related to such fishing. The survey indicates that there are some 9 million saltwater anglers in the United States and that, since 1965, direct expenditures have increased from $3 billion to $8.4 billion. The increased popularity of recreational fishing is further documented by a 2002 NMFS survey showing that the number of fishing trips per year increased by over 20 percent from 1996 to 2000. Another study by a recreational fishing group estimated that in 2002, there were 9.1 million saltwater recreational fishermen supporting 300,000 jobs. Expanding upon the USFWS survey, this study estimated not only direct expenditures but also the value of the jobs supported by recreational fishermen, and concluded that recreational angling is valued at over $20 billion.

Most of the abundant stocks available to be caught by American fleets were in the North Pacific. In other areas, fish stocks—although still viable—had already been depleted by foreign fleets. The regional flexibility that had been seen as a great strength of the new law now showed its downside as some RFMCs set unsustainable harvest levels, leading to the collapse or near-collapse of several important fisheries.

Another unforeseen and unfortunate consequence of the new management regime was the development of an adversarial relationship between fishermen and government scientists and managers. Because assessments indicated that many stocks were already depleted, scientists urged reductions in catches. Many fishermen however, having made substantial capital investments in boats and gear, resisted these findings and instead raised doubts about the credibility of the assessments. The RFMCs frequently made decisions that supported the fishermen by downplaying scientific advice and increasing catch limits. As a result, in most regions, stocks continued to decline throughout the 1980s.
Contention grew, and the 1990s were characterized by a dramatic increase in litigation (Figure 19.1), increased crisis-driven decision making, management through court orders, and congressional intervention. As of January 2002, more than 110 lawsuits were pending against the National Oceanic and Atmospheric Administration’s (NOAA’s) National Marine Fisheries Service (NMFS). And between 1990 and 2000, the National Research Council conducted ten studies aimed at resolving disputes in fishery management.

On a more positive note, the 1990s also witnessed some signs of recovery. Atlantic striped bass were declared recovered in 1995, many New England groundfish species began to come back, and summer flounder stocks in the Mid-Atlantic started to increase.

A 2002 study by the National Academy of Public Administration concluded that the U.S. fishery management system was in disarray and recommended that the U.S. Commission on Ocean Policy explore the need for major changes in the fishery management system. While amendments to the Magnuson–Stevens Act have helped reverse fishery declines, additional changes will be necessary to manage fisheries in a sustainable manner over the long term.

Building Sustainable Fisheries Based on Sound Science

The Value of Science for Wise Management

Accurate, reliable science is critical to the successful management of fisheries. Two kinds of data are collected to support fishery science. **Fishery-dependent** data are collected as part of normal fishing activities and include recreational and commercial catch and landings records, dealer reports, and onboard observer data. Observers on fishing vessels provide a variety of useful fishery-dependent data concerning harvest methods and the bycatch of fish and prohibited species, such as turtles and marine mammals. **Fishery-independent** data are collected outside of normal fishing activities, typically through scientifically-designed surveys conducted by specialized research vessels.

Using available data as input, computer models produce stock assessments that estimate the size and characteristics of a certain fish population. Based on these assessments, and an understanding of the biology of that species, scientists can then predict the effects of different levels of fishing intensity on the population. Fishery managers must then determine how, when, where, and—most importantly—how many fish may be caught.

Although fishery data collection and stock assessment models can always be improved, a lack of adequate scientific information has not been the main culprit in most instances of overfishing. The Mid-Atlantic and New England RFMCs, which managed fourteen of the thirty-three stocks that experienced overfishing in 2001, have some of the best scientific support in the world. A 2002 National Research Council report concluded that the problem in most cases of overfishing was that the RFMCs disregarded or downplayed valid scientific information when setting harvest guidelines. Neither NMFS nor the Secretary of Commerce used their authority to prevent the RFMCs from taking such actions.
The Magnuson–Stevens Act requires each RFMC to establish and maintain a scientific and statistical committee (SSC) to provide “the best scientific information available” and assist in the development of fishery management plans. However, the Act does not require the RFMCs to follow the advice of the SSCs. Social, economic, and political considerations have often led the Councils to downplay the best available scientific information, resulting in overfishing and the slow recovery of overfished stocks. In addition, the selection of SSC members is generally up to each RFMC. No process is in place for ensuring that SSC members have the proper scientific credentials and are free from conflicts of interest. Although some Councils do assemble highly respected SSCs and follow their advice, the public and the fishing community should be confident this is the case in all regions.

Recommendation 19–1

Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act (MSFCMA) and related statutes to require Regional Fishery Management Councils (RFMCs) and interstate fisheries commissions to rely on their Scientific and Statistical Committees (SSCs), incorporating SSC findings and advice into the decision-making process. In keeping with this stronger role, SSC members should meet more stringent scientific and conflict of interest requirements, and receive compensation.

To ensure a strengthened SSC, MSFCMA amendments should require the following:

- each RFMC should nominate candidates for service on its SSC. Nominees should be scientists with strong technical credentials and experience, selected from federal, state, or tribal governments or academia. Private sector scientists who are technically qualified may also be nominated if they meet the conflict of interest requirements, although the SSC should not be constituted as a representational body.
- the National Oceanic and Atmospheric Administration (NOAA) should evaluate the qualifications and potential conflicts of interest of SSC nominees through an independent review process designed by a credible, scientific organization. Ultimately, SSC appointments should be approved by the NOAA Administrator.
- SSC members should serve for fixed terms to allow for rotation and addition of new members over time.
- like RFMC members, participants in the SSC (or their home institutions) should be compensated for time spent on RFMC business.

While the SSC is a scientific panel, it will be important for them to hear from other stakeholders, particularly in areas where resident expertise may be directly relevant to the development of scientific recommendations. Diverse perspectives can be helpful in developing the scientific basis for management.

Separating Scientific and Management Decisions

One of the strengths of the U.S. fishery management system is its flexibility in allowing different regions to determine who can fish, as well as how, where, and when. These are called allocation decisions. But the question of how many fish can be sustainably harvested (the assessment decisions) should be insulated from political pressures.

Because of their knowledge of the fisheries and communities in their region, RFMC members are best suited to make decisions about allocation of the available harvest and other issues related to the operations of regional fisheries. However, scientific decisions are more appropriately made by the SSCs created to support the RFMCs. Scientific decisions include stock assessments and determinations of allowable biological catch—the maximum amount of fish that can be harvested without adversely affecting recruitment or other key biological components of the fish population.
While determining allowable biological catch is a scientific question, it must be informed and guided by long-term objectives set by managers for both the fishery and the ecosystem. The role of scientific information should be as strong as possible in fishery management and subject to the least possible political influence.

For this reason, many fishery managers and analysts have recommended separating scientific assessment decisions from the more political allocation decisions. While not required by law, some RFMCs have already taken this step. For example, the North Pacific council has a history of setting harvest levels at or below the level recommended by its SSC. Many policy makers believe this practice is largely responsible for the successful management of the fisheries in that region.

Recommendation 19–2

Scientific and Statistical Committees (SSCs) should supply Regional Fishery Management Councils with the scientific advice necessary to make fishery management decisions. Such information could include reports on stock status and health, socioeconomic impacts of management measures, sustainability of fishing practices, and habitat status. In particular, the SSCs should determine allowable biological catch based on the best scientific information available.

Recommendation 19–3

Each Regional Fishery Management Council (RFMC) should set harvest limits at or below the allowable biological catch determined by its Scientific and Statistical Committee. The RFMCs should begin immediately to follow this practice, which should be codified by Congress in amendments to the Magnuson–Stevens Fishery Conservation and Management Act.

The Need for Independent Review

Independent review is the hallmark of the scientific process, providing assurance that appropriate procedures for data collection and analysis have been used. Typically such reviews are conducted by scientists with expertise similar to those who have done the work; thus the process is called peer review.

Many of those affected by RFMC decisions have questioned the adequacy of the scientific information on which those decisions were based. Although scientific findings are always easier to accept when they bring good news, the lack of a standardized, independent, and transparent review process in all regions has added to the level of distrust. Many of the RFMCs and interstate commissions with management responsibilities currently apply the peer review process sporadically. The North Pacific, New England and Mid-Atlantic regions have long-standing peer review programs. Other RFMCs use an external peer review process only when results are expected to be controversial. In some cases where scientific information is reviewed, the reviewers have not been viewed as independent, a critical feature of the process.

The National Research Council (NRC) has conducted a number of reviews of NMFS science. However, the NRC cannot be called upon to review every scientific decision, particularly stock assessments, at the rate they are generated for the RFMCs. An interesting model for external scientific review is the Center for Independent Experts that was established by NMFS in 1998 to conduct reviews of fishery-related science. Although NMFS pays for its operation, the Center is currently based at the University of Miami and is completely insulated from NMFS once it initiates a peer review. Although the Center’s experts have examined a number of controversial topics, their reviews have so far been less subject to challenge than internal NMFS peer reviews.
Recommendation 19–4

The National Marine Fisheries Service, working with the Regional Fishery Management Councils and the interstate fisheries commissions, should develop a process for independent review of the scientific information relied on by Scientific and Statistical Committees. The process should include three distinct procedures:

- a standard annual review by regional scientists to certify that the correct data and models are being used.
- an enhanced review to evaluate the models and assessment procedures. To ensure that these reviews are independent, a significant proportion of the reviewers should come from outside the region and be selected by a group such as the Center for Independent Experts. These types of reviews should be conducted on a three- to five-year cycle, or as needed, to help ensure that the latest methods and approaches are being used.
- an expedited review to be used when results are extremely controversial or when the normal review process would be too slow. In these cases, all reviewers should be selected by a group such as the Center for Independent Experts.

As these review procedures become a regular part of the fishery management process, NMFS, the RFMCs, and states should be able to develop routine quality assurance steps and standards to be applied to all stock assessments and other scientific decision making. A certification procedure for stock assessment scientists will help ensure implementation of uniform standards. In addition, regular reviews can be a valuable source of ideas for modifications to data collection programs, modeling techniques, and other elements of the stock assessment process, and can help guide NMFS research in these areas.

Using Default Measures to Ensure Progress

The difficult process of establishing allowable biological catch, and then determining allocations based on that figure, can result in lengthy delays in developing or revising fishery management plans. The Magnuson–Stevens Act does not require RFMCs to submit a new or revised plan to NOAA on any specific schedule. As a result, Council delays can lead to a fishery having no management measures in place or relying on outdated, inadequate plans. When that happens, the RFMCs are not penalized; instead, the adverse consequences are all borne by the fishery resource. There are two possible sources of delay: SSC difficulties in reaching agreement on allowable biological catch, and RFMC delays in submitting management plans to NOAA for approval.

The science behind stock assessments is complex and constantly evolving. By nature and training, many scientists are reluctant to declare a definitive numerical conclusion in the face of inevitable uncertainty. And yet, decisions must be made. By joining an SSC, scientists must accept the necessity of giving the best advice possible within a real-world timeframe.

Delays in formulating management plans within the RFMC can be more intractable than reaching scientific consensus. Under the current system, RFMCs can simply avoid difficult decisions by postponing development of plans. While the Councils cannot be sued for their slowness, NMFS can be. In fact, an increasing number of lawsuits are prompted by delays in management actions, particularly for plans to end overfishing.

The very possibility of extended delays puts pressure on NMFS to recommend approval of inadequate management plans. Based on a recommendation from NMFS, the Secretary of Commerce may approve, partly reject, or fully reject a plan, but may not amend it. As part of its recommendation, NMFS is aware that rejection of a plan could result in no conservation measures being in place until the RFMC agrees on a revised plan—a process that could take many months.
Although the Secretary of Commerce can legally choose to develop a fishery management plan within the agency instead of waiting for a RFMC to do so, this is almost always impractical. Since Congress clearly desired the Councils to have the lead in fishery management, the Secretary can either enter into a protracted, contentious, and politicized process to develop a departmental plan, or continue to wait for the RFMC to act. Under either scenario, the resource may remain unprotected for an extended period of time.

Indecision on the part of SSCs or RFMCs, for whatever cause, should not delay measures to ensure the long-term health and economic viability of a fishery. By setting clear deadlines for action, and activating established default measures if a deadline is missed, the roles of the different entities can be maintained without sacrificing the resource.

Recommendation 19–5

Each Regional Fishery Management Council should set a deadline for its Scientific and Statistical Committee (SSC) to determine allowable biological catch. If the SSC does not meet that deadline, the National Marine Fisheries Service Regional Science Director should set the allowable biological catch for that fishery.

Recommendation 19–6

Once allowable biological catch is determined, whether by the Scientific and Statistical Committee or the National Marine Fisheries Service (NMFS) Regional Science Director, the Regional Fishery Management Council should propose a fishery management plan in time for adequate review and approval by NMFS. If the plan is not in place in a timely fashion, NMFS should suspend all fishing on that stock until it is able to review the adequacy of the management plan.

Both of these recommendations will require that NMFS review its procedures and make any changes necessary to ensure timely reviews of, and responses to, RFMC proposed actions.

Making Research Relevant

As noted above, independent reviews have generally concluded that NMFS stock assessment programs are technically sound and highly credible. However, improvements could be made to better serve the RFMCs’ information needs, support recreational fisheries, and expand opportunities for cooperative research to involve scientists and fishermen in joint projects.

RFMC Input on Research Priorities

RFMC members need access to reliable information to do their jobs. The NMFS science program has done well in providing biological information to manage single species. However, the research program is less well-positioned to answer many other pressing questions. Generally, questions that involve interactions among fisheries, habitat, and other protected species, as well as social science and economic questions, have received less attention than traditional stock assessment science and fishery biology.9,10 The move toward ecosystem-based management, including considerations such as essential fish habitat, highlights these shortcomings. As the agency charged with responsibility for federal fishery management, NMFS should ensure that its research agenda supports the information needs of the RFMCs.

Recommendation 19–7

The Regional Fishery Management Councils and their Scientific and Statistical Committees should develop an annual, prioritized list of management information needs and provide it to the National Marine Fisheries Service (NMFS). NMFS should incorporate these needs to the maximum extent possible in designing its research, analysis, and data collection programs.
The lists of RFMC information needs will also be of great value to the regional ocean information programs, discussed in Chapter 5, which would be responsible for meeting regional management information needs. Fishery research and data requirements should also be included as an integral part of planning for the Integrated Ocean Observing System, discussed in Chapter 26.

Data Needs for Recreational Fisheries

Recreational fishing is an important part of the culture and economy of many coastal communities and, of course, impacts fishery resources in a number of ways. On the beneficial side, in addition to recreational angling’s contribution of direct expenditures and jobs to the economy, noted above, the increasing number of catch-and-release programs has been associated with helping some stocks recover. Further, the Ethical Angler program, a voluntary code developed with cooperation between NMFS and constituent groups, promotes a stewardship ethic among recreational fishermen on behalf of the entire marine environment. On the other hand, saltwater anglers can contribute significantly to the overall mortality of certain stocks. For example, in 2001, they landed over 19 million pounds of striped bass on the East Coast, three times the amount caught by the commercial sector.\(^{11}\)

Despite the economic and ecological impacts of recreational fishing, much less data are collected in this area than for commercial fisheries. The NMFS Marine Recreational Fisheries Statistics Survey, the primary recreational data collection program, is accomplished using two methods: an intercept survey, where fishermen are interviewed at coastal fishing ports; and a random telephone survey of all coastal households. Telephone survey results could be greatly improved if the sample of individuals called could be drawn from a list of licensed recreational fishermen rather than sampling all coastal households. This would require coastal states and the federal government to require some sort of licensing mechanism for saltwater anglers.

In addition to the NMFS survey, the U.S. Fish and Wildlife Service’s National Survey of Fishing, Hunting, and Wildlife-Associated Recreation has been produced about every five years since 1955, and serves as another valuable and consistent source of data on recreational angling in the ocean and Great Lakes.

Although the existing survey methodology is adequate for the long-term tracking of recreational fishing trends, it has proven less useful for in-season management. For example, on the East Coast, the lack of in-season tracking of catches by recreational fishermen has led to the chronic overharvesting of summer flounder.\(^{12}\) Due to the increasing popularity of marine recreational fishing, and its growing proportion of the total catch in some fisheries, it will be critical to collect timely data in this sector to allow for sustainable management of fisheries.

Recommendation 19–8

The National Marine Fisheries Service (NMFS), working with states and interstate fisheries commissions, should require that all saltwater anglers obtain licenses to improve in-season data collection on recreational fishing. NMFS should review existing saltwater angler licensing programs to determine which approaches best facilitate the collection of data. Based on this review, existing programs should be modified as needed and used wherever possible, developing new programs only if necessary. Priority should be given to fisheries in which recreational fishing is responsible for a large part of the catch, or in which recreational fishermen regularly exceed their allocated quota.

The Value of Cooperative Research

Involving fishermen in the research process, referred to as cooperative research, is a promising approach that can produce benefits for the fishermen, the scientists, and ultimately the management process. Underutilized fishing vessels can provide cost-effective research
platforms to expand the scope of data gathering and create an additional source of income for fishing communities waiting for stocks to recover. Fishing vessels are usually significantly less expensive to operate than traditional research vessels, while still suitable for many types of research. Scientists can also benefit from the knowledge and experience gained by fishermen during years at sea. Cooperative research programs also provide an appropriate mechanism to incorporate traditional indigenous or tribal knowledge into useful information for managers.

Increased interaction and rapport between fishermen and fishery scientists are additional benefits of cooperative research. In many regions of the country, fishermen are skeptical of the science and analysis used to support fishery management. Until the 1990s, scientists rarely included fishermen in either the design or data collection phases of their research. This has fed the perception in fishing communities that scientists do not understand fishing and do not value the experiences of fishermen. Greater involvement of fishermen in research programs appears to have been successful in reversing this perception and promoting better understanding between fishermen and scientists.

In 1977, when NMFS stock assessments indicated that bowhead whales off Alaska’s North Slope were at extremely low levels, the International Whaling Commission proposed a ban on all whaling, including that done for subsistence. The indigenous whaling community, convinced that the assessment had under-counted whales, provided NMFS scientists with additional information on whale locations and migration patterns based on traditional knowledge. The scientists revised their survey protocols to incorporate this new information, determined that they had in fact underestimated the whale population, and allowed the subsistence harvest to continue.

Similarly, in 1999, initial estimates indicated that Atlantic monkfish were severely overfished and a management plan was created to curtail fishing and rebuild the stock. When fishermen contended that the NMFS survey was missing significant stocks of monkfish in deeper waters, NMFS initiated a cooperative research program to investigate. The results indicated that monkfish were indeed present in significant numbers in deeper waters, allowing managers to reduce the severity of catch restrictions.

In both of these examples, anecdotal or traditional information was not unconditionally accepted. Instead, scientists used data from fishermen as the basis for further investigation. Scientists can benefit from the experience of fishermen by incorporating their suggestions into the design of research programs. At the same time, fishermen need to realize that informal information can only be used in decision making after it has been tested and verified according to a methodical, scientific process.

Cooperative research has the potential to be applied quite broadly. Although fishery-specific research, in particular, experiments with new or modified gear types, is the most obvious application, others should be considered. RFMC lists of information needs, called for in Recommendation 19–7, will be helpful in selecting other topics for cooperative research. Many of NOAA's oceanographic, economic, and social science research programs could also take advantage of cooperative research opportunities.

Recommendation 19–9

The National Oceanic and Atmospheric Administration (NOAA) should create an expanded, regionally-based cooperative research program that coordinates and funds collaborative projects between scientists and commercial, tribal, and recreational fishermen. NOAA should develop a process for external evaluation and ranking of all cooperative research proposals to ensure the most worthwhile projects are funded, the most capable performers are undertaking the research, and the information produced is both scientifically credible and useful to managers.
Although the background and recommendations in the previous section focused primarily on improvements to marine fishery management through the RFMC system, the concepts apply equally well to Great Lakes fisheries. The Great Lakes Fisheries Commission should ensure that there are similarly strong linkages between scientific findings and the management decisions under their jurisdiction.

Strengthening Fishery Governance

Clarifying Fishery Management Authority and Jurisdiction

In 1976, the Magnuson–Stevens Act greatly expanded the federal government’s marine fishery management jurisdiction from the seaward boundary of state waters out to 200 nautical miles from the coast. Known as the Fisheries Conservation Zone, this newly created area was later subsumed into the EEZ. In general, marine fishery management jurisdiction is divided among the states, three interstate fisheries commissions, eight RFMCs, and the federal government. Each of these entities plays a valuable role in managing our nation’s fisheries.

The RFMCs develop management plans for fisheries within their portion of the EEZ (Figure 19.2). Based on advisory group recommendations, NMFS develops and implements plans for highly migratory species (including tuna, swordfish, billfish, and sharks).

![Figure 19.2 U.S. Fisheries Are Managed at the Regional Level](image-url)

Eight regional fishery councils manage the harvest of living marine resources. The councils are responsible for developing sustainable domestic fisheries and linking the fishing communities more directly to the management process. Several states, illustrated with vertical lines, belong to more than one council. For example, Oregon and Washington are members of both the Pacific Council and the North Pacific Council.
within the EEZ in the Atlantic, Gulf of Mexico, and Caribbean regions. In the Pacific, the RFMCs or states include highly migratory species in their management plans.

Each coastal state has authority over fisheries that occur only in that state’s waters, while interstate fisheries commissions can develop management plans for fisheries that occur primarily in state waters but also cross the boundaries of many states (Figure 19.3).

Interstate Fisheries Commissions

For most of their history, the Atlantic States and Gulf States Marine Fisheries Commissions provided forums for assembling interstate catch statistics and designing fishery management plans to conserve and sustain fish stocks. State compliance with these plans was voluntary. The Gulf States Commission’s plans remain voluntary, but the Atlantic Coastal Fisheries Cooperative Management Act of 1994 authorized the Secretary of Commerce to close fisheries that the Atlantic States Commission determined are out of compliance with its management plan. The Pacific States Marine Fisheries Commission is primarily a research coordination agency that provides a forum for discussing interstate fishery issues.

The Great Lakes Fishery Commission, established by agreement between Canada and the United States in 1955, develops coordinated research programs and recommends measures to maximize productivity of Great Lakes fisheries. The Commission coordinates the actions of state, tribal, federal, and Canadian management bodies through a joint strategic management plan, using a process of consensus decision making. It also oversees a program to eradicate or minimize sea lamprey populations in the Great Lakes.

Recommendation 19-10

Congress should develop new statutory authority, similar to the Atlantic Coastal Fisheries Cooperative Management Act, to support and empower the Gulf States and Pacific States Fisheries Management Commissions. All interstate management plans should adhere to the national standards in the Magnuson–Stevens Fishery Conservation and Management Act, and the federal guidelines implementing these standards. States should participate in the development of the guidelines to ensure they are applicable to interstate plans.

Clarifying Lead Authorities for Joint Planning Purposes

Dividing the natural world into neat management units is never easy, and fish populations are no exception. Although a few fish species remain in one area for most of their lives, others are highly mobile and cross federal, state, and interstate boundaries. The lack of effective mechanisms for coordination and cooperation among the many fishery management entities exacerbates the problem of managing transboundary stocks.

The existing jurisdictional structure requires the development of joint plans, primarily in the Atlantic, by two or more RFMCs, and by the states and RFMCs. In most cases, each entity in the joint planning process has equivalent authority. This joint planning process has generally been inefficient. Joint plans take longer to approve and amend, causing delays in needed conservation measures. In addition, the varied jurisdictions create...
confusion for fishermen and the public about who is in charge of management and enforcement. Changes are needed to reduce the jurisdictional confusion in marine fishery management and improve cooperation among the states, interstate commissions, RFMCs, and the federal government.

Recommendation 19–11

Where a fish stock crosses administrative boundaries, the National Oceanic and Atmospheric Administration should ensure that a single state, Regional Fishery Management Council (RFMC), interstate marine fisheries commission, or NOAA itself is designated as the lead authority.

In general:
- for interjurisdictional fisheries that occur primarily in state waters, the state (if only one state is involved), or the relevant interstate fisheries commission, should take the lead within both state and federal waters.
- for fisheries that involve two or more RFMCs, NOAA should designate the lead.
- for fisheries that have substantial activities in both state and federal waters, the relevant authorities should determine a lead; if they are unable to agree within a reasonable time period (not more than six months), NOAA should designate the lead.
- jurisdiction for highly migratory species should remain in its current configuration.
- any other disputes regarding jurisdiction should be resolved by NOAA.

Improving the Regional Fishery Management Councils

Building on Success

Much of the criticism of fishery management has been directed at the RFMCs. Every Council, except those in the North Pacific and Western Pacific, has jurisdiction over stocks that are being overfished, and all oversee stocks that have been overfished in the past. The North Pacific RFMC appears to be working well in most facets of its management responsibility. Of the eighty-two stocks under its jurisdiction with sufficient information to assess, none was classified as overfished in 2001 and only two stocks are at levels of abundance that indicate past overfishing. For the remaining seven RFMCs, of the 147 stocks with sufficient information to assess, 33 (22 percent) were being overfished in 2001, and 50 are at levels of abundance that indicate past overfishing.13

Despite this mixed record, several aspects of the existing RFMC system echo the major themes outlined in this report: a regional approach to management based on geographically-defined ecosystems; a management process that requires local participation; and the incorporation of science-based, peer-reviewed information in the development of management plans. The following recommendations seek to strengthen the management process for all RFMCs, while maintaining the positive features of the system and building on the successes some have achieved.

Broadening RFMC Membership

The Magnuson–Stevens Act states that the Secretary of Commerce must “to the extent practicable, ensure a fair and balanced apportionment…of the active participants” on the RFMCs. However, the Secretary can only choose RFMC members from the slate of candidates forwarded by the governors. The governors themselves are under no legal obligation to put forth a fair and balanced slate of candidates. Under the Act, their only obligation is to ensure that each candidate is “knowledgeable regarding the conservation and management, or the commercial or recreational harvest, of the fishery resources of the geographical area concerned.” This loophole has resulted in uneven representation on some RFMCs.

The governors are not required to recommend candidates from outside the fish harvesting industry, such as consumer groups, academia, subsistence fishermen, or environmental organizations, although these perspectives could help achieve a more balanced management regime. As it stands, the fishing industry representatives, who make up the
majority of RFMC members, may tend to favor economic interests over the long-term sustainability of the stocks. The relatively narrow representation on RFMCs may also fuel legal challenges to fishery management plans based on allegations of conflict of interest—although it should be noted that industry groups challenge fishery management decisions as frequently as public interest groups.

Amendments are needed to ensure that RFMC membership is balanced among competing user groups and other interested parties, and that fishery management plans reflect a broad, long-term view of the public’s interests. Identifying the best mix will require knowledge of the federal fishery management process and an understanding of other factors affecting ocean ecosystems. This expertise resides in the NOAA Administrator, not the Secretary of Commerce, who is currently responsible for appointing RFMC members.

Recommendation 19–12
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to require governors to submit a broad slate of candidates for each vacancy of an appointed Regional Fishery Management Council seat. The slate should include at least two representatives each from the commercial fishing industry, the recreational fishing sector, and the general public.

Recommendation 19–13
Congress should give the Administrator of the National Oceanic and Atmospheric Administration responsibility for appointing Regional Fishery Management Council (RFMC) members, with the goal of creating RFMCs that are knowledgeable, fair, and reflect a broad range of interests.

Training New RFMC Members
Fishery management demands expertise in biology, economics, public policy, and other disciplines. Although RFMC members are required to be knowledgeable about the fishery resources in their region, very few come into the process with resource management experience or scientific training. As Julie Morris, a member of the Gulf of Mexico council, said in testimony before the U.S. Commission on Ocean Policy (Appendix 2), “When I first began working with marine fisheries, the concept of ‘spawning potential ratios’ was difficult to understand. Now, after six months, I’m still struggling to understand the concepts of optimum yield, biomass at maximum sustainable yield, minimum stock size threshold, and how they all fit together to determine the allowable catch.”

NMFS offers a training course for new RFMC members, but they are not required to attend—and many do not. Friction between NMFS and some RFMC members has added to skepticism about the value of this training. As a result, Council members often make important decisions affecting fishermen, fishing communities, and fishery resources without an adequate understanding of all relevant scientific, economic, social, and legal information.

Recommendation 19–14
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to require that all newly appointed Regional Fishery Management Council (RFMC) members complete a training course within six months of their appointment. The National Marine Fisheries Service should contract with an external organization to develop and implement this training course. After six months, a new member who has not completed the training should continue to participate in RFMC meetings, but should not be allowed to vote.

The training course should:
- be open to current RFMC members and other participants in the process as space permits.
- cover a variety of topics including: fishery science and basic stock assessment methods; social science and fishery economics; tribal treaty rights; the legal requirements of the Magnuson–Stevens Fishery Conservation and Management Act, the National
Environmental Policy Act, the Administrative Procedures Act, and other relevant laws or regulations; conflict of interest policies for RFMC members; and the public process involved in developing fishery management plans.

Ending the Race for Fish

U.S. fishery management has historically made use of access systems—whether open or limited—that promote an unsustainable “race for the fish.” This approach has produced serious resource conservation problems in many U.S. fisheries and must be changed.

Traditional Management Approaches

Until the end of the 20th century, most U.S. fisheries allowed access to anyone who wanted to fish. There were few, if any, limits other than the usually nominal cost of a permit and possession of the necessary fishing gear. In profitable fisheries, this led to ever-increasing numbers of entrants, with ever-increasing pressure being put on the fishery resource.

Recognizing the dangers posed by overfishing, managers began to regulate fishermen by placing controls either on input or output. Input controls include such measures as closing access to fisheries by limiting permits, specifying allowable types and amounts of gear and methods, and limiting available fishing areas or seasons. Output controls include setting total allowable catch (the amount of fish that may be taken by the entire fleet per fishing season), bycatch limits (numbers of non-targeted species captured), and trip or bag limits for individual fishermen.

These management techniques create incentives for fishermen to develop better gear or to devise new methods that allow them to catch more fish, and to do so faster than other fishermen, before any overall limit is reached. They provide no incentive for individual fishermen to conserve fish, because any fish not caught is likely to be taken by someone else. This race for fish created an unfortunate cat-and-mouse chase.

In response to each new measure designed to limit fishing effort, fishermen developed new fishing methods that, although legal, undermined the goal of reaching sustainable harvest levels. This prompted managers to promulgate more restrictive measures and fishermen to develop more ingenious methods to work around them. For example, if managers limited the length of the boat, fishermen increased its width to hold more catch. If managers then limited the width, fishermen installed bigger motors to allow them to get back and forth from fishing grounds faster. If managers limited engine horsepower, fishermen used secondary boats to offload their catch while they kept on fishing.

One input control many managers turned to was limiting fishing days for each fisherman, or for an entire fleet. In response, many fishermen found ways to increase their fishing effort during the shorter season. In New England, the multispecies groundfish fishery shrank from a year-round fishery to less than a hundred days at sea per fisherman, with recent proposals for even shorter seasons. In the historically year-round halibut/sablefish fishery in the Gulf of Alaska, the fishing season dwindled to less than a week by the early 1990s.

In addition to conservation concerns, the race for fish can create safety problems. Faced with a sharply curtailed amount of time in which to harvest, fishermen often feel compelled to operate in unsafe weather conditions while loading their boats to capacity and beyond.

The constant race for fish, and the increasingly adversarial relationship between fishermen and managers, created intense pressures. Fishermen fished harder for smaller returns and managers hesitated to further reduce catch limits, fearing political and economic consequences. These pressures have been identified by many as a contributing factor in the decline of several fish stocks, notably the New England groundfish fishery.¹⁴ For reasons of tradition or culture, most managers hesitated to limit the number of new
Dedicated Access Privileges

To solve the problems described above, managers began exploring the use of dedicated access privileges (Box 19.1), a novel form of output control whereby an individual fisherman, community, or other entity is granted the privilege to catch a specified portion of the total allowable catch. With this assurance in place, there would no longer be an incentive for fishermen to fish harder and faster because each could only catch his or her share of the total. The incentive would then be to catch the full share at a low cost and sell the best quality fish at the highest obtainable price.

There are several different types of dedicated access privileges:

- **Individual fishing quotas** (IFQs) allow each eligible fisherman to catch a specified portion of the total allowable catch. When the assigned portions can be sold or transferred to other fishermen, they are called individual transferable quotas (ITQs).
- **Community quotas** grant a specified portion of the allowable catch to a community. The community then decides how to allocate the catch. For example, the Community Development Quota Program in Alaska granted remote villages a portion of the total allowable catch to enhance fishery-based economic development.
- **Cooperatives** split all or part of the available quota among various fishing and processing entities within a fishery via contractual agreements.
- **Geographically based programs** give an individual or group dedicated access to the fish within a specific area of the ocean.

Many other variations and combinations of dedicated access privileges are possible. Dedicated access programs can provide substantial benefits in addition to ending the race for fish. Consumers benefit because fresh, rather than frozen, fish are available for most of the year. Many believe that these programs will enhance safety because fishermen will no longer have to go out in bad weather and the U.S. Coast Guard will not be overwhelmed by thousands of fishermen operating in small areas or during a compressed season. Fishermen can develop better long-range business plans because they can more accurately anticipate their annual catch and are less likely to over-invest in boats and gear. They can also fish more carefully, minimizing gear loss and bycatch of protected and other non-targeted species. Finally, these programs allow fishermen and managers to work cooperatively.

Currently, seven U.S. fisheries grant some form of dedicated access privileges: the surf clam/ocean quahog fishery in the Mid-Atlantic (ITQ); the wreckfish fishery in the South Atlantic (ITQ); the halibut/sablefish fishery in the North Pacific (ITQ); the Pacific whiting fishery (co-op); the Bering Sea pollock fishery in the North Pacific (co-op); Alaska’s Community Development Quota program (community quota); and the Chignik salmon fishery (co-op). Many other countries, including New Zealand, Australia, and Iceland, rely heavily on dedicated access regimes for fishery management.

But dedicated access regimes are not without potential drawbacks. After the ITQ program began in the Mid-Atlantic surf clam/ocean quahog fishery, fleet size shrank from 128 vessels to 59 vessels in two years because many fishermen decided to sell their share of the harvest to outside investors. By 1995, very few owner-operators were left in the fishery, and the largest holders of fishing quotas were a bank and an accounting firm. To many observers, this turned working fishermen into the equivalent of sharecroppers for absentee landlords.15

Based largely on that experience, many fishermen, especially in New England, opposed any effort to explore ITQs. Some RFMC members also questioned the enforceability of

We now enjoy fresh Pacific halibut ten months of the year as a result of the institution of the individual tradable quota program, instead of having fresh halibut for two weeks a year and freezer dried junk halibut for the rest of the year.

—Dr. Susan Hanna, Department of Agricultural and Resources Economics, Oregon State University, testimony to the Commission, June 2002
dedicated access privileges in multispecies fisheries with large numbers of participants or many ports of landing. Public interest groups also expressed concerns, although for very different reasons. They felt that granting fishermen exclusive access to harvest, buy, or sell a portion of the overall catch appeared to create an individual property right to a public resource, although all existing dedicated access programs in the United States clearly state that granting an individual access to a portion of the catch does not confer a right to any fish before it is harvested.

In response to such concerns, the 1996 amendments to the Magnuson–Stevens Act created a moratorium on further development of IFQ programs, pending consideration by the National Academy of Sciences. The resulting National Research Council study concluded that IFQ programs are in fact a promising management option that RFMCs should consider. Examples of carefully designed dedicated access programs in the United States and elsewhere show that it is possible to overcome most of the concerns raised about them. During the development of the Alaska halibut/sablefish dedicated access program, questions were raised about the socioeconomic impacts of individual fishing quotas on communities. As a result, the North Pacific RFMC customized the program to account for vessel size and type, placed a one percent cap on the share of quota any one person or entity could control, and prohibited absentee ownership to ensure quotas would remain in the hands of working fishermen. Halibut and sablefish fishermen, previously skeptical, are now among the program's biggest supporters. This illustrates the value of taking potential socioeconomic ramifications and other stakeholder concerns into account during the design phase of any dedicated access program.

Even though the Magnuson–Stevens Act moratorium on individual fishing quotas has expired and the National Research Council study endorsed this as a viable approach, most RFMCs will remain unwilling to spend time and effort developing dedicated access programs until they are sure Congress will not overrule them.

Box 19.1 Dedicated Access Privileges: A Better Description

In this chapter, the U.S. Commission on Ocean Policy recommends steps to end the race for fish through the use of “dedicated access privileges.” While this term is not new, it is not yet in wide use. More commonly used are the terms “rights-based management,” “individual transferable quotas” (ITQs) or “individual fishing quotas” (IFQs). None is satisfactory as a general term.

“Rights-based management” implies granting an individual the “right” to fish. However, with the exception of certain tribes, U.S. fishermen do not have inalienable rights to fish because the fishery resources of the United States belong to all people of the United States. Under current law, fishermen are granted a privilege to fish, subject to certain conditions. Because this privilege can be taken away, it is not a right.

The second two terms, ITQs and IFQs, are too narrow for general application. Both terms describe specific kinds of dedicated access privileges. Their general use has caused confusion, creating the impression that ITQs or IFQs are the only tools that can end the race for fish. In many areas, particularly along the East Coast, the term ITQ has a negative connotation as the result of events in the surf clam/ocean quahog ITQ program. In addition, both terms imply that individual fishermen own a share of a public resource.

The term dedicated access privileges is preferable for several reasons. First, it highlights the fact that fishing is a privilege, not a right. Second, it is an umbrella term that includes access privileges assigned to individuals (ITQs, IFQs, individual gear quotas), as well as to groups or communities (community development quotas, cooperatives, area-based quotas, community-based quotas). Finally, it reflects the fact that the dedicated privilege being granted is access to the fish, rather than the fish themselves.
Recommendation 19–15
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to affirm that fishery managers are authorized to institute dedicated access privileges. Congress should direct the National Marine Fisheries Service to issue national guidelines for dedicated access privileges that allow for regional flexibility in implementation. Every federal, interstate, and state fishery management entity should consider the potential benefits of adopting such programs.

At a minimum, the national guidelines should require dedicated access programs to:

- specify the biological, social, and economic goals of the plan; recipient groups designated for the initial quota shares; and data collection protocols.
- provide for periodic reviews of the plan to determine progress in meeting goals.
- assign quota shares for a limited period of time to reduce confusion concerning public ownership of living marine resources, allow managers flexibility to manage fisheries adaptively, and provide stability to fishermen for investment decisions.
- mandate fees for exclusive access based on a percentage of quota shares held. These user fees should be used to support ecosystem-based management. Fee waivers, reductions, or phase-in schedules should be allowed until a fishery is declared recovered or fishermen’s profits increase.
- include measures, such as community-based quota shares or quota share ownership caps, to lessen the potential harm to fishing communities during the transition to dedicated access privileges.
- be adopted only after adequate public discussion and close consultation with all affected stakeholders, to ensure community acceptance of a dedicated access plan prior to final Regional Fishery Management Council approval.

Reducing Overcapitalization of Fishing Fleets

As discussed above, the race for fish pushes fishermen to invest more and more capital to buy bigger, faster boats and new gear, and hire additional labor. These investments are perceived as essential to stay alive in the race for fewer and fewer fish, not necessarily to make the business more efficient. The inevitable result is economic decline, with more vessels pursuing a shrinking resource. If managers respond by further lowering the total allowable catch, costs rise even more while average revenues drop.

Over the past three decades, federal programs to subsidize the purchase or upgrade of fishing vessels have resulted in U.S. fishing capacity that far exceeds the available catch. For example, the Capital Construction Fund allows fishermen to create tax-free accounts to repair or construct vessels, and the Fishing Vessel Obligation Guarantee Program provides long-term credit for fishing vessels and related facilities. The challenge now goes beyond removing subsidies and incentives that promote overcapitalization; it will also take a sustained effort to reduce the excess capacity already in place.

Past capacity reduction efforts, such as the New England groundfish buyout program in the early 1990s, have been effective at removing capacity from the fleet. However, their initial success was undermined when new fishermen and boats were allowed to replace those that had been retired. A new federal program, the Fishing Capacity Reduction Program, has been criticized as being too bureaucratic and slow.

Two types of management regimes can ensure that a capacity reduction program has lasting results: (1) dedicated access programs which, by definition, limit overall effort in a fishery; and (2) restrictive regimes that freeze the number of active fishermen and prohibit any changes to fishing methods or gear until a fishery has been declared recovered. The second option would be difficult to enforce and could meet with strong resistance from fishermen and managers. Yet steps must be taken to end the inefficient and counter-productive over-investment in fishing vessels and gear.
Recommendation 19–16
Congress should repeal all programs that encourage overcapitalization of fishing fleets, including the Fisheries Finance Program (formerly the Fishing Vessel Obligation Guarantee Program) and those sections of the Capital Construction Fund that apply to fisheries. The National Oceanic and Atmospheric Administration (NOAA) should take appropriate steps to permanently reduce fishing capacity to sustainable levels.

The following actions will assist in reducing overcapitalization in fisheries:

- to the maximum extent practicable, capacity reduction programs should be funded by those who profit from them—the fishermen remaining in the fishery.
- federal contributions to capacity reduction programs should only be made where additional effort is prohibited from entering the fishery. The highest priority for public funding of capacity reduction should be given to fisheries that grant dedicated access privileges to participants.
- NOAA should monitor capacity reduction programs to determine whether they are meeting their objectives and to ensure that vessels removed from U.S. fisheries do not contribute to overcapitalization in other nations.
- fishermen should be allowed to transfer existing Capital Construction Fund accounts into Individual Retirement Accounts or other appropriate financial instruments that do not promote overcapitalization.

Improving Fishery Enforcement

Enforcement of fishing restrictions is essential to allow fishery resources to be economically harvested and protected for future generations. However, increasing pressures on agencies hinder effective enforcement and delay the evolution of fishery management plans toward a more ecosystem-based approach. For example, area closures put greater demands on enforcement agencies that must patrol larger, more widely dispersed areas. Redirection of existing enforcement resources for homeland security and the reduction of state personnel due to budget cuts also hamper fisheries enforcement. If this gap between needs and resources is to be narrowed, the agencies tasked with enforcing fishery management plans must apply resources and technology in innovative ways, such as through enhanced vessel monitoring technologies, expanded cooperation between enforcement agencies, and strengthened public education and outreach.

Fishery Enforcement Mechanisms

The two federal agencies with primary roles in enforcing marine fishery regulations are the Coast Guard and NMFS. Under the authority of the Magnuson–Stevens Act, these agencies enforce conservation and management plans for federally-regulated fishery resources in the 200 nautical mile EEZ. The Coast Guard also enforces applicable international agreements in waters beyond the U.S. EEZ.

The Coast Guard employs personnel, vessels, aircraft, communications, and support systems to maintain a law enforcement presence in the EEZ and on the high seas. Agents from NMFS’ Office of Law Enforcement conduct dockside inspections, investigate civil and criminal violations, seize illegal property and contraband, and seek to prevent unlawful trafficking in marine wildlife products. State and tribal enforcement personnel enforce fishery plans in their own waters and federal plans if there is a cooperative agreement.

Both the Coast Guard and NMFS enforcement representatives participate in the RFMC process. The Coast Guard and NMFS also cooperate with state enforcement agencies to pool limited assets and reduce duplication of effort.
Enforcement Partnerships

New partnerships and enhanced cooperation are basic elements of the Coast Guard and NMFS fishery enforcement strategic plans. Cooperative enforcement agreements among federal, state, tribal, interstate, and international organizations will be essential as ecosystem-based or area-based management becomes more prevalent and the Coast Guard assumes additional homeland security responsibilities.

Cooperative Enforcement Programs

One of the most successful existing partnership programs is the Cooperative Enforcement Program between NMFS and state agencies. In this program, state enforcement officers are deputized to enforce state and federal fishery management plans for commercial and recreational fisheries. Through Joint Enforcement Agreements (JEAs), NMFS provides federal funds for state involvement which are then matched by the states, providing an opportunity to enlarge the overall pool of enforcement resources. JEAs have also led to significant progress in creating uniform enforcement databases, identifying regional and local fishery enforcement priorities, and extending coordination to other areas, such as investigations.

Twenty-three coastal states and territories have entered into JEA partnerships with NMFS. From 1998 to 2000, following implementation of the JEA with South Carolina, state patrol officers logged over 1,095 hours conducting federal enforcement from the edge of state waters to 70 nautical miles offshore. Their patrols uncovered 172 cases of fisheries violations in the EEZ or on vessels returning from the EEZ, as well as many additional cases of boating safety and permit violations. JEAs are particularly effective because state agents are familiar with local waters, know when and where enforcement infractions are likely to occur, and provide opportunities for significant public outreach and education.

Although not currently a signatory to these cooperative NMFS–state agreements, Coast Guard participation would be valuable, particularly during the development of enforcement plans and priorities, and would help assure commitment of Coast Guard resources to joint enforcement efforts.

Despite the JEA program’s advantages in leveraging resources and enhancing cooperation, its federal funding was reduced from approximately $15 million in fiscal year 2001 to $7 million in the fiscal year 2002 and 2003 budgets. The reduced federal funding led to smaller state matching appropriations and, ultimately, a reduction in enforcement personnel.

Recommendation 19–17

The National Marine Fisheries Service should expand its use of Joint Enforcement Agreements to implement cooperative fisheries enforcement programs with state agencies. The U.S. Coast Guard should also be included as an important participant in such agreements.

Cooperative Federal Enforcement

There are also significant opportunities to strengthen cooperation at the federal level between NMFS and the Coast Guard. Currently, each agency has its own strategic plan, goals, and objectives for enforcement of federal fishery laws. At the regional and local
levels, the degree of cooperation is uneven and can vary considerably over time, even within the same geographic area.

At the national level, a jointly developed strategic plan for federal fishery enforcement can provide a framework for prioritizing common goals and identifying cooperative enforcement policies. At the regional level, existing agency training centers can be given a broader role as forums for NMFS, Coast Guard, and state enforcement personnel to share information specific to a particular fishery, and to identify opportunities for more effective resource utilization. At the regional and local levels, a stronger and more consistent process can be developed for joint planning and implementation of fishery enforcement operations. Strengthening the national, regional, and local frameworks should lead to better resource utilization and enforcement.

Recommendation 19–18
The National Marine Fisheries Service and the U.S. Coast Guard should strengthen cooperative enforcement efforts at the national level by developing a unified strategic plan for fishery enforcement that includes significantly increased joint training, and at the regional and local levels, by developing a stronger and more consistent process for sharing information and coordinating enforcement.

Technology for Enforcement

Vessel Monitoring System
Vessel monitoring is now an accepted part of fishery management worldwide and is endorsed by the United Nations Food and Agriculture Organization's Code of Conduct for Responsible Fisheries. Since its initial implementation in 1988, the Vessel Monitoring System (VMS) has dramatically increased the effectiveness of limited fishery enforcement resources.

Ships equipped with VMS transmit accurate Global Positioning System data via satellite to monitoring centers ashore. This information identifies specific vessels and their precise locations. When fully implemented, the system can also provide information useful to law enforcement, maritime security, safety efforts, environmental protection, and resource management.

VMS can be configured for two-way communications to enable vessels to receive pertinent safety and enforcement information from observing parties onshore, such as weather alerts and safety broadcasts for vessels in potentially hazardous circumstances. In emergencies, the Coast Guard can pinpoint the location of a stricken vessel and communicate directly with it and other boats in the area through two-way VMS links. Two-way VMS allows fishermen to be in constant contact with other fishermen, enforcement personnel, and fleet operators. Because their position can be verified, fishermen can remain on scene longer prior to fishery closures, rather than having to depart the area as is often currently required. The extension of VMS monitoring to state fisheries could also be useful, particularly for vessels wanting to operate legally in state waters adjacent to closed federal waters.

Beyond the benefits to fishermen and the potential benefits to scientific research through the transmission of near real-time data, two-way VMS is a useful system for enforcement and management personnel. Enforcement personnel can protect resources by preventing potential fishery violations, and VMS can save the Coast Guard and NMFS time and money spent in enforcement actions. The system provides the Coast Guard and NMFS a broader awareness of ships as they approach restricted areas, enabling the agencies to inform a fishing vessel that it is about to enter a protected area. Sensors can also be added to fishing gear, allowing VMS to indicate when a vessel is actively fishing. Managers can also use VMS system capabilities for daily catch and effort information used in quota management, and can gather other data, such as temperature, depth, and salinity, to inform broader fishery management planning decisions.
The cost of VMS for fishing vessel owners is small relative to its many benefits. VMS equipment with two-way communications capabilities is available at a modest cost of several thousand dollars. Some current NMFS programs offer limited reimbursement for initial equipment purchase. In addition to the one-time installation costs, there are continuing, although modest, costs associated with data transmission.

Recommendation 19–19

The National Marine Fisheries Service (NMFS), working with the Regional Fishery Management Councils (RFMCs), the U.S. Coast Guard, and other appropriate entities, should maximize the use of the Vessel Monitoring System (VMS) for fishery-related activities. VMS with two-way communication capability and other features that assist personnel in monitoring and responding to potential violations should be required over time for all commercial fishing vessels receiving permits under federal fishery plans, including party and charter boats that carry recreational fishermen. NMFS and RFMCs, working with state representatives, should also identify state fisheries that could significantly benefit from VMS implementation.

Integrating VMS into a Data Collection and Dissemination System

Although NMFS is currently overseeing the development of the VMS fishery enforcement infrastructure nationwide, VMS data are also being incorporated into a larger monitoring system that extends beyond fishery enforcement concerns. VMS data will be part of a multipurpose data collection and dissemination system that includes other Coast Guard data sources and provides a comprehensive picture of many offshore activities. The larger Coast Guard data system will support a variety of missions, such as maritime security, safety, search and rescue, law enforcement, and environmental protection, as discussed in Chapter 16. The Coast Guard and NMFS will need to cooperate to establish uniform national policies and technical requirements for VMS information, while providing for regional flexibility.

Recommendation 19–20

The U.S. Coast Guard should manage the integration of a fishery Vessel Monitoring System (VMS) database into the larger maritime operations database and should work with the National Marine Fisheries Service to ensure effective use of VMS data for monitoring and enforcement.

Using New Technologies for More Effective Enforcement

VMS presents just one of many opportunities to use technology for more effective enforcement. Fixed radars on platforms have been used successfully in particularly sensitive environmental areas close to shore, and satellites present additional opportunities for offshore monitoring. The advantage of these monitoring systems is that they identify vessel traffic and activity in a particular area so that enforcement resources can be sent to investigate only when circumstances warrant. Directed enforcement efforts are less costly than general enforcement patrols. Enforcement planning at all levels should include a continuing focus on identifying and funding new and emerging technologies that provide for more successful and cost-effective use of enforcement resources.

Improving Enforceability as Part of the Management Process

Clear, easily enforceable regulations are critical to the success of fishery management policies. A management regime that is—or is perceived by the public to be—impossible or exceptionally hard to enforce is unlikely to succeed. Of course, some management regimes are more difficult or costly to enforce than others. In particular, area closures with boundaries that are difficult to detect at sea are problematic and provide tenuous grounds for
Moving Toward an Ecosystem-based Management Approach

In keeping with the overarching theme of this report, fishery managers should begin to move toward a more ecosystem-based management approach. This will provide direct benefits to the ecosystem and create a better mechanism for addressing apparent conflicts between socioeconomic and biological goals.

Linking Fisheries Management with other Regional Concerns

Several measures now in place have begun the transition to a more ecosystem-based approach to fishery management. Such an approach requires that we look beyond fisheries to consider interactions with other resources and activities.

The fishery regions were originally defined roughly along the lines of Large Marine Ecosystems and thus have the geographic reach necessary to encompass ecosystem concerns. In addition, all RFMCs have multispecies management plans that force the Councils to look broadly at the ecosystem they manage. Despite these positive efforts, most RFMC multispecies fishery management plans now focus only on species assemblages that are commercially important, or those taken by particular types of gear. Little attention is given to species that, while commercially insignificant, are still important to the functioning of an ecosystem. New ecosystem-based measures are needed, such as studies of system components and interrelationships, assessment and ranking of dangers, and development of comprehensive management plans. These should carefully consider the relationship between fishery management measures and management of other sectors, including protected species, pollution control, and habitat conservation and restoration.

Fishery managers have also used marine protected areas to either promote stock recovery or, in some circumstances, prevent damage to special habitats. In addition, marine protected areas established for other purposes have benefited many fisheries. The initial steps in designing marine protected areas need to be improved. (For further discussion of marine protected areas, see Chapter 6.)

In some respects, the job of the RFMCs will change little with the move toward ecosystem-based management. The Councils will retain broad responsibilities for managing fish populations and fishing activities, bearing in mind the interests of fishing communities. However, they will also need to interact regularly with other regional, state, and local entities with related responsibilities. For example, if an RFMC implements a scientifically sound fishery management plan, but the stock continues to decline due to other factors such as pollution, the problem could be raised at the regional level (as described in Chapter 5) with managers responsible for pollution control. On the other hand, if coastal managers develop a regulatory plan that could affect fisheries, they should be working with the RFMCs to understand the fishery-specific implications. There also should be changes in the way that management measures are evaluated to comply with NEPA. As regions implement an ecosystem-based management approach, environmental impact assessments should be based on a shared knowledge of the ecosystem across the planning entities. Rather than having the RFMC, NMFS, EPA, and the U.S. Army Corps of Engineers all prepare separate environmental impact statements, without sharing information on cumulative impacts, these analyses need to be combined to reduce duplication and improve the quality of ecosystem evaluations. (Further discussion on the development of regional ecosystem assessments is found in Chapter 5.)
Ecosystem-based management will also bring changes to the RFMC process. As mentioned elsewhere in this chapter, fishery management plans have traditionally focused on single stocks, or at most, groupings of stocks that are commercially important. Managers usually set biomass or mortality rate goals, with little consideration of other characteristics of the stock, and even less of broader ecosystem concerns. With the move toward an ecosystem-based management approach, this will change.

Several recent reports have described the profound impacts that fishing industry activities can have on marine ecosystems, such as reducing the average size of individuals within a single stock or removing a high percentage of large predators like tuna and billfish. By targeting some species and not others, fishermen can affect the balance and structure of entire ecosystems. In the Gulf of Maine, some scientists believe that the multispecies fishery has contributed to a re-structuring of that ecosystem from one dominated by groundfish to one dominated by dogfish and skates. In addition, fishing may affect the availability of prey for populations not considered in fishery management plans until recently, such as shorebirds and sea birds. Fishery managers need to take such impacts into account in developing management plans and amendments.

In addition to the impacts of fishing on ecosystems, managers are also beginning to recognize the impacts of large scale environmental phenomena on fish populations. The El Niño Southern Oscillation and the Pacific Decadal Oscillation have already been linked to declines in specific stocks and broader changes in species composition, known as regime shifts. The long-term impacts of climate variability and global climate change on fisheries and related ecosystems remain poorly understood. But existing knowledge is sufficient to suggest that fishery managers should begin to take such impacts into account in developing management plans.

An ecosystem-based management approach will also allow managers to better consider the impacts of their plans on fishermen and the communities in which they live. Unfortunately, there is only a paltry amount of social and economic information about fishermen and fishing communities. It is important to collect such data so managers can better understand the overall effects of the measures they take and the plans they approve. The more managers know about the social and economic factors influencing fishing behavior, the more success they will have in designing regulations that have the intended effect.

The 1996 amendments to the Magnuson–Stevens Act specifically recognize the need to consider the impact of fishery management measures on fishing communities. Although NMFS has started to enhance its ability to describe and predict such impacts, further improvements in collecting and interpreting socioeconomic data are needed. To this end, the legal barriers that now exist to collecting some economic information from fishermen and processors should be reconsidered.

The move toward an ecosystem-based management approach will also allow the human and biological components of fisheries to be brought together through consideration and adoption of ecosystem goals and objectives. As discussed in Chapter 3, goal setting is an important, but difficult part of ecosystem-based management. As in any system with multiple, competing objectives, it will not be possible to meet every one.

In fisheries, the competition is usually between helping overfished stocks recover and preserving the short-term economic health of traditional fishing communities. Both goals are desirable, but the measures required to achieve them often appear to be in conflict. Yet, long-term economic health depends on healthy fish stocks. This may require a temporary reduction in fishing effort, with related short-term economic impacts. The challenge is to devise a formula that rebuilds stocks at a reasonable rate without causing unacceptable economic hardships.

Scientists can help predict how quickly a stock will be replenished at different harvest levels, but there is no scientific basis for actually deciding what the appropriate rate of rebuilding should be. That is a judgment call, requiring managers to weigh the benefits of quickly restoring fish stocks to healthy and sustainable levels against the interim eco-
economic costs to the fishermen and communities involved. The task is complicated by the fact that even short-term hardships can drive fishermen permanently out of business. Ironically, the resultant pressure to go slow has sometimes led to continued overfishing, and longer-term socioeconomic harm. An ecosystem-based management regime inevitably requires tough choices, but it will provide a comprehensive context within which those choices may be made.

The RFMCs need to participate in a collaborative process to share their concerns and help shape regional goals and management plans. Because of their experience in dealing with diverse constituents and multiple objectives, the Councils will be extremely helpful in developing a comprehensive ecosystem-based management approach in the regions.

In addition to integrating fishery issues into an overall regional perspective, the principles of ecosystem-based management can guide NMFS and the RFMCs in implementing two difficult provisions of the Magnuson–Stevens Act related to essential fish habitat and bycatch.

Essential Fish Habitat

As discussed in Chapter 11, maintaining healthy, functioning habitats is an essential element of an ecosystem-based management approach. The 1996 amendments to the Magnuson–Stevens Act included measures designed specifically to protect habitats important to managed species. Essential fish habitat (EFH) is defined in the Act as “those waters necessary to fish for spawning, breeding, or growth to maturity” and the RFMCs are required to “describe and identify essential fish habitat” for each fishery. However, it is not easy to determine which habitats are required by fish. With scant legislative guidance and little scientific information available on habitat requirements, RFMCs tended to be broad in their designations.

For example, in the case of Atlantic halibut, the New England RFMC designated the entire Gulf of Maine and almost all of Georges Bank as essential. The North Pacific council designated almost the entire EEZ below the Arctic Circle as essential for one species or another. But when everything is special, nothing is. The current methods have resulted in the designation of so much habitat that the original purpose of identifying areas that deserve focused attention has been lost.

Perhaps in recognition of this, NMFS designated a subset of EFH called “habitat areas of particular concern.” These areas were defined in 2002 NMFS regulations as “discrete areas within essential fish habitat that either play especially important ecological roles in the life cycles of federally managed fish species or are especially vulnerable to degradation from fishing or other human activities.” Less than one percent of the area initially designated as EFH has been further characterized as habitat areas of particular concern.

Two alternate approaches for determining critical habitat attempt to improve on the current one. Both look at habitat from an ecosystem perspective, instead of trying to identify habitat necessary for the survival of an individual species. The first approach uses the abundance of juveniles of several commercially important species as indicators of habitat preference. It then uses a statistical method to locate the smallest total area that contains a sufficient amount of preferred habitat for all species of concern. The second approach expands on the first by attempting to link species distribution with specific habitat types.

Of course, the identification of important habitats is only the first step. Rather than focusing solely on protecting these habitats from fisheries impacts, NOAA should identify the full range of threats and work with other agencies, as well as with developers, local and state zoning officials, and others, to create management plans that address all the activities posing serious risks to marine habitats. Ultimately, the process for designating and managing EFH should result in the protection of major fish species during vulnerable stages of their life history, while minimizing disruption to the fishing industry or other offshore uses. Like other resource management programs, any approach to protecting EFH needs to be enforceable and reasonably simple to implement.
Recommendation 19–21

The National Marine Fisheries Service (NMFS) should change the designation of essential fish habitat from a species-by-species to a multispecies approach and, ultimately, to an ecosystem-based approach. The approach should draw upon existing efforts to identify important habitats and locate optimum-sized areas to protect vulnerable life-history stages of commercially and recreationally important species. NMFS should work with other management entities to protect essential fish habitat when such areas fall outside their jurisdiction.

This effort should include:

- well-documented, science-based analytical methods.
- consideration of ecologically valuable species that are not necessarily commercially important.
- an extensive research and development program to refine existing analytical methods and develop additional means to identify habitats critical to sustainability and biodiversity goals.

Reducing Bycatch

The unintentional catch of non-targeted species by recreational and commercial fishermen, known as bycatch, is a major economic and ecological problem. One of the national standards of the Magnuson–Stevens Act states that fishery management plans should minimize bycatch to the greatest extent practicable. Reducing bycatch is a goal that everyone can support: for fishermen, bycatch decreases efficiency and costs money; for the environmental community and many others, bycatch is viewed as wasteful and harmful to the ecosystem; and, in the case of endangered species, bycatch can threaten a population’s survival. Nevertheless, the total elimination of bycatch from a fishery is probably impossible, and too great a focus on bycatch could inhibit progress on other issues more important to ecosystem functioning.

The first requirement for addressing bycatch is better information. Existing fish stock assessments attempt to account for all sources of mortality for commercially targeted species; however, estimates of impacts on non-target species are lacking. An ecosystem-based management approach will require that mortality to all components of the system be estimated. The recently developed bycatch sampling program under the Atlantic Coastal Cooperative Statistics Program, developed in a cooperative effort among states, the Atlantic States Marine Fisheries Commission, and NMFS, is a positive step in this direction.

Bycatch in domestic fisheries is only part of the problem. International fisheries are responsible for the bycatch of many species, including endangered sea turtles in pelagic longline fisheries, and many species of whales (see Chapter 20). However, a complete assessment of bycatch in international fleets is not possible due to very limited data.

There are various ways to gather information on bycatch: self-reporting by fishermen; port sampling; remote electronic monitoring using video cameras; and at-sea or shoreside observer programs. Of these options, use of observers is usually the most expensive; deployment of one observer usually costs from $700–$1,000 a day. The overall annual cost for monitoring an entire fishery will depend on the number of vessels in the fishery, the level of observer coverage needed, and the objectives for the monitoring.

To fully catalog all bycatch in every fishery, an observer would need to be present on every fishing boat at all times—a prohibitively expensive proposition. Instead, bycatch monitoring should be based on statistically significant sampling using a combination of information gathered by fishermen, electronic monitoring, and a selected number of observers. There are certain situations, however, in which a high level of observer coverage may be warranted, for example, in protecting highly endangered species, such as North Atlantic right whales or sea turtles, where the death of just a few animals can have...
a significant impact on survival of the species. NMFS can also experiment with time restrictions and area closures to reduce bycatch in certain circumstances. A variety of pilot projects can help determine the effectiveness of different methods and the costs involved.

NMFS, in cooperation with the RFMCs, has initiated a National Bycatch Strategy that moves in the right direction. The Strategy calls for the development of regional implementation plans to reduce bycatch of commercially important species. As ecosystem-based management evolves, those implementing the Strategy will need to look more broadly at overall ecosystem impacts.

Recommendation 19–22
The National Marine Fisheries Service (NMFS), Regional Fishery Management Councils, states, and interstate fisheries commissions, should develop regional bycatch reduction plans that address the broad ecosystem impacts of bycatch for areas under their jurisdiction. Implementation of these plans will require NMFS to collect data on bycatch of all species captured by commercial and recreational fishermen, not only of commercially important species. The selective use of observers should remain an important component of these efforts.

Although reducing the overall extent of bycatch is important, the need to reduce mortality, particularly for endangered species, is critical to ensuring species survival. Fisheries bycatch is a leading cause of mortality for marine mammals and for endangered species, such as sea turtles and albatross, especially in international fisheries (see Chapter 20). Research on gear types and fishing methods that reduce mortality has shown considerable progress. The use of “circle hooks” appears promising for reducing bycatch mortality of sea turtles. In the case of seabirds, recent experiments in Alaska on the use of streamers, underwater chutes, and other minor changes to gear deployment in the longline fishery, almost completely eliminated seabird bycatch. These experiments can be expanded to include different areas, different gear, and different species of seabirds. Conservation engineering research also shows promise in reducing the impacts of fishing on habitat.

Recommendation 19–23
The National Marine Fisheries Service (NMFS) should expand its program in conservation engineering to help reduce the impacts of fishing on ecosystems. The program should give high priority to finding ways to reduce bycatch in fisheries that interact with endangered species. As gear and fishing methods are shown to be effective, NMFS should promote their rapid implementation in U.S. fisheries and work with the U.S. Department of State to promote their international adoption.

Managing International Fisheries

The Status of International Fisheries

Intensive exploitation of fish populations at the international level is jeopardizing global marine life and the marine environment. An estimated seven out of ten fish stocks worldwide are being exploited at or beyond the level of sustainability. Not unlike the U.S. situation, factors contributing to the rapid depletion of global fish stocks include:

- The open-access nature of high seas fisheries.
- Excess fishing capacity, with global investments annually exceeding revenues by $14.5 to $54 billion.
- Widespread illegal practices, and difficulties in enforcing the law.
- Ever more sophisticated fishing technology and gear.
• Major government subsidies aimed at building up national fishing industries.
• Bycatch of non-target species.
• High levels of discards, reaching approximately 20 percent of the total catch.\[^{25}\]
• Fishing practices that degrade habitat.
• Inadequate understanding of how marine ecosystems function.
• Lack of monitoring data and poor statistics.

The Law of the Sea Framework

As noted in Chapter 2, the traditional freedom of the high seas was based on a belief that the ocean's bounty was inexhaustible and that humans would never be in a position to exploit much of it. As ocean resources grew in importance, and its vastness was conquered, these attitudes changed. In 1976, the United States asserted jurisdiction over fishery resources within 200 nautical miles from its shores. In 1982, the United Nations Convention on the Law of the Sea (LOS Convention) created EEZs extending generally out to 200 nautical miles from the shores of all coastal states and authorizing national regulation of living (and nonliving) marine resources in areas that were formerly the high seas.

However, many fisheries, such as highly migratory species like tuna, extend beyond a single country's EEZ. In the absence of international cooperation and some form of international governance, the community of nations could witness the classic “tragedy of the commons,” leading to the potentially irreversible overexploitation of living marine resources.

International management challenges are exacerbated by the fact that the regulation of fishing on the high seas has traditionally been left to the nation under which a vessel is registered (referred to as the flag state). As discussed in Chapter 16, flag state enforcement is extremely uneven and vessel owners can seek less stringent regulations and enforcement simply by reflagging their vessels.

International Fishery Conservation Agreements

In the 1990s, the international community, working mainly through the United Nations Food and Agriculture Organization’s (FAO’s) Committee on Fisheries, began to address deficiencies in international fishery management, with the United States playing a lead role. Two global agreements were reached that are binding on signatories: the FAO Compliance Agreement and the Fish Stocks Agreement. The FAO also adopted a number of voluntary measures that provide guidance to nations on managing fisheries. (For a listing of ocean-related international agreements, see Table 29.1.) Although they do not have the force of law, nonbinding instruments can influence national practices and customs, provide nations with flexibility in implementation, and make headway in the face of scientific or economic uncertainty.

International cooperation is essential to preserve large migratory species, such as the tuna shown here, that are harvested over a wide geographic range.
In addition to global and multilateral agreements, the United States also has a long history of developing bilateral agreements to manage shared stocks. In particular, the Pacific Salmon Treaty has helped Canada and the United States coordinate management of Pacific Coast salmon stocks. Other examples of successful regional approaches include the International Pacific Halibut Commission, the Yukon River Treaty, and the Convention on the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean. These and similar bilateral agreements will require ongoing review, modification, and enforcement if the stocks of concern are to remain sustainably managed.

The FAO Compliance Agreement
In 1993, the FAO adopted the Agreement to Promote Compliance with International Conservation and Management Measures by Fishing Vessels on the High Seas, known as the FAO Compliance Agreement. This agreement requires each participating flag state to:
- Ensure that vessels flying its flag do not undermine international conservation measures.
- Limit the right to harvest fish to those vessels it has affirmatively authorized.
- Maintain a register of such authorized fishing vessels.
- Monitor catches and make such information available to the FAO.

The United States ratified the FAO Compliance Agreement in 1995, and it came into force in 2003, when a sufficient number of nations had signed.

The Fish Stocks Agreement
At the 1992 United Nations Conference on Environment and Development (also known as the Earth Summit), the nations of the world recognized that the LOS Convention’s appeal for international cooperation on straddling stocks and highly migratory species did not adequately address the global crisis in fisheries. The result was the 1995 United Nations Agreement for the Implementation of the Provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (known as the Fish Stocks Agreement).

The Fish Stocks Agreement authorizes non-flag states to engage in compliance and enforcement activities for fishery violations on the high seas, including boarding, inspecting, and bringing a vessel to port. It also allows port states to inspect documents, catch, and fishing gear on fishing vessels and to prohibit landings if a high seas catch has been taken in a manner that undermines regional or global conservation and management measures.

The Fish Stocks Agreement adopts a precautionary approach as the fundamental standard for managing shared fisheries and calls upon nations to agree on efficient and expeditious decision-making procedures within regional organizations. The United States was a leader in negotiating the Fish Stocks Agreement and in 1996 became the third nation to ratify it. The Agreement finally came into force in late 2001, although several major fishing nations, including Japan, Poland, and South Korea, have not yet ratified it.

Recommendation 19–24
The U.S. Department of State, working with other appropriate entities, should encourage all countries to ratify the Fish Stocks Agreement and the United Nations Food and Agriculture Organization’s Compliance Agreement. In particular, the United States should condition other nations’ access to fishing resources within the U.S. exclusive economic zone on their ratification of these agreements. The United States and other signatory nations should also develop additional incentives to encourage all nations to ratify and enforce these agreements.

The effective management and conservation of global marine species, and the enforcement of international treaties, require a combination of domestic, bilateral, regional, and international approaches. Although regulation of fisheries on the high seas is conducted within
broad regions of the seas, the existing regional fishery organizations are generally weak. They lack adequate financial resources or enforcement capabilities, and allow member states to opt out of individual management measures they dislike.

The United States is a member of more than a dozen regional fishery commissions and related organizations concerned with straddling stocks or high seas living marine resources. These organizations undertake fishery research, adopt measures to conserve and manage the fisheries under their mandate, and attempt to reduce and regulate bycatch. They also develop policies for the conservation, sustainable use, and ecosystem-based management of living marine resources.

The work of regional fishery organizations must be paid for by their members. The cost of U.S. participation is set at roughly $20 million annually, although in fiscal year 2003, Congress did not appropriate the amount requested.

Recommendation 19–25
The U.S. Department of State, working with the National Oceanic and Atmospheric Administration, should review and update regional and bilateral fishery agreements to which the United States is a party, to ensure full incorporation of the latest science and harmonize those agreements with the Fish Stocks Agreement. The United States should fulfill existing international fishery management obligations, including full funding of U.S. commitments.

Non-binding International Documents
The FAO has adopted a number of voluntary, nonbinding instruments, beginning in 1995 with the Code of Conduct for Responsible Fisheries (the Code). While acknowledging the diversity of national and cultural traditions, the Code sets out principles and standards for responsible practices in fisheries and aquaculture. Its purposes are to promote conservation of biodiversity, ecosystem-based management, and sustainable use of living marine resources. More specifically, the Code calls for the use of the best scientific information, application of traditional knowledge where possible, adoption of ecosystem-based and precautionary approaches, effective flag state control, and participation in regional organizations.

More recently, FAO has adopted a number of International Plans of Action that elaborate on the Code and address weaknesses in existing regulatory schemes involving such issues as the bycatch of seabirds and sharks. The International Plan of Action on illegal, unreported, and unregulated fishing, although emphasizing flag state responsibility, also calls upon regional organizations to play a role in monitoring, surveillance, and deployment of observers, and urges port state control. These International Plans of Action can be best implemented through corresponding national plans of action.

NOAA’s fishery and technical experts helped develop criteria for defining overcapacity in marine fisheries that have been adopted by FAO and accepted as worldwide standards. Nevertheless, progress has been slow in persuading many nations to implement capacity reduction measures.

There is no existing interagency body positioned to review and make recommendations for U.S. actions on international fishery issues. However, an international committee under the National Ocean Council, as recommended in Chapter 29 (see Recommendation 29–3), would be ideally suited to fill this void.

Recommendation 19–26
The National Oceanic and Atmospheric Administration, working with the U.S. Fish and Wildlife Service and U.S. Department of State, should design a national plan of action for the United States that implements, and is consistent with, the International Plans of Action adopted by the United Nations Food and Agriculture Organization and its 1995 Code of Conduct for Responsible Fisheries. This national plan should stress the importance of reducing bycatch of endangered species and marine mammals.
Recommendation 19–27
The National Ocean Council (NOC) should initiate a discussion on effective international implementation of the United Nations Food and Agriculture Organization’s Code of Conduct for Responsible Fisheries and other Plans of Action.

In particular, the NOC’s international committee should suggest methods to encourage nations to:

- join relevant regional fishery management organizations.
- implement and enforce regional agreements to which they are bound.
- collect and report the data necessary to manage fish stocks sustainably and to reduce fishery impacts on habitats and protected species.
- reduce or eliminate illegal, unreported, and unregulated fishing by ships flying their flag.
- reduce fishing fleet capacity, particularly on the high seas.
- reduce bycatch of non-targeted species, in particular endangered populations such as sea turtles and marine mammals, via the use of innovative gear and management methods such as onboard observer programs.

The NOC’s international committee could consider the value of incentives for cooperating nations, such as greater access to U.S. markets, bilateral aid, debt forgiveness, subsidies, or preferential loans, as well as disincentives for countries that do not implement these agreements.

International Fisheries and Trade

Intentional and unintentional harm to marine mammals and endangered species remain major problems at the global level. Large populations of sea turtles, dolphins, sharks, and seabirds are unintentionally caught in the fishing gear used by swordfish, shrimp, and tuna fishermen. And the global trade in deliberately captured endangered species continues.

In the 1990s, the United States attempted to employ trade sanctions to combat damaging harvesting practices. Such sanctions can be very effective when the nation imposing them is a major importing market. In response to a recent U.S. initiative, but amid considerable dispute, the FAO established an informal consultative process to consider greater cooperation between its fishery management activities and the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which regulates global trade in endangered species.

Not surprisingly, the World Trade Organization (WTO) generally discourages nations from taking unilateral trade action, arguing that it undermines free trade. But the WTO has also recognized that conservation can be a legitimate objective of trade policy. When the United States banned the import of certain shrimp products from nations whose harvesting practices resulted in a large bycatch of sea turtles, a complaint was filed at the WTO. Although the WTO’s original ruling criticized the United States for the manner in which the law was implemented, it reaffirmed that the law itself was not inconsistent with WTO or General Agreement on Tariffs and Trade obligations. Subsequent changes to implementation of the law were found to be fully consistent with WTO policy.

Given that the United States is one of the largest markets for swordfish and tunas, it could employ similar measures to promote adoption of safer gear and methods, particularly in the longline fishery. The United States should continue to press for the inclusion of environmental objectives—particularly those specified in international environmental agreements—as legitimate elements of trade policy.
References

16. Ibid.

17. Whitfield, C., South Carolina Department of Natural Resources. “*Joint Project Agreement Update.*” Memorandum to Alvin Taylor, South Carolina Department of Natural Resources. Columbia, SC, February 10, 2000.

CHAPTER 20

PROTECTING MARINE MAMMALS AND ENDANGERED MARINE SPECIES

Protection for marine mammals and endangered or threatened species from direct impacts has increased since the enactment of the Marine Mammal Protection Act in 1972 and the Endangered Species Act in 1973. However, lack of scientific data, confusion about permitting requirements, and failure to adopt a more ecosystem-based management approach have created inconsistent and inefficient protection efforts, particularly from indirect and cumulative impacts. Consolidating and coordinating federal jurisdictional authorities, clarifying permitting and review requirements for potentially harmful activities, increasing scientific research and public education, and actively pursuing international measures to protect these species are all improvements that will promote better stewardship of marine mammals, endangered or threatened species, and the marine ecosystem.

Assessing the Threats to Marine Populations

Most endangered marine species fall into four main groups: marine mammals, sea turtles, seabirds, and salmon. Of the nineteen species listed as endangered by the National Oceanic and Atmospheric Administration (NOAA) under the Endangered Species Act, nine are marine mammals, five are sea turtles, and two are salmonids. Of the twelve species listed as threatened, two are marine mammals, three are sea turtles, and five are salmonids. Seabirds fall under the jurisdiction of the U.S. Fish and Wildlife Service and eleven species are listed as endangered or threatened under the Endangered Species Act. Different factors threaten the survival and recovery of each of these groups.

Marine Mammals

Because of their intelligence, visibility and frequent interactions with humans, marine mammals hold a special place in the minds of most people. Little wonder that, as a whole, marine mammals are afforded a higher level of protection than most other marine organisms. Nevertheless, they continue to be affected by a wide range of human activities.

The biggest threat to marine mammals worldwide is their accidental capture or entanglement in fishing gear (known as bycatch), which kills hundreds of thousands of them each year. Dolphins, porpoises and small whales often drown when tangled in a net or a
fishing line because they are not able to surface for air. Even large whales can become entangled, towing nets or other gear for long distances leading to injury, exhaustion, or death. Entanglement in fishing gear is a significant cause of mortality for one of the most endangered marine mammals, the North Atlantic right whale. (The issues of discarded gear and bycatch are also discussed in Chapters 18 and 19.)

Historically, commercial harvesting contributed to major declines in the populations of marine mammals but only a few nations still allow hunting for purposes other than subsistence. Nevertheless, hundreds of thousands of seals, whales, and other marine mammals are killed by hunters each year, while subsistence catches account for thousands more deaths.

Just as pedestrians are vulnerable to traffic in the streets, marine mammals are vulnerable to ship traffic at sea, particularly in areas crowded with commercial and recreational vessels. Several hundred animals are wounded or killed by such interactions every year. Ship strikes are a leading cause of mortality for endangered North Atlantic right whales in busy East Coast corridors, while manatees, another endangered species, are frequently struck by boats in shallow Florida waters.

Other possible causes of marine mammal mortality include the introduction of new diseases, ecosystem changes such as algal blooms, and indirect effects of climate change. These factors may cause several thousand additional deaths each year.

Although pollution rarely kills marine creatures directly, it can impair their health, harm their reproductive potential, and eventually lead to their death. Chemicals in fertilizers, pesticides, pharmaceuticals, and other materials can accumulate in the tissues of these animals, especially those with long life spans. As discussed in Chapter 18, ingestion of marine debris and entanglement in plastic trash can be significant additional sources of mortality.

Marine mammal populations may also be disturbed by noise from shipping, oil and gas exploration, ocean drilling, naval operations, oceanographic and geophysical research, and similar activities. In the last ten years, considerable publicity has surrounded the deaths of marine mammals in close proximity to naval operations and geophysical research vessels. Unfortunately, very little is known about marine mammal physiology, including baseline data on hearing, making it difficult to assess the potential biophysical impacts of noise on marine animals.

Another factor that is common to declines in many endangered species is the destruction or degradation of their natural habitat. Thus, the successful recovery of a species depends to a large degree on protection or restoration of its habitat.

Endangered Species

Sea Turtles

Sea turtles are integral components of the ocean environment and have been shown to have beneficial impacts on coral reefs, seagrass meadows, and coastal dune ecosystems. Sea turtles are particularly vulnerable to human impacts due to their long life spans, delayed onset of reproductive maturity, and other aspects of their life history. All sea turtle species found in U.S. waters are listed as threatened or endangered under the Endangered Species Act.

Sea turtles are threatened both on land and at sea. Nesting beaches and nearshore foraging habitat can be damaged or lost by beach armoring, coastal development, and vehicular access to nesting sites. Beach nourishment projects can enhance nesting beaches if conducted outside of nesting and hatching season, but can be harmful if improperly planned. Human predation on turtles and turtle nests, although no longer common in the United States, is a large source of mortality internationally and in some U.S. territories.
Overall, the largest source of mortality to sea turtles is bycatch during normal fishing operations. Most of the turtles harmed in this way are juveniles or sub-adults that are critical to the stability and recovery of marine turtle populations. Tens of thousands of leatherback and loggerhead turtles are captured by Pacific longline fishermen, with thousands subsequently dying. This is thought to be a major contributing factor in the twenty year decline of leatherback and loggerhead nests in the Pacific, by 95 percent and over 80 percent respectively. Given that the United States accounts for less than 2 percent of world longline effort, reversing this trend will require international action.

Gear modifications, such as turtle excluder devices, used in the shrimp trawl fishery since the late 1980s, have saved tens of thousands of sea turtles in U.S. waters and other areas where the gear is required, such as Australia. Nevertheless, sea turtle bycatch in global shrimp fleets remains very high. Other gear types, notably gillnets, dredges, and other trawl nets, also cause significant turtle mortality. Mortality from bycatch threatens the ability of sea turtles to recover, and may threaten the long-term survival of particular populations, such as Pacific loggerhead and leatherback turtles and Atlantic olive ridleys.

Similar to marine mammals, other threats to sea turtles include pollution, disease, loss of foraging areas in sensitive habitat, marine debris, and disturbance along ocean migration routes.

Salmonids
Over the past several decades, populations of wild salmon and steelhead throughout the West Coast have declined to dangerously low levels. There is no single factor responsible for this decline, and it is even difficult to quantify the relative contributions of different factors. Salmon population declines are the result of numerous forces, such as habitat loss due to development, resource extraction, dam construction and other land uses, and commercial and recreational harvest. Human activities that diminish salmon populations also cause them to be more susceptible to natural environmental fluctuations, such as poor ocean conditions and drought.

Seabirds
Although many species of birds spend time on or near the ocean for at least part of their life cycle, seabirds are those that spend the majority of their life at sea, coming on land only to reproduce. Albatrosses and petrels are among the most well known seabirds, but murres, murrelets, auklets, kittiwakes, sea ducks and others also depend on the oceans. Disturbance of nesting habitats, non-native pests, marine debris, pollution, contaminants, and overfishing of prey species all threaten seabirds. However, because of the amount of time these birds spend at sea, mortality due to fishing bycatch is thought to be the greatest threat to the recovery of imperiled populations of seabirds. The discussion on bycatch in Chapter 19 includes recommendations designed to minimize harm to seabirds and other threatened populations. Additional recommendations that will contribute to seabird protection can be found in Chapter 9 (on coastal management), Chapter 11 (on habitat conservation), Chapters 14 and 16 (on coastal and vessel pollution), and Chapter 18 (on marine debris).
Reviewing Authorities and Responsibilities

The early 1970s witnessed the passage of several landmark environmental laws in the United States. Many of these statutes affected marine mammals and other protected species indirectly, but two were focused specifically on the conservation and protection of these animals.

The Marine Mammal Protection Act

The 1972 Marine Mammal Protection Act (MMPA) was passed by Congress in response to public concerns about the incidental deaths of hundreds of thousands of dolphins each year associated with tuna fisheries, the hunting of seals for fur, and the continuing commercial harvest of whales despite controls by the International Whaling Commission. The MMPA, with limited exceptions, prohibits the hunting, killing, or harassment of marine mammals.

The MMPA divides federal jurisdiction over marine mammals between two agencies. The National Oceanic and Atmospheric Administration’s (NOAA’s) National Marine Fisheries Service (NMFS) manages the vast majority of marine mammals, including whales, dolphins, porpoises, seals, and sea lions. The U.S. Department of the Interior’s (DOI’s) U.S. Fish and Wildlife Service (USFWS) manages five species: polar bears, walrus, sea otters, manatees, and dugongs.

The MMPA also established the independent Marine Mammal Commission (MMC). The MMC is charged with reviewing and making recommendations on domestic and international actions and policies of all federal agencies with respect to marine mammal protection and conservation. It also manages and funds a research program to support management activities. Although the Commission’s independence has been essential to its functioning, establishment of the National Ocean Council will provide it with a venue to coordinate with other federal agencies involved in marine mammal research and management. According to the MMC, most marine mammal stocks in U.S. waters, and many others around the world, are in better condition now than before passage of the MMPA.10

The Endangered Species Act

In 1973, the Endangered Species Act (ESA) was enacted to conserve endangered and threatened species and the ecosystems upon which they depend. The new law vastly strengthened earlier measures directed at the same problem. The public was broadly supportive of the Act due to the well-publicized declines of well-known species such as the bald eagle. A 1999 public opinion survey indicated that public support for the protection of biodiversity continues.11

Under the ESA, the federal government is responsible for listing species as endangered or threatened based on population size and trends. This responsibility is divided between the USFWS, primarily responsible for terrestrial organisms, and NOAA, primarily responsible for marine and anadromous species. The law includes powerful prohibitions against any action that harms a listed animal. The law, with limited exceptions, prohibits federal agencies from authorizing, funding, or carrying out any action that would jeopardize a member of a listed species or destroy its critical habitat and requires them to undertake conservation programs. To promote state action, matching federal funds were authorized for states willing to enter into approved cooperative agreements.

Currently, there are 1,509 species listed as endangered and 345 listed as threatened by USFWS while, as noted above, NOAA has listed 19 species as endangered and 12 as threatened. It is impossible to precisely quantify the overall biological impact of the ESA. However, a 1995 National Research Council (NRC) report concluded that the ESA has
successfully prevented species from becoming extinct. The rigorous provisions of the ESA work as a safety net to help species survive once they have declined to the level that listing is warranted. Because of this, the NRC did not recommend wholesale changes to ESA implementation. It did, however, point out that the ESA has been less effective in preventing species from declining to levels that require listing in the first place.

The NRC also observed that, although one purpose of the ESA is to conserve ecosystems, the Act itself includes little specific guidance in this area. To fix this, the NRC recommended a focus on broader rehabilitation of ecosystem functions, as part of a move toward ecosystem-based management. Maintaining healthy, functioning ecosystems can help prevent species from becoming threatened or endangered and avoid some of the economic disruption that results when drastic measures must be taken to protect an endangered species. The NRC report also concluded that the federal focus of the ESA should be broadened to include other layers of government and nongovernmental interests as well. Because humans are part of the ecosystem, comprehensive management plans will need to balance species conservation and human uses.

Recommendation 20–1

Congress should amend the Marine Mammal Protection Act to require the Marine Mammal Commission to coordinate with all the relevant federal agencies through the National Ocean Council (NOC), while remaining independent. The NOC should determine whether there is a need for similar oversight bodies for other marine animals whose populations are at risk, such as sea turtles.

Identifying and Overcoming Gaps in Protection

Several changes are needed in federal law to enhance marine mammal and endangered species protection. The split of management jurisdiction between two federal agencies, confusion over the requirements of permit applications and approvals, and the lack of clarity in the definition of legal terms are all issues that should be addressed.

Clarifying Jurisdiction and Authority

As noted, the management of marine mammals and endangered species is currently divided between NOAA and USFWS. In the case of marine mammals, this split was intended to be temporary and makes little sense. In the case of endangered species, the split is more logical, but better coordination and clarity are still needed.

The original congressional committee reports that accompanied the MMPA in 1972 show that Congress did not intend marine mammal jurisdiction to be permanently divided between NOAA and USFWS. Rather, House and Senate committees anticipated the creation of a new Department of Natural Resources that would combine NOAA and USFWS. The report stated that if the proposed new department did not become a reality, they would reexamine the question of jurisdiction and consider placing the entire marine mammal program within a single department. Nevertheless, the jurisdictional split remains today.

Recommendation 20–2

Congress should amend the Marine Mammal Protection Act to place the protection of all marine mammals within the jurisdiction of the National Oceanic and Atmospheric Administration.
The division of endangered species jurisdiction appears reasonable because of the expertise of each agency: NOAA has jurisdiction over marine and anadromous species and DOI has jurisdiction over terrestrial and freshwater species. But ecosystems do not recognize these distinctions. When some species of salmon were listed under the ESA in the 1980s and 1990s, most of the causes for their decline were land-based or freshwater in origin, requiring significant coordination between NOAA and USFWS, as well as other agencies. In addition, jurisdiction over listed sea turtles is split between NOAA and the USFWS according to location: NOAA has jurisdiction over sea turtles in the water and the USFWS has jurisdiction on land. Thus, addressing threats to sea turtles requires significant coordination. This coordination has not been entirely effective and improved oversight of the relationship between NOAA and USFWS is needed to clarify areas of responsibility and reduce conflicts.

Recommendation 20–3
The National Marine Fisheries Service and U.S. Fish and Wildlife Service, with guidance from the National Ocean Council, should significantly improve their coordination with respect to the implementation of the Endangered Species Act, particularly for anadromous species and sea turtles, and in circumstances where land-based activities have significant impacts on marine species.

Cooperation with States

Section 6 of the ESA provides authority to the Secretaries of Commerce and the Interior to enter into cooperative agreements with any state that “establishes and maintains an adequate and active program” for the conservation of endangered and threatened species. Such joint programs are an effective way for the federal government to extend its limited resources and take advantage of state and local expertise and contacts. The states, working with the federal government, can better accomplish the purposes of the ESA than either could alone.

State natural resource agencies often have excellent knowledge about local species and their habitats, as well as local staff support and facilities. State residents may also be more familiar and more comfortable with state agencies than with federal ones. Cooperative programs may be particularly appropriate for protecting and rebuilding species such as sea turtles, that are affected by a range of human activities typically under the purview of states, such as coastal development and beach recreation. At the same time, the federal government can provide long-term monitoring, a broader ecosystem-based perspective, and potentially a more stable funding stream. It remains responsible for reviewing cooperative agreements regularly, to ensure that states are maintaining adequate protection for endangered species. However, despite its promise, the ESA Section 6 program has been chronically underfunded, limiting its effectiveness.

Recommendation 20–4
The U.S. Fish and Wildlife Service and National Oceanic and Atmospheric Administration should expand their cooperative agreements with states under Section 6 of the ESA, including enhanced research, management, monitoring, and public information.

Unclear Permitting and Review Standards

A *take* is a term used in the MMPA and ESA to define an activity that results in the death, injury, or harassment of a marine mammal or member of an endangered species. After much litigation and scrutiny, the interpretation of this term under the ESA appears fairly clear to both managers and the public. This is not the case for the MMPA.
The MMPA prohibits the taking or importation of marine mammals and marine mammal products unless that action falls under one of the law’s exemptions, such as a taking for the purpose of public display, enhancement of the species, or scientific research. Exemptions are also allowed for Native Alaskans, who may take marine mammals for subsistence or for creating authentic native handicrafts and clothing.

Outside these narrow exemptions, the MMPA authorizes the issuance of letters of authorization for the unintentional and incidental taking of small numbers of marine mammals provided it has only a negligible impact on the species. This provision has been problematic because terms such as small numbers and negligible impact are not defined in the Act, resulting in a lack of clarity about when authorization is necessary and under what circumstances it should be granted.

Recommendation 20–5

Congress should amend the Marine Mammal Protection Act to require the National Oceanic and Atmospheric Administration to more clearly specify categories of activities that are allowed without authorization, those that require authorization, and those that are prohibited.

The Meaning of Harassment in the MMPA

Under the MMPA, the term harassment, defined as any act of pursuit, torment, or annoyance of a marine mammal, is an essential element in determining whether permits or authorizations are necessary for activities that fall under one of the law’s exemptions. Amendments to the Act in 1994 split the definition of harassment into two categories:

- Level A harassment has the potential to injure a marine mammal or marine mammal stock in the wild.
- Level B harassment has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering.

The apparent intent of this definition was to distinguish activities likely to have significant effects from activities such as marine mammal research that, although perceptible to the animals, are not likely to result in significant disturbance. However, NOAA and USFWS have had difficulties implementing the 1994 definition, which has led to public uncertainty with respect to its implications. The lack of clarity means that almost any commercial, recreational, or scientific activity that is noticed by a marine mammal might be defined as harassment. Both agencies assert that the confusion limits their ability to regulate even potentially harmful activities.

A 2000 National Research Council report concluded that the intent of the MMPA was not to regulate activities that result in minor changes in behavior. The report recommended that Level B harassment be redefined to focus on “meaningful disruptions to biologically significant activities.” Another National Research Council study currently underway is investigating what behaviors should be considered biologically significant and what research might be needed to implement the revised definition.

Recommendation 20–6

Congress should amend the Marine Mammal Protection Act to revise the definition of harassment to cover only activities that meaningfully disrupt behaviors that are significant to the survival and reproduction of marine mammals.

The Promise of Programmatic Permitting For Marine Mammals

In spite of the confusion about MMPA terminology, NOAA and USFWS have had to issue regulations and make case-by-case decisions on permit and authorization applications.
Considerable deference has been given to the professional judgment of agency personnel regarding which activities are permissible. Both agencies have qualified and dedicated people reviewing applications, but the process is necessarily subjective and a personnel change can mean the difference between approval and denial of similar permits. This case-by-case decision making has led to inconsistencies, a lack of clear standards, and uncertain protection for marine mammals.

Most permit applications are processed according to the same procedures, regardless of the level of potential harm to marine mammals. As a result, limited agency resources can be wasted reviewing relatively insignificant permit applications, while insufficient attention is paid to more worrisome activities. A shift to programmatic permitting would enable more proactive and efficient handling of the bulk of permit applications, while reducing the costs and burdens on agency personnel.

Programmatic permitting would allow for quick approval of activities on a defined list, specifying broad parameters within which those activities could occur. A programmatic permit could also include mitigation and data collection measures, such as requiring that whale-watching boats keep at a certain distance from the animals and maintain records of species observed and their locations.

In addition to streamlining permitting, clear and consistent enforcement is needed to ensure compliance with permit conditions, and penalties must be stringent enough to discourage noncompliance. Any changes to the permitting processes under the MMPA will have to be consistent with the requirements of the National Environmental Policy Act.

Recommendation 20–7

The National Oceanic and Atmospheric Administration (NOAA) should implement programmatic permitting for activities that affect marine mammals, wherever possible. Case-by-case permitting, which is more resource intensive, should be used for activities that do not fit within any programmatic category or when circumstances indicate a greater likelihood of harm to marine animals. The National Ocean Council (NOC) should create an interagency team to recommend activities appropriate for programmatic permitting, those that are inappropriate, and those that are potentially appropriate pending additional scientific information.

To carry this out:

- the interagency team, under the oversight of the NOC’s Committee on Ocean Resource Management, should include representatives from NOAA, the National Science
programmatic permits should be subject to periodic review, and remain valid for a limited time to ensure that the best available science can be incorporated into permit requirements.

- enforcement efforts should be strengthened and the adequacy of penalties reviewed.

While programmatic permitting would reduce much of the uncertainty about whether a permit is required, some cases will continue to be unclear. To ensure a smooth process for all concerned, it will be best for potential permittees to approach the regulatory agencies as soon as a question arises about possible interactions with marine mammals. In particular, the potential impacts of new ocean technologies on marine mammals will need to be examined and the permit application process started early in the developmental stages.

Communication must also be improved so that permitting agencies have sufficient time and resources to meet their responsibilities while the action agency or permit applicant can be sure that decisions will be made in a confidential, timely and consistent manner. This has been a particular problem in the past with regard to naval exercises and oceanographic research activities.

Expanding Research and Education

Although much more is known about marine animals today than even a decade ago, scientists still do not understand the life history or physiology of most marine species. Because the decline of such populations tends to be caused by multiple environmental factors, enhanced research on a range of subjects is necessary to find ways to reduce the harmful effects of human activities and to implement effective ecosystem-based management plans.

Understanding Behavior and Human Impacts

Minimizing disruptions to the most important life stages of marine mammals and endangered or threatened species will aid in their survival. To maximize reproductive rates in declining populations, more needs to be learned about breeding grounds and essential habitat. If information were available that showed a particular species could benefit from higher levels of protection during times of mating or birth, management practices could evolve accordingly. Actions could include temporarily closing fisheries that overlap with these activities or requiring vessel traffic to slow down or avoid critical areas. Knowledge of migration patterns and feeding locations is also critical to maintaining healthy populations.

While many human activities can harm individual marine animals, the extent to which humans affect the long-term status of protected species is poorly understood. Coastal development, offshore oil and gas exploration, vessel traffic, military activities, and marine debris all have the potential to threaten protected populations. Understanding the danger of these activities relative to bycatch, hunting, and natural predation is critical to focus attention, research, and enforcement efforts where they are most needed.

Point and nonpoint source pollution threaten the health of all ocean organisms. Much more study is needed about the effects of contaminants, especially on marine mammals’ immune functions, and the possible results of exposure to human pathogens and toxic algal blooms. In addition, the differing impacts of chronic versus acute exposures need to be measured—long-term exposure to relatively low levels of some pollutants may be more damaging to a population’s continued success than a single, high-impact event.
Although not always caused by human activities, strandings of marine mammals, sea turtles, and other endangered species along the shore can be an invaluable tool to learn more about the potential causes of mortality in these species. In the late 1980s, NOAA established a Marine Mammal Health and Stranding Response Program, in response to growing concerns about the numbers of dead and dying marine mammals washing up on U.S. shores. Between 1991 and 2004, NOAA documented twenty-eight unusual mortality events involving marine mammals in U.S. waters alone. These events have included a wide range of species and numerous causative factors including diseases, starvation, toxins from harmful algal blooms, and human interactions. However, the causes of at least 25 percent of these events are as yet undetermined. No similar federal program exists for endangered sea turtles. A sustained and appropriately funded response and analysis program could help NOAA and its partners and volunteers to respond to strandings, identify causes, and recommend actions to prevent further deaths. A similar program for sea turtles could also provide valuable information to managers.

Increased research into the biological, chemical, and psychological stresses to marine mammal, sea turtles, and other protected species populations will allow for more comprehensive, ecosystem-based management. Furthermore, for activities where interaction with protected populations is likely and unavoidable, better scientific data will lead to more effective permitting procedures.

Recommendation 20–8

The National Oceanic and Atmospheric Administration and U.S. Department of the Interior agencies should develop an expanded program, coordinated through the National Ocean Council, to examine and mitigate the effects of human activities on marine mammals and endangered species.

The program should focus on two areas:

- research, monitoring, and assessment to better understand the basic biology, physiology, life history, and population dynamics of marine mammals, sea turtles, and other endangered or vulnerable marine species and to understand how disease, contaminants, harmful algal blooms, human activities, and other stressors may impact these animals. An important goal will be to enhance the capability to respond quickly to strandings and unusual mortality events of marine mammals and sea turtles.
- technology and engineering to eliminate or mitigate human impacts on marine mammals, sea turtles, and other endangered species.

Effects of Noise on Marine Mammals

One particular area that requires better understanding is the effect of sound on marine mammals. Many marine mammals use sound to communicate, navigate, feed, and sense their surroundings. These natural behaviors can be disrupted when other sounds interfere. In the ocean, sound emanates from a variety of sources, both natural, such as storms, volcanic eruptions, and earthquakes, and human-generated, including shipping, scientific and commercial surveys, and commercial and military sonar.

Scientists know relatively little about the biological, psychological, and behavioral changes in marine mammals that are caused by human-generated sound. Activities such as commercial shipping, construction, geological exploration, and sonar certainly can produce noises intense enough to elicit reactions from marine mammals. However, because of the complexity of the biological and physical interactions being studied, and the difficulty of conducting studies on marine mammals, many important questions remain unanswered. For example, the scientific community currently understands very little about marine mammal hearing and how these animals react to sound. It is not known whether health
and behavioral problems will arise only from acute exposures to very loud sound, or whether chronic exposure to lower-intensity sounds (such as passing ship traffic) may also result in long-term effects.

Currently, the U.S. Navy and, to a lesser extent, the Minerals Management Service, are the only federal agencies with significant marine mammal acoustic research programs, including studies to examine the impact of noise on marine mammals. Expanded research efforts and data dissemination are needed to understand marine mammal interactions with sound and reduce or prevent the negative impacts of human-generated noise on these animals.

Recommendation 20–9
The National Science Foundation, National Oceanic and Atmospheric Administration, U.S. Geological Survey, and Minerals Management Service should expand research on ocean acoustics and the potential impacts of noise on marine mammals. These additional sources of support are important to decrease the reliance on U.S. Navy research in this area. The research programs should be complementary and well coordinated, examining a range of issues relating to noise generated by scientific, commercial, and operational activities.

Public Education and Outreach

The general public increasingly has opportunities to come into contact with marine species through diving, aquarium shows, and similar activities. These interactions can increase public awareness and sensitivity about the needs and vulnerabilities of these animals and the ways in which human activities can affect them. Aquariums and other exhibitors can also showcase how larger environmental issues affect marine species and the ecosystems on which they rely.

While human contact with marine mammals raises public awareness, there is also growing concern about activities such as feeding programs, whale-watching excursions, and facilities that allow humans to swim with captive dolphins. For example, feeding programs in the open ocean, most prevalent in Florida, can disrupt natural behaviors and expose animals to harm by decreasing their natural fear of humans. Education programs should point out the harm that too much human interaction with animals in the wild can inadvertently cause.

Applying Ecosystem-based Management Principles

The purpose of ecosystem-based management approaches is to recognize the full nature of ocean and coastal systems and to allow for better coordination of management actions, reduce duplication and conflicts, and take full advantage of available resources. As they are implemented, ecosystem-based management practices can enhance the protection of marine mammals and endangered species.

Domestic Action

The MMPA and ESA currently provide powerful statutory and regulatory tools to address direct impacts to marine mammals and endangered species. However, there are no mechanisms in place for decreasing broad, long-term threats and concerns. The basic tenets of ecosystem-based management require an assessment of all important components and processes in a system, and evaluation of all potential threats. Improved scientific assessments will allow managers to create ecosystem-based management plans, an essential part of which would describe threats to marine mammals, sea turtles and other protected species. Once an ecosystem is analyzed, managers can prioritize protection efforts, addressing the most critical risks first.
For marine mammals and endangered marine species, fisheries bycatch, and to a lesser degree hunting, would be at the top of the list of risks. For other species, impacts on breeding and foraging habitat are critical. For certain highly endangered species, such as North Atlantic right whales and manatees, reduction of ship strikes is a pressing need. Once the major risks are identified, managers can use a combination of the tools available to them to address these concerns. For example, the use of marine protected areas has been shown to be effective in addressing a number of the impacts on protected species.

Unfortunately, in most cases little is known about the relative effects of different factors on the survival and recovery of a protected species. The lack of baseline biological data on most marine mammals and endangered marine species, coupled with limited stock assess-
ment data, make it difficult to evaluate population abundance and trends, isolate causes of mortality, or distinguish management successes from failures.

The listing of several salmon species as endangered and threatened highlights both the promise of an ecosystem-based management approach and the difficulties in achieving it. The threat of large-scale economic disruptions in the Pacific Northwest has led many state, local, and tribal entities to push for a more collaborative, ecosystem-based management approach to avoid severe federal sanctions under the ESA. However, initial results indicate that the federal government needs to do a better job of supporting and encouraging such efforts. The enhancement of such ecosystem-based, regional approaches is discussed in Chapter 5.

International Coordination

Expanding the concept of ecosystem-based management to its logical conclusion will require attention to impacts that occur beyond U.S. waters. For many of the marine species discussed in this chapter, the ecosystem in which they live encompasses the high seas and the waters of many other countries. In order to address impacts to these species throughout their ecosystem, the United States will need to use international agreements and other diplomatic means to strengthen protections for species beyond U.S. waters.

For example, sea turtles are truly members of the global commons and their recovery will require action on a global scale. Reversing the impacts of human predation on nesting turtles and their eggs will take long-term concerted international efforts by the United States and other nations. The United States can use ecosystem-based regional and multinational agreements, including technical and financial assistance, to promote international sea turtle conservation activities.

The development of bycatch reduction methods for U.S. fishermen should be complemented by efforts to persuade foreign fishermen to implement similar methods. This comprehensive approach makes sense from a conservation perspective and creates a more level playing field for U.S. and foreign fishermen.

Recommendation 20–10

The U.S. Department of State, working with the National Oceanic and Atmospheric Administration and the U.S. Department of the Interior, should continue to actively pursue efforts to reduce the impacts of human activities on marine species at risk in foreign and international waters.

References

Ibid.

Chapter 21

Preserving Coral Reefs and Other Coral Communities

Coral reefs and other coral communities are beautiful and diverse, as well as biologically and economically valuable. In addition to well-known tropical coral reefs, coral communities can also be found in deep waters and at high latitudes. Increasingly, coral reefs and other coral communities are facing threats from a number of natural and human-induced causes. To conserve these unique ecosystems, comprehensive coral reef protection and management legislation is needed to address research, protection, and restoration of coral ecosystems. A strengthened U.S. Coral Reef Task Force should lead and coordinate federal coral management efforts. The United States must continue to be a leader in coral management at the international level, including promoting the development of international standards for sustainable harvesting of coral reef resources. Finally, improved research and data collection are critical to better understand coral ecosystems and the impacts of human activities on them.

Assessing the Status of Coral Ecosystems

Coral reefs are formed from layers of calcium carbonate deposited over time by colonies of individual corals. These reefs provide homes for tens of thousands of species of marine plants and animals, making them among the world’s most diverse and productive habitats. Nearly one-third of all fish species live on coral reefs, while other species depend on the reefs and nearby seagrass beds and mangrove forests for critical stages of their life cycles.

The Distribution of Coral Ecosystems

Most coral reefs are found in shallow, clear ocean waters in tropical and semitropical areas. These warm-water corals derive significant food and energy from photosynthetic algae that live in symbiosis with the corals. Warm-water corals have raised intense interest in the last decade because of their apparent sensitivity to climate variability.

Other corals that do not depend directly on sunlight can form reef-like structures or banks at depths of one hundred feet to more than three miles below the ocean’s surface. While relatively little is known about these deep-water structures, many scientists believe that their biological diversity may rival that of coral communities in warmer, shallower waters.
Coral reefs are found in the waters of more than one hundred countries, including the United States (Figure 21.1). They are particularly abundant in the South Pacific; Indonesian waters are estimated to include the largest area of corals, approximately 18 percent of the global total. U.S. waters include 1–2 percent of global warm-water corals.3 Deep-water corals have been found around the globe, although little is known about their actual extent.

The National Oceanic and Atmospheric Administration (NOAA) estimates that U.S. shallow-water coral reefs cover approximately 7,600 square miles. These reefs can be found in western Atlantic and Caribbean waters off Florida, Puerto Rico, the U.S. Virgin Islands, the Navassa Island National Wildlife Refuge (a small U.S. island territory near Haiti), and in the Pacific Ocean near Hawaii, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and several remote, unincorporated Pacific island areas. Estimates of coral reef extent in the Pacific Freely Associated States (Palau, the Federated States of Micronesia, and the Marshall Islands) range from 4,500 to 31,500 square miles.4 Furthermore, emerging data indicate that unexplored deep-water reefs exist throughout U.S. waters, although comprehensive information about their extent is not currently available (Figure 21.2).

The Value of Coral Ecosystems

Coral reefs are valued for their rich biological diversity as well as for the important ecosystem functions they serve. Reefs buffer shorelines from storms and erosion, and provide homes, food, and nursery areas for tens of thousands of species of marine life. They are also the basis of thriving commercial and recreational fishing and tourism industries, and have the potential to provide beneficial medical applications. Coral reef ecosystems are estimated to provide a worldwide total of $375 billion a year in goods and services, with approximately 500 million people dependent on these ecosystems for food, materials, or income.5 In 2001,
coral reefs in the Florida Keys alone supported $105 million in income and more than 8,000 jobs. Further, approximately one-half of all federally managed commercial fish species depend on coral reefs for at least part of their life cycle.

Many people also value coral reefs for their unique aesthetic and cultural value. Coral reefs are an important part of the heritage of many countries, and the use of reef resources is integral to the social fabric of coastal communities. As one of the longest-lived and most beautiful ecosystems on Earth, their intrinsic value is incalculable.

Threats to Coral Ecosystems

Coral reefs are declining at a disturbing pace. The causes of this decline are varied, particularly for warm-water reefs. Many scientists believe that excessive fishing pressure has been the primary threat to coral ecosystems for decades. However, pollution and runoff from coastal areas also deprive reefs of life-sustaining light and oxygen, and elevated sea surface temperatures are causing increasingly frequent episodes of coral bleaching and

Figure 21.2 Deep, Cold-water Coral Reefs Found Throughout U.S. Waters

Although most Americans are aware of the coral reefs that exist in the warm waters off Florida, Hawaii, and the U.S. island territories, few realize that deep, cold-water reefs are also found throughout U.S. waters. While scientists continue to discover new deep-sea coral communities, little is known about their true extent. Learning more about these species is necessary to manage them wisely.

appear to be exacerbating other coral disease outbreaks. Although little is known about the condition of the world's deep-water coral communities, extensive damage has been documented in some areas, with fishing activities suspected as being the largest human-related threat.

Worldwide, no pristine, undamaged warm-water coral reefs remain, and one-third of the world's identified reefs are severely damaged. In the United States, every warm-water reef system has suffered varying degrees of impacts from natural and human disturbances. Only the coral reefs in the Northwest Hawaiian Islands and some remote Pacific refuges are in near-pristine condition, although they too have started to show signs of damage, particularly from marine debris. In the U.S. waters of the south Atlantic, Gulf of Mexico, and Caribbean, two-thirds of reef fish species are overfished. In addition, during the 1990s, white band disease killed 90–96 percent of the most common nearshore species of corals.

Coral communities have existed for millions of years and have developed mechanisms to cope with natural threats such as hurricanes, landslides, and predation. Often, when one part of a coral community is damaged, the overall functioning of the coral reef ecosystem is sustained by other, untouched communities that are able to repopulate damaged areas. However, the point is fast approaching where this natural cycle of repair may not be able to keep pace with the increasing rate of damage. Without immediate and large-scale protection from the cumulative impacts of a multitude of human activities, many reefs, particularly those located near heavily populated coastal areas, may soon be irretrievably harmed.

Managing U.S. Coral Resources

Federal Agency Roles and Responsibilities

Although a number of longstanding environmental laws can be applied to the protection of coral reefs, the first legislation specifically targeted at coral reef issues, the Coral Reef Conservation Act, was passed in 2000. The Act focuses primarily on NOAA activities, requiring the agency to develop a national coral reef action strategy, initiate a matching grants program for reef conservation, and create a conservation fund to encourage public-private partnerships.

The National Marine Sanctuaries Act (NMSA) also provides protection for many coral reefs by authorizing NOAA to designate areas as marine sanctuaries and promulgate regulations for the conservation and management of those areas. Since the Act was passed in 1972, thirteen sanctuaries have been designated, several of which contain coral communities. Coral research, monitoring, and management activities are conducted in these sanctuaries, as well as in the Reef Ecosystem Reserve, which is currently under consideration to become the nation's fourteenth sanctuary.

The NMSA includes a provision that allows NOAA to fund repairs to injured habitats within sanctuaries, including coral reefs, with cost recovery from responsible parties. If a damaged coral reef cannot be restored or replaced, recovered funds may be used to restore other habitats within the same sanctuary; if neither is possible, restoration efforts may be funded in another national marine sanctuary. The statute does not address the use of recovered funds for proactive projects designed to prevent injuries before they occur, such as the installation of navigational aids to prevent ships grounding on coral reefs. Further, the NMSA does not apply to coral reefs outside sanctuaries and does not help in preventing long-term chronic damage to corals from pollution, nutrient overloading, or disease.

Other federal laws that are used to manage and protect coral reef resources include the following (a description of these and other federal statutes are included in Appendix D):

- The Magnuson-Stevens Fishery Conservation and Management Act, which allows for management of coral harvest and provides limited protections for corals if they are designated as "essential fish habitat."
The Coastal Zone Management Act, which provides for management of shoreline areas that may include coral reefs.

• The Clean Water Act, which regulates the discharge of dredged or fill materials into U.S. waters.

• The Sikes Act, which requires the U.S. Department of Defense to provide for conservation and rehabilitation of natural resources on military installations, which in some locations include corals.

• The Endangered Species Act, National Environmental Policy Act, and Lacey Act, all of which contain some provisions that can be applied to the protection of corals.

Responsibility for implementing these and other laws with implications for coral reef management is shared by a number of federal agencies. For example, the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture (USDA) have regulatory and management responsibilities related to pollution from land-based sources. NOAA has the authority to regulate fishing in coral reef ecosystems. And, action on global climate change is under the purview of many agencies, including the U.S. Departments of Energy and State.

Interagency and Intergovernmental Coral Reef Management Initiatives

The U.S. Coral Reef Task Force
The U.S. Coral Reef Task Force was created by executive order in 1998 with the purpose of improving coordination among the many agencies that manage various aspects of the nation’s coral reef resources. Task Force responsibilities include developing strategies to map and monitor U.S. coral reefs, studying the causes of, and recommending solutions for, coral reef degradation, and promoting conservation and sustainable use of coral reefs at the international level. Several broad action plans have been developed by the Task Force, although not all have been implemented.

The Task Force, which is co-chaired by the U.S. Departments of the Interior and Commerce, works primarily through consensus building among its member federal agencies and state and territorial government representatives. Two notable absences from the...
task force are the U.S. Department of Energy (DOE) and the U.S. Army Corps of Engineers (USACE). DOE is actively involved in investigating the impact of global climate change on coral reefs and thus has relevant expertise to contribute. Civil works projects sponsored by the USACE, such as the construction of inland and shore structures, beach nourishment programs, and mooring permits, can have significant effects on coral reefs. For this reason it would be helpful to have direct USACE involvement in the Task Force, in addition to existing participation by the Department of Defense.

The U.S. All Islands Coral Reef Initiative
The U.S. All Islands Coral Reef Initiative, a cooperative effort among Hawaii, American Samoa, Guam, the Commonwealth of Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands, is working to improve the management of coral reefs in island areas. Regional approaches that incorporate traditional knowledge are of particular interest to these islands, many of which share common cultural concerns about coral reef resources and manage similar threats, such as erosion, sea-level rise, and degraded water quality.

Improving the Management of U.S. Coral Resources

Despite recent management efforts, the health of coral reef ecosystems is continuing to decline at a rapid pace, demanding that further action be taken to overcome gaps and inefficiencies in the existing patchwork of laws, regulations, and agency programs. An improved governance regime is needed to better respond to coral reef management priorities at all levels (local, state, territorial, regional, and national), improve coordination among agencies, facilitate regional approaches, and implement national action on coral reefs. This regime can build on existing ideas and strategies of the U.S. Coral Reef Task Force, the U.S. All Islands Coral Reef Initiative, the Coral Reef Conservation Act, and the Marine Protection, Research, and Sanctuaries Act, tasking federal agencies with the promulgation and enforcement of effective regulations to protect coral reef resources. Concerted support among all levels of government and increased public awareness are also essential for successfully implementing improved management strategies to achieve and sustain healthy coral reef ecosystems.

Recommendation 21–1

Congress should establish a Coral Protection and Management Act that enhances research, protection, management, and restoration of coral ecosystems.

The new legislation should include the following elements:

- mapping, monitoring, assessment, and research programs to fill critical information gaps, to be carried out primarily through the National Oceanic and Atmospheric Administration and the U.S. Coral Reef Task Force in partnership with the academic research community.
- increased protections for vulnerable coral reefs, including the use of marine protected areas.
- liability provisions for damages to coral reefs, similar to those in the National Marine Sanctuaries Act, but with greater flexibility to use funds in a manner that provides maximum short- and long-term benefits to the reef.
- support for state-level coral reef management.
- outreach activities to educate the public about coral conservation and reduce human impacts.
- support for U.S. involvement, particularly through the sharing of scientific and management expertise, in bilateral, regional, and international coral reef management programs.

In addition to new legislation directed specifically at improving the management of the nation’s coral reef resources, a strengthened U.S. Coral Reef Task Force is needed to improve collaborative efforts at reducing the threats to these resources.
Recommendation 21–2
As part of the new Coral Protection and Management Act, Congress should codify and strengthen the U.S. Coral Reef Task Force and place it under the oversight of the National Ocean Council (NOC).

The Coral Reef Task Force should be strengthened in the following ways:
- it should report to the NOC’s Committee on Ocean Resource Management.
- its membership should be expanded to include the U.S. Department of Energy and specify participation by the U.S. Army Corps of Engineers within the U.S. Department of Defense.
- in collaboration with the states and territories, it should coordinate the development and implementation of regional ecosystem-based plans to address the impacts of nonpoint source pollution, fishing, and other activities on coral reef resources.

The plans and goals developed by the Task Force will need to be carried out by the various agencies with authorities in these areas. For example, EPA and USDA can implement pollution reduction goals, NOAA and the Regional Fishery Management Councils can reduce the effects of fishing on corals, and states and territories can reduce impacts on coral reefs within their own waters.

Although most U.S. efforts to date have focused on protecting tropical, shallow-water coral reefs, threats to deep-water corals are just beginning to be recognized. Currently, the federal government does not have a coordinated program for oversight of deep-water coral communities and information concerning their distribution, abundance, and status remains sparse. The North Pacific Fishery Management Council has set aside large areas near the Aleutian Islands to protect deep-water corals from the impacts of fishing. Little else has been done to protect these communities, including those in international waters. There is growing concern that unrestricted fishing around seamounts, and the deep-water coral communities associated with them, may be causing long-term damage. It will be necessary to increase our knowledge of the basic biology and ecology of corals so that threats can be addressed.

Recommendation 21–3
The National Oceanic and Atmospheric Administration (NOAA) should serve as the lead agency for management of deep-water coral communities. In this role, NOAA should work with states, academic institutions, and others to enhance national capabilities related to deep-water corals, including expanded surveys of their distribution and abundance and research on the major threats to their continued existence. After an appropriate review, NOAA should make recommendations to the National Ocean Council on the advisability of expanding the Coral Reef Task Force’s charter and membership to oversee deep-water corals or creating a similar task force on deep-water corals.

Promoting International Coral Reef Initiatives
The United States has been a leader in the management of coral reef ecosystems at the international level. The State Department, NOAA, the U.S. Agency for International Development, and the U.S. Fish and Wildlife Service contribute significantly to building enhanced management capacity in developing countries through direct funding and through training in areas such as research, enforcement, management procedures, and environmentally sustainable harvesting techniques.

The United States also participates in many international initiatives that protect coral reef resources, including the Convention on International Trade in Endangered Species (CITES), an international agreement designed to protect endangered species from over-
exploitation by strictly regulating trade with countries that cannot certify that their har-
vest of these species is not detrimental to their survival. (For a listing of many ocean-
related international agreements, see Table 29.1.) Over 2,000 species of coral are listed
under CITES. The International Coral Reef Initiative (ICRI) was developed in 1994 as an
informal mechanism to develop the best strategies for conserving the world’s coral reef
resources. ICRI membership is made up of over eighty developing countries, donor coun-
tries, development banks, international environmental and development agencies, scient-
ific associations, the private sector, and nongovernmental organizations. ICRI’s Global
Coral Reef Monitoring Network has published the only global estimates of coral reef cov-
erage and status, although the accuracy of these estimates could be improved.15

Creating More Sustainable Harvesting Practices

As the world’s largest importer of ornamental coral reef resources,16 the United States has a
particular responsibility to help eliminate destructive harvesting practices and ensure the
sustainable use of these resources. Many are harvested by methods that destroy reefs and
overexploit ornamental species. A balance is needed between protecting legitimate trade
and sustaining the health and survival of the world’s coral reef resources.

The Tropical Forest Conservation Act of 1998 offers a potential model for the role of
the United States in curbing destructive harvesting practices. The Act authorizes the
President to reduce debt owed to the United States if a developing country establishes a
tropical forest management program and uses funds freed from the debt reduction agree-
ment to support tropical forest conservation. Applying this type of program to the man-
agement of international coral reef resources could greatly enhance the ability of the
United States to promote stewardship and conservation of coral reef ecosystems around
the world.

Recommendation 21–4

The National Oceanic and Atmospheric Administration should develop national standards—
and promote adoption of international standards—to ensure that coral reef resources are
harvested in a sustainable manner. The U.S. Department of State should implement incentive
programs to encourage international compliance with these standards.

Improving Understanding of Coral Ecosystems

Improved research and data collection activities are needed to better understand coral reef
ecosystems and the impact of human activities on these ecosystems. The national moni-
toring network called for in Chapter 15 and the Integrated Ocean Observing System dis-
cussed in Chapter 26 are intended to become an integrated and continuous monitoring
system encompassing all watershed, coastal, and ocean environments, including coral
communities. More finely-tuned measurements of water quality, temperature, and
currents—and corresponding changes in coral communities—will allow scientists to
understand and better predict the impacts of global climate change and other natural and
human-induced events on coral communities. In addition, NOAA is working on a set of
comprehensive maps of U.S. coral reefs that will incorporate an assessment of the current
status of these reefs.

As data collection programs (including the regional ocean information programs dis-
cussed in Chapter 5) move forward, the U.S. Coral Reef Task Force can provide guidance
on additional information needs to support ecosystem-based management plans.
Recommendation 21–5

The U.S. Coral Reef Task Force, in coordination with the regional ocean information programs, should develop regional, ecosystem-based research plans to help protect coral reef ecosystems. These plans should guide agency research funding and be incorporated into the design and implementation of the national monitoring network and the Integrated Ocean Observing System.

References

As world consumption of seafood continues to increase, the farming of marine species has become a rapidly growing domestic and international industry. There are, however, a number of challenges that this industry presents. Nearshore marine aquaculture activities are affected by increasing population and development pressures and confusing or overlapping laws, regulations, and jurisdictions. Aquaculture operations in offshore waters lack a clear regulatory regime, and questions about exclusive access have created an environment of uncertainty that is detrimental to investment in this industry. Also of concern are potential threats to the environment and to native fish populations, and conflicts between aquaculture and other uses of the nation’s ocean and coastal waters. A lead federal agency with an office dedicated to marine aquaculture is needed to address jurisdictional issues and to ensure the development of an economically and environmentally sound marine aquaculture industry.

Acknowledging the Growing Significance of Marine Aquaculture

As traditional harvest fisheries have approached and exceeded sustainable levels, the farming of fish, shellfish, and aquatic plants in marine and fresh waters has become a burgeoning global industry. These organisms can be raised in everything from nearly natural environments to enclosed structures, such as ponds, cages, and tanks, where they are fed and treated to maximize their growth rate.

In the United States, the demand for seafood continues to grow as expanding numbers of Americans seek healthier diets. During the 1980s and 1990s, the value of U.S. aquaculture production rose by about 400 percent, to almost $1 billion. This figure includes fresh-water and marine finfish and shellfish, baitfish, and ornamental fish for sale to aquariums. Along with fish farmers themselves, the aquaculture industry supports an infrastructure of feed mills, processing plants, and equipment manufacturers. There is great potential for marine aquaculture to become an even more important source of seafood for the U.S. market and a way to help reduce the nation’s seafood trade deficit of $7 billion a year (Figure 22.1).
Addressing Environmental Impacts of Aquaculture

National management of marine aquaculture activities should minimize potential environmental impacts. These impacts include the spread of disease among fish populations, genetic contamination and competition between farmed and native stocks, and effects from aquaculture operations on water quality, wetlands, and other natural habitats. Fish waste, dead fish, uneaten food, and antibiotics may contaminate the water around aquaculture facilities and harm surrounding ecosystems. Marine mammals, attracted by the food source, can become entangled in nets. There are also concerns about the increased demand for fishmeal used to feed farm-raised carnivorous fish. Obtaining fishmeal from traditional wild harvest practices may increase the pressure on fisheries that are already fully exploited. Extensive research is underway by the aquaculture community to determine how to decrease this demand.

Another issue of increasing concern is the possible introduction of non-native species (intentionally or unintentionally) through marine aquaculture operations. In the United States, many cultured marine species are not native to the area where they are being farmed. In these cases, there is the possibility that foreign (or genetically-modified) animals or their reproductive offspring may escape and potentially compete or reproduce with wild populations, resulting in unpredictable changes to ecological, biological, and behavioral characteristics. Where non-native species come in contact with already depleted fish or shellfish stocks, recovery efforts may be hampered.

Potential problems associated with the introduction of non-native species are illustrated in the case of the Atlantic salmon, which is one of the most widely farmed fish species in the United States and around the world. Escaped farm-bred salmon, which differ genetically from species of wild Atlantic salmon, have the potential to both compete with native salmon species (at least one of which has been listed as threatened or endangered under the Endangered Species Act) for limited resources, interbreed with native species causing changes in the gene pool, and spread disease. Infectious salmon anemia and sea lice,
which are widespread in European salmon aquaculture facilities, have recently appeared in North American operations.³

Another example, discussed in more detail in Chapter 17, is the proposed farming of a non-native oyster species from China in Chesapeake Bay tributaries. This Chinese oyster appears to be resistant to the diseases plaguing native species. However, a 2003 National Research Council report raised serious questions about the possible ramifications of such an introduction.⁴ It is now up to state officials to decide what is best for the Bay, in both the short- and long-term, with little science or law to guide them.⁵ Ironically, the steep decline in the Bay’s native oyster population was caused in part by a disease introduced in the 1950s during a previous attempt to establish a non-native oyster species.

All of the potential impacts discussed in this section need to be addressed if the nation is to achieve an environmentally and economically sustainable marine aquaculture industry.

Dealing with Uncertainties in the Existing Management Structure

The potential contribution of marine aquaculture to the nation’s economic growth and to meeting the increasing demand for seafood is impeded by its current management framework, which is characterized by complex, inconsistent, and overlapping policy and regulatory regimes administered by numerous state and federal agencies.

Because nearly all marine aquaculture activities operating today are located in nearshore waters under state jurisdiction, the majority of laws and regulations that authorize, permit, or control these activities are found at the state level and are not designed to address offshore aquaculture activities in federal waters. For example, one of the first U.S. commercial open ocean aquaculture projects in Hawaii began in 2001 with the lease of 28 acres of state marine waters to a private company, following a 1999 state legislative authorization to allow commercial offshore aquaculture leasing. Other nearshore aquaculture activities—most of which are in the pilot project stage—include the operation of a federally-sponsored experiment off the coast of New Hampshire and a salmon facility off of Maine.

Marine Aquaculture in Offshore Areas

As competition for space in nearshore areas intensifies, the marine aquaculture industry is looking increasingly toward opportunities in federal offshore waters. The expansion of aquaculture activities into the outer Continental Shelf provides potential benefits, as well as additional concerns. Locating marine aquaculture activities farther offshore may reduce the visibility of these activities from land, be less intrusive to fisheries and recreational activities, and have fewer environmental impacts than activities located in nearshore areas. However, the logistics associated with operating offshore facilities are also more difficult, requiring long transit times for workers and supplies, and other technical complications. Offshore aquaculture structures must also be designed to withstand the effects of extreme winds, waves, and temperatures, and be positioned in a way that does not create a hazard to navigation.

The Current Regulatory Conundrum

There are numerous federal agencies directly or indirectly involved in implementing laws associated with various aspects of offshore activities, including marine aquaculture. These include the U.S. Departments of Agriculture and the Interior (USDA and DOI), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Food and Drug
Administration, the U.S. Army Corps of Engineers (USACE), the U.S. Coast Guard, and the U.S. Environmental Protection Agency (EPA). The responsibilities of these agencies range from protecting water quality and other environmental resources, to navigation, food safety concerns, and interactions with federal fishery management plans. The jumble of authorities makes it difficult for those involved in aquaculture activities to know what permits are needed and what relevant rules govern their operations. (See Box 6.1 Swimming Through Hoops: Establishing an Offshore Aquaculture Facility.) Simply put, there is no overall ocean governance structure to comprehensively manage this new and emerging use in federal waters.

In 1980, Congress passed the National Aquaculture Act, stating that it is in the national interest to encourage the development of aquaculture in the United States and calling for a national aquaculture development plan. The Act required the Secretaries of Agriculture, Commerce, and the Interior to prepare a report on federal laws and regulations that restrict the development of commercial aquaculture operations and submit the report to Congress with recommendations on how to remove unnecessarily burdensome regulatory barriers. However, no streamlined regulatory regime has been developed.

As a result of this mix of laws and regulations, applicants have no guarantee of exclusive use of space in offshore areas, private capital is difficult to obtain, insurance companies do not provide coverage, and banks are unwilling to accept the unknown risks involved. Enhanced predictability is needed, as is the elimination of unnecessary hurdles and the reduction of potential conflicts with other commercial and recreational users of offshore areas and resources.

Developing a New Marine Aquaculture Management Framework

For the marine aquaculture industry to reach its full potential, the United States, in cooperation with states, tribes, and territories, should develop a coordinated and consistent policy, and a robust regulatory and management framework. Federal and state agencies, with full participation by the industry, will need to implement the new framework, and the academic community will be called upon to provide scientific and engineering support to ensure that marine aquaculture activities are ecologically and economically sustainable. It is important for this framework to be flexible and responsive to changes in the industry. Finally, as noted, development of a national aquaculture management framework must be considered within the context of overall ocean policy development, taking into account other traditional, existing, and proposed uses of the nation’s ocean resources. (More information about developing a framework for managing multiple activities in federal waters, including aquaculture, is found in Chapter 6.)

Coordinated Action

The inherent differences between land-based, closed-system aquaculture operations and marine-based operations should be acknowledged in any new legislation and in the new management framework. The respective roles of the federal agencies involved with the marine aquaculture industry must also be clarified, duplicative or outdated laws and regulations eliminated, and marine aquaculture policies, programs, and practices coordinated. In addition, a lead federal agency is needed to act as the main interface with industry and overseer of the government’s public trust responsibilities.

The National Aquaculture Act of 1980 established the Joint Subcommittee on Aquaculture (JSA) within the National Science and Technology Council (NSTC) structure. The JSA coordinates federal agency activities, ensures communication among the agen-
cies, and provides recommendations for national aquaculture policy. Members of the JSA include: the Secretaries of USDA (permanent chair), DOI, the Departments of Commerce, Energy, and Health and Human Services; the Administrators of EPA, the Small Business Administration and the U.S. Agency for International Development; the Chair of the Tennessee Valley Authority; and the Director of the National Science Foundation. This kind of coordination is necessary, although the issues to be addressed go far beyond the purview of the NSTC. Close coordination will be needed between the JSA and the National Ocean Council.

Recommendation 22–1

Congress should amend the National Aquaculture Act to designate the National Oceanic and Atmospheric Administration (NOAA) as the lead federal agency for marine aquaculture, create an Office of Sustainable Marine Aquaculture in NOAA, and designate the Secretary of Commerce as a permanent co-chair, along with the Secretary of Agriculture, of the Joint Subcommittee on Aquaculture. NOAA should use this authority to design and implement national policies for environmentally and economically sustainable marine aquaculture.

Implementation

In overseeing marine aquaculture activities, including evaluating and approving offshore aquaculture operations, NOAA will need to practice wise stewardship of ocean resources and weigh the needs of a variety of stakeholders. At the same time, offshore aquaculture operators will need assurance that they can have exclusive access to certain waters for specific periods of time to secure financial investments.

These goals can best be achieved through the development and implementation of a leasing system for the ocean surface, water column, and ocean bottom that protects marine resources and environments, offers adequate exclusivity to aquaculture operations, and institutes a system of revenue collection that acknowledges the public interest in ocean space and resources. The leasing system will also need to specify details, such as applicant eligibility and the acceptable scope, size, duration, and degree of exclusivity for facilities. Competing uses of ocean and coastal areas, and the potential for impacts from aquaculture on other ocean uses, must also be considered.

Enhanced coordination is also needed between federal and state aquaculture policies and regulations to provide consistency to the industry and to adequately manage potential impacts that cross jurisdictional lines, such as the spread of disease. Significant state participation and input is needed in the development and implementation of a new national management framework, which should include guidelines and regulations that are complementary at the federal and state levels. The interstate fishery commissions could be a valuable resource to assist in coordinating federal and state activities.

Recommendation 22–2

The National Oceanic and Atmospheric Administration’s new Office of Sustainable Marine Aquaculture should be responsible for developing a comprehensive, environmentally-sound permitting, leasing, and regulatory program for marine aquaculture. The permitting and leasing system and implementing regulations should:

- reflect a balance between economic and environmental objectives consistent with national and regional goals.
- be coordinated with guidelines and regulations developed at the state level.
- include a system for the assessment and collection of a reasonable portion of the resource rent generated from marine aquaculture projects that rely on ocean resources held in the public trust.
include the development of a single, multi-agency permit application for proposed marine aquaculture operations.

include a permit review process that includes public notice and an opportunity for state, local, and public comment.

require applicants to post a bond or other financial guarantee to ensure that any later performance problems can be remedied and that abandoned facilities can be safely removed at no additional cost to taxpayers.

require the development, dissemination, and adoption of best management practices, with periodic updates to reflect advances in research and technology.

be well coordinated with other activities in federal waters.

Increasing the Knowledge Base

Enhanced investments in research, demonstration projects, and technical assistance can further the development of a responsible and sustainable marine aquaculture industry. Science-based information can help the industry address environmental issues, understand socioeconomic impacts to coastal communities, conduct risk assessments, develop technology, select species, and improve best management practices. It is also vital for developing fair and reasonable policies, regulations, and management measures.

In the last two decades, the number of research and monitoring programs related to aquaculture has surged. Much of the work conducted worldwide has focused on the effects of open-water, net-pen culture on the environment. In the United States, early research efforts focused on fish hatchery effluents and catfish ponds. As the domestic industry has diversified, so has the scope of research efforts. Major federal investments are examining the impacts of marine shrimp-pond and salmon net-pen cultures, as well as issues concerning aquaculture feeds, species introductions, the use of chemicals and pharmaceuticals, and effluent controls.

Most of the federal research to support marine aquaculture has been carried out under the auspices of NOAA’s National Sea Grant College Program, which funds primarily university-based research. Results are used by educators and outreach specialists to improve resource management and address development and conservation issues. Sea Grant-funded information is also used to increase the knowledge base of industry, government agencies, and the public. As noted in Chapter 25, research on the potential socioeconomic impacts of marine aquaculture is sparse.

Recommendation 22–3

The National Oceanic and Atmospheric Administration’s new Office of Sustainable Marine Aquaculture should expand marine aquaculture research, development, training, extension, and technology transfer, including a socioeconomic component. The Office should set priorities for research and technology, in close collaboration with the National Sea Grant College Program, states, tribes, academia, industry, and other stakeholders.
Promoting International Improvements and Cooperation

An estimated one billion people worldwide rely on fish as their primary source of animal protein. This demand will continue to rise as human populations increase and wild stocks around the world are depleted. Aquaculture has been growing almost six times faster in developing countries than in developed countries. The United Nations Food and Agriculture Organization (FAO) estimates that by 2030 more than half of the fish consumed globally will be produced through aquaculture.6

While the majority of international aquaculture occurs in inland and coastal areas, interest in offshore operations is also growing. There are even proposals to establish aquaculture operations on the high seas (see Chapter 29 for a discussion of emerging international ocean-related management challenges). This new interest is accompanied by growing concerns about the potential environmental impacts of offshore operations. The use of non-native species for aquaculture also poses ecological risks, particularly in view of the absence of regulations and enforcement in many countries. Global policies on prevention, containment, monitoring, and risk assessments are needed to prevent the spread of invasive species and ensure that industries operate sustainably.

Efforts are underway at FAO to assess the possible environmental implications of growing aquaculture operations around the world and to develop appropriate protocols for use by government and industry. In the meantime, FAO’s non-binding Code of Conduct for Responsible Fisheries includes a number of aquaculture provisions. The Code calls for: appropriate assessments and monitoring to minimize adverse impacts from discharges of effluents, waste, drugs, and chemicals; consultation with neighboring countries prior to the introduction of non-native species; conservation of genetic diversity; and responsible choices of species, siting, and management. The implementation of these guidelines will require strong commitments from the global community.

Recommendation 22–4

The United States should work with the United Nations Food and Agriculture Organization to encourage and facilitate worldwide adherence to the aquaculture provisions of the Code of Conduct for Responsible Fisheries.

References

While marine animals and plants are most commonly used as sources of food, they also produce a vast array of chemical compounds that can be developed into products with beneficial medical and industrial uses. However, marine organisms, such as bacteria, algae, and viruses, can also be sources of human illness. Although these microorganisms exist naturally in the ocean, human actions can lead to ocean conditions that greatly increase their growth, harming the health of humans, marine species, and ecosystems. Significant investment must be made in developing a coordinated national research effort to better understand the links between the oceans and human health, with research aimed at discovering new drugs and other useful products derived from marine organisms, and detecting and mitigating outbreaks of disease and other harmful conditions. Efforts must also be aimed at improving public awareness about how pollution and waste can contribute to the spread of seafood contamination and disease, and can decrease the diversity of species that provide new bioproducts.

Understanding the Links between the Oceans and Human Health

The topics generally included under the umbrella of Oceans and Human Health, such as harmful algal blooms and pharmaceutical development, may at first seem to be unrelated, but they are actually inextricably linked. The health of marine ecosystems is affected by human activities such as pollution, global warming, and fishing. But in addition, human health depends on thriving ocean ecosystems. A better understanding about the many ways marine organisms affect human health, both for good by providing drugs and bioproducts, and bad by causing human ailments, is needed.

The oceans sustain human health and well-being by providing food resources and absorbing waste from areas of human habitation. For many years, the ocean’s carrying capacity for meeting both these needs was assumed to be limitless. As we know today, this is not true. Scientists have reported that excessive human releases of nutrients and pollution into the ocean, and a subtle, yet measurable, rise in ocean surface temperatures are causing an increase in pathogens, primarily bacteria and viruses. These environmental conditions can also promote excessive growth of microscopic algae, some of which can produce toxins that are released into the water and air, and become concentrated in the
tissues of fish and shellfish. When these toxins are ingested or inhaled by humans, they present health risks ranging from annoying to deadly.

On the other hand, thousands of new biochemicals have been discovered in marine organisms, such as sponges, soft corals, mollusks, bacteria, and algae. Furthermore, scientists believe only a fraction of the organisms that live in the ocean have been documented, underscoring the vast potential of the oceans as a source of new chemicals. These natural products can be developed not only as pharmaceuticals, but also as nutritional supplements, medical diagnostics, cosmetics, agricultural chemicals (pesticides and herbicides), enzymes and chemical probes for disease research, and for many other applications. Based on existing pharmaceutical products, each of these classes of marine-derived bioproducts has a potential multibillion-dollar annual market value.

The use of marine organisms as models for human systems has also advanced biomedical research. The diversity of life found in the oceans offers vast opportunities for the discovery of organisms that can be used to investigate biological processes analogous to those found in humans. Of particular interest are primitive vertebrates. Studies on the biology of these animals may offer insights into the evolution and physiology of humans and other organisms. Although some of the most familiar marine animal models have been used by researchers for decades, increased understanding of human biology can be gained by continuing to examine new marine organisms.

A 1999 National Research Council (NRC) report recommended a renewed effort to understand the health of the ocean, its effects on humans, and possible future health threats. In a 2002 report, the NRC also emphasized the beneficial value of marine biodiversity to human health, noting that underexplored environments and organisms—such as deep-sea environments and marine microorganisms—provide exciting opportunities for discovery of novel chemicals.

Currently, two national programs are designed to enhance our understanding of the ocean’s role in human health. The first is a joint program between the National Institute of Environmental Health Sciences (NIEHS) and the National Science Foundation (NSF) called the Centers for Oceans and Human Health. The Centers promote interdisciplinary collaborations among biomedical and ocean scientists, with the goal of improving knowledge about the impacts of the oceans on human health. The second is the National Oceanic and Atmospheric Administration’s (NOAA’s) Oceans and Human Health Initiative, which will coordinate agency activities and focus funding on ocean and health issues such as infectious diseases, harmful algal blooms, environmental indicators, climate, weather and coastal hazards, and marine biomedicine.

In addition to these broad interdisciplinary programs, several other existing programs focus on one or more specific subtopics. For example, ECOHAB (Ecology and Oceanography of Harmful Algal Blooms), a program created by NOAA and NSF, provides a scientific framework designed to increase our understanding of the fundamental processes leading to harmful algal blooms. Other agencies, including the Centers for Disease Control (CDC), U.S. Environmental Protection Agency (EPA), and Food and Drug Administration (FDA), administer research and management programs that address different aspects of the links between the oceans and human health.

Maximizing the Beneficial Uses of Marine-derived Bioproducts

The marine environment constitutes the greatest source of biological diversity on the planet. Representatives of every phylum are found in the world’s oceans, and more than 200,000 known species of invertebrates and algae have been documented. With so many organisms competing for survival in the challenging ocean environment, it is not surprising that many organisms produce chemicals that provide some ecological advantage. Animals and plants synthesize natural biochemicals to repel predators, compete for space to grow, and locate

Chapter 23: Connecting the Oceans and Human Health
potential mates. Scientists have shown that these chemicals can also be developed as human pharmaceuticals and used for other biomedical and industrial applications (Table 23.1).

Despite these potential benefits, the U.S. investment in marine biotechnology is relatively small. Japan, the world leader in this field, has spent between $900 million and $1 billion a year for the last decade and has said it intends to significantly increase this investment in the future. About 80 percent of the Japanese investment comes from industry, with the remainder from government. By contrast, U.S. public investment in marine biotechnology research and development in 1996 was around $55 million, and U.S. industry investment is estimated at approximately $100 million annually. Yet even with this limited funding, U.S. marine biotechnology efforts since 1983 have resulted in more than 170 U.S. patents, with close to 100 new compounds being patented between 1996 and 1999.6

Specific Applications

Pharmaceuticals
Since the 1970s, scientists have been isolating and characterizing molecules from ocean organisms that have unique chemical structures and bioactivities. In recent years, several of these compounds have undergone clinical testing in the United States as potential treatments for cancer. Progress has also been made in finding treatments for other human ailments, including infectious diseases, cancer, chronic pain, and arthritis.

Molecular Probes
Several marine-derived compounds, explored initially as potential pharmaceuticals, are available commercially as molecular probes. These probes are special chemical compounds that researchers can use to study important biochemical processes. Their value in resolving the complexities of diseases has often outweighed their economic and medicinal value as commercial pharmaceuticals. Moreover, molecular probes often offer attractive opportunities for commercialization, with revenues generated in a shorter time than pharmaceuticals because lengthy regulatory approvals are not required for research that does not involve human subjects.

Nutrients
Marine-derived nutritional supplements, or “nutraceuticals,” present a relatively new opportunity for research and development in the application of natural marine products to human health issues. Nutritional supplements from plants have been used for years, including commonly known products such as St. John’s wort, ginseng, and echinacea. A few products from marine sources are also commercially available such as xanthophylls from algae, which are used in nutritional supplements and vitamins for their antioxidant properties. Although the use of marine natural products in nutritional supplements is limited at this time, it represents a large potential market.

Industrial Uses
In addition to medicinal uses, chemicals produced by marine organisms have a wide array of industrial applications. For example, some marine organisms, such as limpets, produce adhesive proteins that hold them strongly to surfaces against the pull of tides and waves. Currently, researchers are examining the chemistry of these adhesives to produce new glues that work in wet environments. Cold-water marine microorganisms are being studied because of chemicals they produce that can be used as detergents. These chemicals could help produce commercial detergents that are more effective in cold water. Many sedentary marine organisms produce anti-fouling chemicals that prevent algae and bacteria from clinging to their surfaces. Researchers are investigating these chemicals as potential paint additives for ship hulls. If effective, these chemicals could reduce the need for traditional anti-fouling paints that contain high levels of heavy metals, which can contaminate...
CHAPTER 23: CONNECTING THE OCEANS AND HUMAN HEALTH

Bottom sediments. Several other applications of marine-derived substances are currently in development, such as reaction enzyme catalysts and biochemicals used for detoxifying chlorinated hydrocarbons and other pollutants.

Encouraging Interdisciplinary Marine Biomedical Research

Past U.S. efforts to discover marine biomedicines were of the collect-and-test type, with little attention given to the evolutionary, environmental, and molecular biology of the species being tested. However, to realize the greatest rewards for research investments, each species' ecological, genetic, and physiological information will need to be examined to understand how they adapt to environmental conditions. The unique diversity and adaptations of marine life can help scientists understand the evolutionary development of biochemical signals that regulate cell cycles and control resistance against diseases and infections.

Historically, structural limitations inherent in the federal agencies made it difficult to undertake truly multidisciplinary science. NSF restricted funding for biomedical research because it is the primary focus of the National Institutes of Health (NIH), creating difficulties in establishing combined environmental and biomedical research programs. Likewise, NIH has generally supported direct medical research, thus precluding ancillary studies of systematics, ecology, and species distributions. Until a few years ago, the NIH's ocean pharmaceutical programs had been very narrow, focusing almost exclusively on discovering and developing new anti-cancer drugs. Thus, the very structure of the federal scientific support system has been counterproductive to establishing the type of multidisciplinary programs required to advance the broader field of marine natural product discovery and development.

Based on recommendations from the National Research Council and others, in the last two years, new approaches for supporting marine bioproduct development have been established that allow the necessary cross-disciplinary research to occur, including the NIEHS–NSF and NOAA programs mentioned earlier. However, increased participation and cooperation from other federal agencies, including EPA, the Office of Naval Research (ONR), the National Aeronautics and Space Administration (NASA), CDC, FDA, and the Minerals Management Service (MMS), each of which brings particular expertise and perspectives, will also be helpful.

Box 23.1 Special Focus on Microbial Diversity

Microorganisms comprise a larger biomass than any other form of life on Earth. In addition, they are the most diverse group of organisms on the planet, having evolved to survive in almost all environments. In the ocean they are the basis for food webs, even in areas that would not normally be capable of sustaining life.

For example, in the deep ocean environment with no light and few nutrients, chemosynthetic bacteria thrive on the methane present in frozen gas hydrates. Near deep-sea hydrothermal vents where temperatures can rise to over 300 degrees Celsius, bacteria are capable of using hydrogen sulfide and carbon dioxide as their only nutrients and producing enough organic compounds to support whole vent communities, including tubeworms, fish, crabs, shrimp, clams, and anemones.

However, microorganisms have not evolved simply to synthesize molecules for food; they have also been shown to produce a wide array of chemicals for other purposes. Understanding how these organisms survive, both individually and symbiotically, and why they produce such unique chemistry, is essential to understanding their therapeutic and technological potential. Yet, only a small percentage of these organisms have been documented, largely due to difficulties in culturing organisms from such unique habitats. An expanded search for new microbes in the ocean based on cooperation among a number of multidisciplinary government programs could yield exciting results.
Table 23.1 The Bounty of the Sea
This table highlights some of the chemicals and biological materials isolated from marine organisms that are in use or being developed.

<table>
<thead>
<tr>
<th>Application</th>
<th>Original Source</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceuticals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-viral drugs (herpes infections)</td>
<td>Sponge, Cryptotethya crypta</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Anti-cancer drug (non-Hodgkin’s lymphoma)</td>
<td>Sponge, Cryptotethya crypta</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Anti-cancer drug</td>
<td>Bryozoan, Bugula neritina</td>
<td>Phase I clinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug (mitotic inhibitor)</td>
<td>Sea hare, Dolabella auricularia</td>
<td>Phase I clinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug (tumor-cell DNA disruptor)</td>
<td>Ascidian, Ecteinascidia turbinata</td>
<td>Phase III clinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug</td>
<td>Ascidian, Aplidium albicans</td>
<td>Advanced preclinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug (microtubule stabilizer)</td>
<td>Sponge, Discodermia dissoluta</td>
<td>Phase I clinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug</td>
<td>Sponge, Lissodendoryx sp.</td>
<td>Advanced preclinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug (G2 checkpoint inhibitor)</td>
<td>Actinomycete, Micromonospora marina</td>
<td>Advanced preclinical trials</td>
</tr>
<tr>
<td>Anti-cancer drug</td>
<td>Ascidian, Didemnum granulatum</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-cancer drug</td>
<td>Sponge, Jaspiis sp.</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-inflammatory agent</td>
<td>Marine fungus</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-fungal agent</td>
<td>Sponge, Trachycladus</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-tuberculosis agent</td>
<td>Gorgonian, Pseudopterogorgia</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-HIV agent</td>
<td>Ascidian</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-malarial agent</td>
<td>Sponge, Cymbastela</td>
<td>In development</td>
</tr>
<tr>
<td>Anti-dengue virus agent</td>
<td>Marine crinoid</td>
<td>In development</td>
</tr>
<tr>
<td>Molecular Probes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphatase inhibitor</td>
<td>Dinoflagellate</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Phospholipase A2 inhibitor</td>
<td>Sponge, Luffariella variabilis</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Bioluminescent calcium indicator</td>
<td>Bioluminescent jellyfish, Aequora victoria</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Reporter gene</td>
<td>Bioluminescent jellyfish, Aequora victoria</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Medical Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthopedic and cosmetic surgical implants</td>
<td>Coral, mollusk, echinoderm skeletons</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Diagnostics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection of endotoxins (LPS)</td>
<td>Horseshoe crab</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Enzymes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymerase chain-reaction enzyme</td>
<td>Deep-sea hydrothermal vent bacterium</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Nutritional Supplements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyunsaturated fatty acids used in food additives</td>
<td>Microalgae</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Pigments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjugated antibodies used in basic research and diagnostics</td>
<td>Red algae</td>
<td>Commercially available</td>
</tr>
<tr>
<td>Cosmetic Additives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmetic (anti-inflammatory)</td>
<td>Gorgonian, Pseudopterogorgia elisabethae</td>
<td>Commercially available</td>
</tr>
</tbody>
</table>

Source data combined from:
National Institutes of Health, National Cancer Institute, Natural Products Branch, Frederick, MD.
Recommendation 23–1

The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities should support expanded research and development efforts to encourage multidisciplinary studies of the evolution, ecology, chemistry, and molecular biology of marine species, discover potential marine bioproducts, and develop practical compounds.

These efforts should include:

- a strong focus on discovering new marine microorganisms, visiting poorly sampled areas of the marine environment, and studying species that inhabit harsh environments.
- encouragement for private-sector investments and partnerships in marine biotechnology research and development to speed the creation of commercially available marine bioproducts.

Managing Marine Bioproduction Discovery and Development

Based on the potentially large health benefits to society, the federal government should encourage and support the search for new bioproducts from marine organisms, known as bioprospecting. However, before wide-scale bioprospecting proceeds in federal waters, requirements need to be established to minimize environmental impacts. Planning and oversight will help ensure that public resources are not exploited solely for private gain and will help protect resources for future generations.

Individual states regulate the collection of marine organisms quite differently, sometimes requiring an array of research permits to collect organisms and licenses to gain access to particular areas. Regulations that ban the removal of specific organisms, such as corals and other sensitive species, often exist in both state and federal protected areas. In protected federal waters, as such national marine sanctuaries, research permits are required for all collections. However, bioprospecting outside state waters and federal protected areas is unrestricted, except for certain species subject to regulation under existing legislation, such as the Endangered Species Act. Both U.S. and foreign researchers, academic and commercial, are free to collect a wide range of living marine organisms without purchasing a permit and without sharing any profits from resulting products.

On land, the National Park Service has successfully asserted the government’s right to enter into benefit sharing agreements in connection with substances harvested for commercial purposes in Yellowstone National Park. The National Park Service is in the process of conducting a full environmental impact statement on the use of such agreements for benefit sharing in other parks. This practice could serve as a model for the management of bioprospecting in U.S. waters.

Similar to other offshore activities, bioprospecting in federal waters will require appropriate permitting and licensing regulations to protect public resources while encouraging future research. Furthermore, when allocating use of federal ocean areas for bioprospecting, it is important that consideration be given to other potential uses of those areas, including oil and gas exploration, renewable energy, and aquaculture. A proposal for better coordinated governance of offshore uses is discussed in detail in Chapter 6.

Reducing the Negative Health Impacts of Marine Microorganisms

A host of microorganisms exist in marine waters, filling their roles in the ecosystem and generally causing no problems to humans. However, the number and distribution of marine pathogens can change over time due to many environmental factors. Human impacts, such as pollution or climate change, can produce even greater fluctuations that threaten the health of humans, marine organisms, and the marine ecosystems on which we all depend.
Harmful Algal Blooms

The term harmful algal bloom (HAB) is used to describe destructive concentrations of particular algal species in ocean waters. These blooms are sometimes called red tides because the high algal density can make the ocean surface appear red, but they may also be green, yellow, or brown, depending on the type of algal present.

The Nature of the Problem

The underlying physical, chemical, and biological causes for most harmful algal blooms are not well understood, but an increase in distribution, incidence, duration, and severity of HABs has been documented within recent decades (Figure 23.1). In many areas, increases in nutrients in coastal waters, from point and nonpoint sources of pollution, and higher numbers of invasive species released from ships’ ballast water mirror the increase in HAB events, suggesting a possible causal connection. However, others have suggested that the apparent increase in HAB events is simply a result of more frequent and effective monitoring. Additional research is needed to understand why blooms form in a specific area, how they are transported, and what causes them to persist.

HABs become a health concern when they produce high concentrations of potent toxins in ocean waters. When these toxins are concentrated in fish and other seafood consumed by humans, they can lead to paralytic, diarrhetic, neurotoxic, or amnesic shellfish poisoning. Most of these toxins cause harm only if ingested; however, some enter the air from sea spray and can cause mild to severe respiratory illnesses when inhaled. These health effects are not restricted to human populations; fish, birds, and marine mammals also fall victim to red tide poisoning. The Great Lakes and large estuarine systems are also affected by HABs. Lake Erie continues to experience blooms of a blue green alga called Microcystis sp. This alga is capable of producing toxin compounds called microcystins that have been implicated in bird and fish kills and can result in gastrointestinal problems in humans.

Annually, HABs are believed to cost the nation's fishing and tourism industries more than $50 million directly, with a likely multiplier effect that pushes the total economic loss to $100 million. This can be catastrophic to low-income fishing communities, as witnessed in Maryland in 1997 during an outbreak of Pfiesteria piscicida (a species of dinoflagellate) associated with widespread fish kills. Tourism was hurt by news coverage of seafood poisonings, and reports of red tides had a swift and chilling effect on oceanside resort visits, beach-going, and boating. Aquaculture can also be severely damaged by HABs, which can cause rapid fish kills and result in harvesting moratoria.

HABs are of particular concern in areas where the water contains high concentrations of dissolved nutrients. These areas are incubators for many types of algal blooms, non-toxic as well as toxic. The nutrients create conditions for rapid growth of large and dense algal blooms. When the algae die, their decomposition consumes the dissolved oxygen that other organisms need for survival.

Improving Understanding, Detection, and Prevention

HABs constitute significant threats to the ecology and economy of coastal areas. While the preferred course of action is prevention, effective treatments are also needed. The current availability of biological, chemical, or physical treatments is extremely limited. The ecology of each bloom is different, and the required environmental conditions are not completely understood for any particular algal species.

The most likely and immediate solution for reducing the number and severity of HABs is to control nutrient inputs to coastal waters. (Nutrient pollution is further discussed in Chapter 14.) Prevention may also be strengthened through careful facility siting decisions and tighter controls on invasive species. However, for better long-term management, a comprehensive investigation of the biology and ecology of HABs will be needed to increase our understanding of options for prevention, prediction, and control.
Better coordination would help leverage the relatively few but successful HAB research programs currently being supported by the federal government (such as ECOHAB, MERHAB—Monitoring and Event Response for Harmful Algal Blooms; NOAA’s National Marine Biotoxin program and HAB sensor development and forecasting program, and efforts supported by the CDC, states, and others).

Improved monitoring techniques are also essential in mitigating the harmful impacts of HABs. Sampling directly from the natural environment can help researchers compile an overall HAB picture, laying the foundation for predictive modeling and forecasting. Numerous monitoring programs already exist, many of which are funded by state governments. However, routine field sampling, combined with laboratory analysis, is expensive and time consuming, and becomes more so as greater numbers of toxins and pathogens are discovered over larger geographic areas. Monitoring technologies that can be stationed in aquatic environments and continually measure for HABs are urgently needed. (Chapters 15 and 26 include broader discussions of national monitoring and observing needs.)

To cover larger areas, monitoring data collected from remote sensing platforms are essential. NOAA is currently developing and testing techniques to forecast HAB occurrence and movement using satellite sensors. The complementary development and deployment of satellites and moored sensors will provide even greater coverage, cross-referenced ground truthing, and more frequent site-specific sampling. These elements will add up to better data sets for monitoring of HABs. As more data are collected on HAB occurrences, researchers will be able to more accurately predict future outbreaks by using advanced computer models and taking into account the physical and biological conditions leading to HABs.
Marine Bacteria and Viruses

Bacteria and viruses are present everywhere in the ocean; in fact, each milliliter of seawater contains on average 1 million bacteria and 10 million viruses. While only a small percentage of these organisms cause disease in humans, they pose a significant health risk. Humans become exposed to harmful bacteria and viruses primarily by eating contaminated seafood (especially raw seafood) and by direct intake of seawater.

Many, if not most, occurrences of high concentrations of pathogens in the ocean and Great Lakes are the direct result of land-based human activities. Pollution and urban runoff lead to nutrient-rich coastal and ocean waters that provide ideal conditions for the growth and reproduction of these microorganisms. With ever-increasing numbers of people living in coastal areas, along coastal watersheds, and inland along rivers that ultimately drain into the ocean, waste and pollution have increased to a level that creates negative environmental and human health-related consequences.

A comprehensive and integrated research effort is needed to further explore the relationship between human releases of inorganic and organic nutrients to coastal waters and the growth of pathogenic microorganisms in the ocean. Rapid monitoring and identification methods need to be developed so officials can warn populations at risk when unhealthy conditions are present. Integration of these new methods into moored biological sensors, the Integrated Ocean Observing System (IOOS, discussed in Chapter 26), and the national monitoring network (discussed in Chapter 15) will allow for continuous data collection, and be particularly helpful in areas of high recreational or seafood harvesting activity. This effort must include the input from the state, regional, tribal, and local organizations that will implement localized monitoring programs and address public education issues associated with marine bacteria and viruses.

Contaminated Seafood

Contaminated seafood is one of the most frequent causes of human disease contracted from ocean and fresh waters, whether due to pathogenic or chemical contamination. Chemicals, such as mercury and dioxins that exist as environmental contaminants and are concentrated in fish through bioaccumulation, continue to be a health concern for humans, especially in terms of reproductive and developmental problems. In addition, harmful algal blooms and pathogen outbreaks are becoming more common in local waters, increasing the risk of seafood contamination. In addition to domestic sources, Americans are importing more seafood than ever before. These imports often come from countries whose public health and food handling standards are lower than in the United States.

To protect the safety of the nation’s seafood, rapid, accurate, and cost-effective means for detecting pathogens and toxins in seafood are needed. As these techniques are developed they can be incorporated into seafood safety regulations and surveillance efforts, particularly inspections of imported seafood and aquaculture products.

Implications of Global Climate Change

In addition to the direct effects of human activities, marine microorganisms’ survival and persistence are also strongly affected by environmental factors. In particular, global climate change has the potential to significantly alter the distribution of microorganisms in the ocean. Pathogens now limited to tropical waters could move toward the poles as sea-surface temperatures rise.

For example, the bacterium that causes cholera (Vibrio cholerae) has been implicated in disease outbreaks fueled by the warming of coastal surface water temperatures. The intrusion of these warmer, infected waters into rivers can eventually lead to mixing with
waters used for drinking and public hygiene. An indirect relationship has also been noted between climate change phenomena associated with the Bay of Bengal and the incidence of cholera in Bangladesh. As the temperature in the Bay of Bengal increased, plankton growth accelerated, which in turn created ideal growth conditions for bacteria such as *Vibrio cholerae*.\(^{13}\)

Mass mortalities due to disease outbreaks have also affected major life forms in the ocean. The frequency of epidemics and the number of new diseases in corals, sea turtles, and marine mammals have increased. It is hypothesized that some of these outbreaks are linked to climate change. Not only are new pathogens possibly present due to changes in water temperature, but temperature changes can also stress marine organisms, making it harder for them to fight infections.\(^{14}\) More research is needed to understand the links among climate change, pollution, marine pathogens, and the mechanisms of disease resistance in marine organisms.

Progress through Research and Technology Development

Better understanding about the links between oceans and human health will require a commitment of research funds to discover the fundamental processes controlling the spread and impacts of marine microorganisms and viruses. In addition, closer collaboration between academic and private sector scientists and federal agencies (including NIH, NSF, NOAA, EPA, ONR, NASA, CDC, FDA, and MMS) will be needed to better examine these issues.

Recommendation 23–2

The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities, should support expanded research efforts in marine microbiology and virology.

These efforts should include:
- the discovery, documentation, and description of new marine bacteria, algae, and viruses and the determination of their potential negative effects on the health of humans and marine organisms.
- the elucidation of the complex inter-relations, pathways, and causal effects of marine pollution, harmful algal blooms, ecosystem degradation and alteration, emerging marine diseases, and climate change in disease events.

New technologies are needed for improving biological and biochemical sensors that can continuously monitor high-risk sites. These sensors must be quick and accurate so that information can be communicated to resource managers and the coastal community in a timely manner. It is also important to incorporate site-specific and satellite sensor data into the national monitoring network, discussed in Chapter 15, and the IOOS, discussed in Chapter 26. (Additional information about chemical and biological sensor needs is presented in Chapter 27.) Federal and private support will be particularly needed to develop monitoring and mitigation technologies that can be implemented at state and local levels where these outbreaks occur.

Recommendation 23–3

The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities should support the development of improved methods for monitoring and identifying pathogens and chemical toxins in ocean and coastal waters and organisms.

This effort should include:
- developing accurate and cost-effective methods for detecting pathogens, contaminants, and toxins in seafood for use by both state and federal inspectors.
• developing *in situ* and space-based methods to monitor and assess pollution inputs, ecosystem health, and human health impacts.
• developing new tools for measuring human and environmental health indicators in the marine environment.
• developing models and strategies for predicting and mitigating pollutant loadings, harmful algal blooms, and infectious disease potential in the marine environment.

Increasing Federal Coordination on Oceans and Human Health

Several existing programs, including the NIEHS–NSF and NOAA programs, could form the nucleus of a fully integrated, national oceans and human health program to address the many issues discussed in this chapter. Most existing programs already involve significant interagency cooperation, which is essential for effectively examining issues that cross federal agencies' jurisdictional lines and for coordinating multidisciplinary biomedical research. Any truly national effort to address the varied roles of the oceans in human health will need to incorporate innovative basic and applied research with environmental regulations, coastal management, biosecurity, and homeland security.

Recommendation 23–4

Congress should establish a national, multi-agency Oceans and Human Health Initiative to coordinate and sponsor exploration, research, and new technologies related to examining the connections among the oceans, ecosystem health, and human health. The National Oceanic and Atmospheric Administration's Oceans and Human Health Initiative and the National Institute of Environmental Health Sciences–National Science Foundation Centers for Oceans and Human Health should be expanded and coordinated as the basis for this initiative. The new Oceans and Human Health Initiative should:
• be implemented through both competitively awarded grants and support of federally-designated centers with federal, state, academic, and private-sector investigators eligible to compete for funding.
• work with the National Ocean Council to review other relevant agency programs and suggest areas where coordination could be improved.
• transfer new technologies into management programs that protect human health and the health of ocean and coastal ecosystems.

Implementing Human Health Protections

In addition to achieving a better understanding of the links between the oceans and human health, improvements in management are also needed. Most often this means protecting seafood safety and maintaining clean coastal waters and beaches.

Seafood Safety

Seafood consumption in the United States is rising. Americans ate about 15.3 pounds of seafood per person in 1999, compared to only 12.5 pounds in 1980. This is generally considered a positive development for public health as the vast majority of seafood available to the American public is wholesome and nutritious. However, as consumption rises, so does the possibility of public health problems from contaminated seafood, including: biological hazards from bacteria and viruses; chemical hazards from toxins, such as ciguatoxin and tetrodotoxin; and other contaminants such as mercury.
The FDA is responsible for ensuring the safety of seafood sold within the United States, including imported seafood products. NOAA also monitors seafood through the Seafood Inspection Program that provides voluntary, fee-for-service monitoring of domestic and foreign manufacturers, processes, and products.

In 1997, based in part on a National Research Council report on seafood safety, the FDA implemented the Hazard Analysis and Critical Control Point (HACCP) system. The HACCP system requires both U.S. producers and foreign importers to analyze potential hazards in preparing, handling, and packaging seafood and implement plans to control these hazards. However, a 2001 study concluded that several problems existed with implementation of the HACCP system, both internationally and domestically. While the FDA has been working to address these concerns, full implementation and enforcement will be needed to ensure seafood safety. New seafood testing methods, which are faster and more cost-effective, can be used in conjunction with HACCP regulations to further ensure seafood safety.

Aquaculture products make up a significant portion of the seafood sold within the United States and they are accompanied by specific health concerns that must be monitored. Cultured organisms are often more prone to disease than wild stocks. To protect against these diseases, high concentrations of pharmaceuticals can be used, but these chemicals may then appear in surrounding waters, and be concentrated in marine organisms that are consumed by people.

States, territories, and tribes have a role in protecting their residents from the health risks associated with contaminated fish and seafood caught outside the commercial industry by issuing Fish and Wildlife Consumption Advisories, based on EPA guidance, for the general population as well as for sensitive subpopulations. These advisories inform the public that high concentrations of chemical contaminants—such as mercury, PCBs, chlordane, dioxins, or DDT—have been found in local seafood. The advisories include recommendations about limiting consumption of certain fish and seafood harvested from specified waterbodies.

Better seafood screening, processing regulations, and public advisories are only part of the solution. Proactive control of harmful algal blooms, bacteria, and viruses through reductions in point and nonpoint source water pollution and control of invasive species is needed to ensure a safe food supply. Shellfish are at particular risk of contamination because they feed by filtering large volumes of water. If that water is contaminated with bacteria or viruses, shellfish become carriers of these pathogens. When outbreaks occur, coastal areas may be closed to shellfishing, with serious economic consequences for fishing communities and repercussions for human health.

Chemical contaminants such as methyl-mercury can also enter aquatic environments through atmospheric deposition. These compounds can then accumulate in fish and other marine organisms. Limiting atmospheric deposition of environmental contaminants to protect coastal waters and the nation’s seafood supply is discussed in Chapter 14.

Coastal Water Quality

In addition to the danger of consuming contaminated seafood, human health can also be threatened by participating in recreational activities in or near unhealthy waters. Viruses are believed to be the major cause of swimming-associated diseases, but bacteria, harmful algal blooms, and microbial pathogens, such as amoebae and protozoa, also cause health problems in humans. Although recent programs at the federal and state levels have been put in place to address these problems, success has been limited. In 2003, more than 18,000 days of beach closings and swimming advisories were issued across the nation. The number of such actions continues to rise, costing many millions of dollars a year in decreased revenues for tourism and higher health care costs.

Almost all coastal states monitor beach water quality by measuring levels of certain indicator bacteria. However, studies have shown that the presence or absence of these

Harmful algal blooms represent the most notorious marine hazard to both man and animal. They know no geographic bounds and appear to be increasing worldwide. —Allen Dearry, Chief, National Institutes of Environmental Health Sciences, testimony to the Commission, April 2002
indicator species does not provide information about all possible threats. In particular, concentrations of marine viruses are not well characterized by indicator bacteria levels. Another problem with using microorganisms as indicators of contamination is the lag time between sample collection, test results, and public notice. During this time swimmers continue to be exposed to the contaminated water. As discussed above, improved testing technologies and a well-coordinated federal effort are essential to support state and regional implementation of appropriate monitoring. (A discussion of national monitoring needs is found in Chapter 15.)

Of course, coastal managers can best protect public health by maintaining clean coastal waters. Data indicate that most beach closings and advisories are due to the presence of microscopic disease-causing organisms that come from human and animal wastes. These wastes typically enter coastal waters from combined sewer overflows, discharges of inadequately treated wastes from sewage treatment plants and sanitary sewers, septic system failures, or stormwater runoff from urban, suburban, and rural areas. Recommendations on limiting point and nonpoint source pollution in marine and freshwater environments are provided in Chapter 14.

Public Education and Outreach

Reductions in pollution from urban area runoff, sewage outflows, agricultural pesticides, and many other sources are needed to avoid creating harmful conditions in the oceans and Great Lakes. One important step in achieving such reductions is public education (Chapter 8). Ocean-related educational campaigns frequently focus on the impacts of pollution on marine animals. Signs stenciled on storm drains remind people that “dolphins live downstream.” However, people must also become more aware that food supplies and recreational areas are also downstream.

Education campaigns should also inform people of the potential risks from fish and shellfish contaminated with bacteria, viruses, or chemicals. Timely and clear State Fish and Wildlife Consumption Advisories are one way to educate the public about health hazards from seafood. Better communication among the seafood industry, state officials, recreational fishermen, and consumers will also improve the effectiveness of seafood safety programs and help prevent outbreaks of seafood-related illnesses.

Regional Dimensions

Ocean-related risks to human health are usually specific to certain local or regional areas. Different species of algal blooms and bacteria are indigenous to particular regions, and both air and water quality are dependent upon localized human activities. Because of this, the regional ocean councils and regional ocean information programs, discussed in Chapter 5, are well placed to examine these issues and their potential cumulative effects and work toward management practices that best protect the health of the people in their region.

Regional ocean councils could coordinate the development of performance assessments—for example, by measuring the progress of point and nonpoint source control programs, monitoring introductions or eradications of invasive species, and tracking water quality—to complement the regional ecosystem assessments called for in Chapter 5.
Recommendation 23–5

The National Oceanic and Atmospheric Administration, Environmental Protection Agency, and Food and Drug Administration, working with state and local managers, should fully implement all existing programs to protect human health from contaminated seafood and coastal waters.

Particularly, the federal agencies should:

- incorporate new findings and technologies, especially those developed within the Oceans and Human Health Initiative, into monitoring and prevention programs.
- coordinate and increase interagency public education and outreach efforts in this area.

References

18. Ibid.
Chapter 6 recommended development of a coordinated offshore management regime that would be comprehensive, transparent, and predictable, bring a fair return to the public, and promote a balance between economic and environmental considerations. The management of nonliving resources in federal waters raises many of the same fundamental policy questions. From the well developed, but politically contentious, outer Continental Shelf oil and gas program to new and emerging offshore uses that lack comprehensive management regimes, much can be learned. But much work also remains in developing a consistent system for unlocking the treasures of the sea while protecting the marine environment and providing affected parties a voice in decisions.

Exercising Jurisdiction over Nonliving Resources in Federal Waters

In addition to its responsibilities for living marine resources, the federal government also exercises jurisdiction over nonliving resources, energy and other minerals located in the waters and seabed of the more than 1.7 billion acres of the outer Continental Shelf (OCS). Offshore oil and gas development has the most mature and broadest management structure of all such resources. It also has the longest and richest history, characterized by major changes to the underlying law that established the more comprehensive administrative regime, as well as intense political conflict resulting from divisions among stakeholders and tensions inherent in American federalism. The development of other ocean energy resources—some of which are newly emerging technologies—have differing levels of management, but none are currently making any noteworthy contributions to domestic production numbers. Historically, there also have been varying expressions of commercial interest in non-energy minerals in the U.S. exclusive economic zone (EEZ), but only sand and gravel have been used in recent years by coastal states and communities, because of a change which eased access to those resources.

Managing Offshore Oil and Gas Resources

As noted in Chapter 2, from its beginning, the federal offshore oil and gas program faced controversy over ownership issues, as states unsuccessfully sued the federal government...
over control of offshore waters. Once that issue was settled legislatively, there was a short but relatively stress-free period. Conflict, however, soon emerged over issues of management, environmental risks, and the costs and benefits of energy exploration and production on the OCS that continues to this day. Proponents point to the program’s contributions to the nation’s energy supplies and economy, significant improvements in its safety and environmental record, and noteworthy technological achievements. Opponents argue that offshore oil activities harm coastal communities economically and the marine environment unacceptably. The ongoing debate is carried out in the halls of Congress, federal agencies, state and local governments, trade associations, and nongovernmental organizations. OCS oil and gas development is a classic example of the politics of multiple-use resource management, including federal-state tensions, competing user issues, arguments over the interpretation of data, and disagreements concerning tolerable levels of risk.

Despite its political problems, which are best understood through an awareness of the historical context associated with it, today the OCS oil and gas program has a well institutionalized and reasonably comprehensive management regime. While not without its critics, the program seeks to balance the many competing interests involved in offshore energy activity, requires state and local government input in federal decisions, and specifies detailed procedures to be followed by those seeking offshore leases. It also manages the various processes associated with access to non-energy minerals on the OCS.

Energy development in federal waters is big business and has become an important part of the fabric of the U.S. ocean policy mix. Most observers agree that the federal OCS oil and gas program benefits America by helping to meet energy needs, creating thousands of jobs, and contributing billions of dollars to the U.S. Treasury. Despite the limited offshore geographic area from which production flows and in which leasing is authorized, the amount of oil and gas production from the OCS is significant. In 2002 and 2003, federal offshore waters produced more than 600 million barrels of oil annually and about 4.5 trillion cubic feet of natural gas.

From a Quiet Beginning to Prohibitions on Leasing

In 1953, Congress enacted the Submerged Lands Act, which codified coastal states’ jurisdiction off their shores out to three nautical miles (or, for historic reasons, nine nautical miles for Texas and the Gulf coast of Florida). That same year, regulation of OCS oil and gas activity seaward of state submerged lands was vested in the Secretary of the Interior with the passage of the Outer Continental Shelf Lands Act (OCSLA), which established federal jurisdiction over the OCS for the purpose of mineral leasing. For a period of some fifteen years, the offshore energy program was relatively quiet, being confined largely to leasing off of Louisiana and Texas. In the late sixties, however, the relative peace on the OCS would be dramatically changed.

As discussed in Chapter 2, the 1969 Santa Barbara blowout took place during an era of rapidly expanding environmental awareness and helped spur the enactment of numerous major environmental laws, including the National Environmental Policy Act (NEPA), the Coastal Zone Management Act (CZMA), the Marine Mammal Protection Act (MMPA), and the Marine Protection, Research, and Sanctuaries Act (MPRSA).

Just as the nation’s environmental consciousness rose, so too did recognition of the need for secure supplies of oil and gas. Also, as noted in Chapter 2, the 1973 Arab oil embargo prompted President Nixon to announce plans to lease 10 million OCS acres in 1975, an area equal to the entire amount leased prior to that time. Sales were scheduled not only in areas of earlier OCS activity, but also along the Atlantic and Pacific coasts. The result was a nationwide debate that raged through the remainder of the decade, pitting the oil and gas industry and its allies against various representatives of coastal states, commercial and sport fishing interests, and environmental organizations.
Congress responded to this debate by virtually rewriting the OCSLA in 1978, requiring the Secretary of the Interior to balance the nation’s needs for energy with the protection of human, marine, and coastal environments, make certain that the concerns of coastal states and competing users were taken into account, and ensure that some of the newly enacted environmental laws were integrated into the OCS process. However, before regulations and procedures could be fully developed to support the amended law, in the early 1980s the Reagan administration proposed to terminate funding for the CZMA and its Coastal Energy Impact Program (CEIP). The CEIP was specifically designed during the debate over the OCSLA amendments to provide grants and loans to coastal states to deal with the environmental effects occasioned by OCS activities. At the same time these budget cuts were put forward, the Secretary of the Interior was pursuing an aggressive offshore program that would make one billion acres available for oil and gas leasing over the ensuing five years. Thus began the modern day version of the battle over offshore oil, one that has endured for over two decades and has included major legislative and executive branch negotiations, actions to restrict leasing in so-called “frontier” areas, Supreme Court cases, federal-state battles over administrative procedures and the sharing of revenues, and the buyback of some OCS leases by the federal government.

In its initial reaction to the proposed budget cuts, Congress was able to save the CZMA, but not the CEIP. It then turned its attention to restricting and ultimately prohibiting a substantial part of the OCS leasing schedule of the U.S. Department of the Interior (DOI). Using its appropriations process in 1982, Congress put four basins offshore northern California off limits to leasing. For the next few years, every annual DOI funding bill included leasing prohibitions on additional regions until practically all offshore planning areas outside of the Gulf of Mexico and Alaska were excluded.

Additionally, Presidents have expanded on congressional action, providing longer term restrictions than those covered in annual appropriations bills. In 1990, President Bush withdrew areas offshore California, southern Florida, the North Atlantic states, Washington, and Oregon from leasing consideration until after 2000. A few years later, the Clinton Administration added additional areas to the restricted list, extended all of the withdrawals until 2012, and included a permanent prohibition on leasing in national marine sanctuaries. These presidential and congressional actions have removed some 610 million acres from leasing consideration and effectively limited access to the OCS program to the central and western Gulf of Mexico (95 percent of offshore production), a small portion of the eastern Gulf, and virtually all areas off Alaska (Figure 24.1).

The OCS Leasing, Exploration, and Development Process

As already noted, the OCSLA is a relatively comprehensive resource management statute. Besides authorizing the Secretary of the Interior to hold competitive lease sales for offshore tracts, regulate and oversee lease activities, and encourage efficient, safe, and diligent production, the law specifies the steps potential lessees must take to bid on offshore tracts and the process that occurs after receiving a lease. For example, the OCSLA requires consultation with coastal states and localities at a number of points in the federal offshore decision-making process, including during the development of a five-year leasing program, individual lease sale delineations, exploration and development-production plans, and environmental studies and oil and gas information programs. Further, the law carries provisions on offshore safety regulations, citizen suits and judicial review, enforcement authority, the applicability of NEPA, geological and geophysical exploration, export limitations, documentation requirements for offshore vessels and rigs, and numerous opportunities to address other environmental issues.

DOI’s Minerals Management Service (MMS) characterizes its administration of the OCSLA as being “process rich” (Figure 24.2). Through the initial years of promulgating regulations to implement the 1978 amendments, and through litigation about the mean-
ing of certain provisions, the current OCS leasing and development program is one that is, on balance, coherent and reasonably predictable. Although the comprehensiveness of the program has not precluded the political battles noted above nor avoided restrictions on leasing in frontier areas, in those regions of the nation where offshore development is accepted, the internal administrative process is well known and understood by those who invest in offshore leases and those who choose to observe and comment on such activity. The OCSLA is replete with references to the applicability of other statutes and the authority of other departments in the oil and gas process, and presents a clearer roadmap than most other offshore resource management laws or programs.
After an initial bumpy start in the implementation of major amendments to its basic law, the problems encountered by the offshore oil and gas program today are generally external to its day-to-day administration and regulatory requirements. Although a number of different variables have to be taken into consideration in crafting a regime for other ocean uses, the scope and comprehensiveness of the OCS oil and gas program can be a model for the management of a wide variety of offshore activities.

Figure 24.2 A “Process Rich” but Clear Path to Offshore Leasing, Exploration, and Development Activities

<table>
<thead>
<tr>
<th>Pre-Lease</th>
<th>Post-Lease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop 5-Year Program</td>
<td>Exploration Plan Approval</td>
</tr>
<tr>
<td>Solicit Comments</td>
<td>Exploration Plan Submitted</td>
</tr>
<tr>
<td>45-day Comment Period</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>Draft Proposed Program Published</td>
<td>Exploration Plan Approved</td>
</tr>
<tr>
<td>60-day Comment Period</td>
<td>90-day CZM Review Approved</td>
</tr>
<tr>
<td>Proposed Program</td>
<td>APD Approved</td>
</tr>
<tr>
<td>90-day Comment Period</td>
<td>Exploration Drilling Starts</td>
</tr>
<tr>
<td>Proposed Final Program</td>
<td>First Exploration Well Completed</td>
</tr>
<tr>
<td>60-day Waiting Period</td>
<td>Delineation Drilling</td>
</tr>
<tr>
<td>5-Year Program Announced</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning for Specific Sale</th>
<th>Development and Production Plan Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call for Information Published</td>
<td>Development and Production Plan</td>
</tr>
<tr>
<td>45-day Comment Period</td>
<td>CZM Consistency Review Starts</td>
</tr>
<tr>
<td>Define Sale Area</td>
<td>Draft EIS Published</td>
</tr>
<tr>
<td>Draft EIS</td>
<td>90-day Comment Period</td>
</tr>
<tr>
<td>45-day Comment Period</td>
<td>Final EIS Published</td>
</tr>
<tr>
<td>Final EIS Published</td>
<td>CZM Consistency Obtained</td>
</tr>
<tr>
<td>30-day Pre-decision Period</td>
<td>Production Well Application</td>
</tr>
<tr>
<td>Notice of Sale</td>
<td>First Oil/Gas Production</td>
</tr>
<tr>
<td>30-day Comment Period</td>
<td></td>
</tr>
<tr>
<td>Sale</td>
<td></td>
</tr>
<tr>
<td>Leases Issued</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exploration Plan Approval</th>
<th>Development and Production Plan Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring Plan Submitted</td>
<td>Development and Production Plan</td>
</tr>
<tr>
<td>Environmental Assessment</td>
<td>CZM Consistency Review Starts</td>
</tr>
<tr>
<td>Exploration Plan Approved</td>
<td>Draft EIS Published</td>
</tr>
<tr>
<td>90-day CZM Review Approved</td>
<td>90-day Comment Period</td>
</tr>
<tr>
<td>APD Approved</td>
<td>Final EIS Published</td>
</tr>
<tr>
<td>Permits Granted</td>
<td>CZM Consistency Obtained</td>
</tr>
<tr>
<td>Exploration Drilling Starts</td>
<td>Production Well Application</td>
</tr>
<tr>
<td>First Exploration Well Completed</td>
<td>First Oil/Gas Production</td>
</tr>
<tr>
<td>Delineation Drilling</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:

APD: Application for Permit to Drill
CZM: Coastal Zone Management
CD: Consistency Determination
EIS: Environmental Impact Statement

The process for companies and other stakeholders to comment on proposed sales, and to lease, explore, and develop the outer Continental Shelf, is clearly defined in the Outer Continental Shelf Lands Act. Although the process involves many steps, its comprehensiveness and transparency not only set out clear comment periods for coastal states and other interested stakeholders, but also provide companies greater predictability about the procedures they must follow to receive approval for their exploration and production work.

* Includes 60-day comment period and 15-day automatic extension. Unless state concurs, no decision can be made until 90 days after beginning of state review.

Source: Minerals Management Service, Washington, DC.
Trends in Domestic Offshore Oil and Gas Production

Currently, energy development in federal waters accounts for more than 30 percent of domestic oil production and 25 percent of natural gas. Further, of the oil and natural gas still to be discovered in the United States, energy experts estimate that some 60 percent will come from offshore areas.3

More than 95 percent of U.S. offshore oil and gas production takes place in the western and central Gulf of Mexico, where there is an established infrastructure and general public acceptability. There is still some offshore production in Southern California and limited leasing and exploration in federal waters off Alaska. The first oil production from a joint federal-state unit in the Beaufort Sea (Alaska) commenced in 2001.

The importance of offshore oil and natural gas to the nation’s total energy portfolio is expected to increase. The U.S. Energy Information Administration projects the United States will need about 35–40 percent more natural gas and about 45 percent more oil by 2025 to meet demand, even as new energy conservation measures are mandated and efforts to develop alternative power sources continue.4 Government and industry experts are concerned that rising demand for and limited supplies of natural gas will continue to boost heating and electricity costs, affecting homeowners and a range of major industries. Nearly all U.S. electric-generating plants built since 1998 are fueled by natural gas (Box 24.1).

Rise in Deep-water Oil Production

Although production in the Gulf of Mexico’s heavily leased shallow waters has been steadily declining, production in its deeper waters (more than 1,000 feet), which tend to produce more oil than natural gas, increased by over 500 percent between 1995 and 2002.5 In part, this growth was attributable to technological breakthroughs, the relative stabilization of crude oil prices, and the enactment of legislation in 1995 granting various levels of royalty relief to lessees willing to make the risky investment in the Gulf’s deeper waters. Deep-water oil production now accounts for more than half of the Gulf’s total production.6 Additionally, the technology for ultra–deep-water development continues to advance with the drilling of a number of exploratory and production wells in water depths greater than 7,000 feet. Recently, a world record exploratory well was drilled in 10,000 feet of water.

A Promising Future for Natural Gas from Shallow Water

MMS estimates there is up to 55 trillion cubic feet (tcf) of natural gas available for production in the deeper stratigraphic horizons on the continental shelf of the Gulf (15,000 feet below the seabed but in shallow-water depths of less than 656 feet). This estimate is 175 percent greater than the previous projection of 20 tcf just a few years ago. This is a hopeful sign of additional sources of natural gas to meet a portion of the nation’s future needs. Natural gas production from the deeper horizons on the continental shelf of the Gulf increased from a relatively low 284 billion cubic feet (bcf) in 2000 to 421 bcf in 2002. This 2-year, 50 percent increase follows immediately after a 3-year, 21 percent decrease between 1997 and 2000.7 To bolster industry interest in this high-cost deep drilling area, in 2001, MMS instituted a program of deep shelf royalty relief for natural gas production. This economic incentive, combined with more sophisticated cost-effective technology, improved seismic data, better understanding of the potential from the deep shelf, and increased public demand, is likely to provide the impetus for even further accelerated natural gas production from the OCS.

Federal Revenues from Offshore Oil and Gas Leasing and Production

The federal government receives a substantial amount of revenue from energy companies for offshore oil and gas leasing and production. OCS lessees make three categories of pay-
Box 24.1 Offshore Liquefied Natural Gas Ports May Be on the Horizon

The U.S. Department of Energy’s Energy Information Administration and private industry trade associations predict that the nation’s demand for natural gas will continue to rise.i,ii Notwithstanding estimates of increased natural gas production from the Gulf of Mexico (discussed earlier in this chapter), the United States is no longer self-sufficient in that energy resource. A primary way to meet rising demand is through substantially increased imports of liquefied natural gas (LNG). In 2003, LNG supplied only about 2 percent of U.S. natural gas needs; by 2010, it is expected to provide some 10 percent of such needs.iii

LNG is transported in large, specialized tanker ships that keep the gas cooled to approximately 260°F below zero to reduce the volume for shipping purposes. LNG tankers deliver the gas to special port facilities, where the commodity is re-gasified, either on the ship or at the port facility, and then transported through pipelines to customers.

The United States currently has four LNG import terminals in coastal port areas in Massachusetts, Maryland, Georgia, and Louisiana. Over three dozen new terminals intended to serve the U.S. market (including eight projects proposed for Eastern Canada, the Bahamas, and Baja California, Mexico) are in varying stages of planning.iv For many complex reasons, it is possible that only a few of the projected projects will be built.v However, of the proposed new LNG projects, a number are likely be located offshore, on the outer Continental Shelf.

Congress has responded to the need for a broad and cohesive ocean governance structure for offshore LNG ports. The federal Deepwater Port Act (DPA) was amended in 2002 to authorize the siting, construction, and operation of LNG terminals on the OCS, seaward of state boundaries.vi The U.S. Coast Guard and the Maritime Administration are the primary agencies responsible for the licensing process under the DPA. When it was moved to the U.S. Department of Homeland Security, the Coast Guard’s authority under the DPA was transferred with it under the terms of an interagency memorandum of understanding (MOU). The MOU also included a number of other agencies that have regulatory authority over some aspect of DPA licensing, or other aspects of LNG transportation and use on the OCS or onshore. These agencies include the U.S. Departments of the Interior, Transportation, and Commerce, the Federal Energy Regulatory Commission, and the U.S. Environmental Protection Agency.

One of the interesting provisions of the DPA, which is applicable to the siting and operation of offshore LNG ports, stipulates that that the Secretary of Transportation may not issue a license without the approval of the Governor of each coastal state adjacent to the proposed facility. This gubernatorial approval process is in addition to the federal consistency authority exercised by states with approved coastal zone management programs.

Although the recent amendments to the DPA establish an ocean governance structure for LNG facilities, with designated agency mandates and responsibilities, the siting of new LNG facilities and management of LNG tanker traffic should be fully integrated with the coordinated offshore management regime discussed in Chapter 6.

ments: bonus bids when a lease is issued; rental payments before a lease produces; and royalties on any production from the lease. In the first half of the oil and gas program’s existence, between 1953 and 2002, it has contributed approximately $145 billion in federal revenues. In recent years, the revenues generated from offshore energy activity have averaged $4–5 billion annually (Table 24.1). Although most of the revenues have been deposited directly into the U.S. Treasury, a significant portion has gone to the Land and Water Conservation Fund and the National Historic Preservation Fund.

Table 24.1 Federal Revenues from Offshore Mineral Development

<table>
<thead>
<tr>
<th>Year</th>
<th>Oil and Gas Royalties</th>
<th>Bonuses, Rents and Other Revenue</th>
<th>Total by Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>$3,444,561,989</td>
<td>$1,814,666,046</td>
<td>$5,259,228,035</td>
</tr>
<tr>
<td>1998</td>
<td>$2,703,722,873</td>
<td>$1,618,914,459</td>
<td>$4,322,637,332</td>
</tr>
<tr>
<td>1999</td>
<td>$2,611,742,229</td>
<td>$576,646,226</td>
<td>$3,188,388,455</td>
</tr>
<tr>
<td>2000</td>
<td>$4,094,576,078</td>
<td>$1,115,086,564</td>
<td>$5,209,662,642</td>
</tr>
<tr>
<td>2001</td>
<td>$5,448,825,260</td>
<td>$1,056,762,550</td>
<td>$6,505,590,810</td>
</tr>
<tr>
<td>Total</td>
<td>$18,303,428,429</td>
<td>$6,182,075,845</td>
<td>$24,485,504,274</td>
</tr>
</tbody>
</table>

A Question of Equity: Sharing OCS Receipts with Coastal States

Mineral resources on federal land, whether onshore or offshore, benefit the nation as a whole. The primary law governing onshore mineral development is the Mineral Leasing Act (MLA), and the comparable law for offshore minerals is the OCSLA. These two statutes are analogous in many ways except for one—the sharing of revenues with states. Under the MLA, each of the lower 48 states directly receives 50 percent of all mineral leasing revenues from public lands within its boundaries, and an additional 40 percent through the Reclamation Fund; the state of Alaska receives 90 percent directly. There is a broad array of additional federal land receipts sharing programs, including the National Forest Receipts Program and the Taylor Grazing Act. Eligible uses of the shared receipts vary widely. Some programs require that the funds be used by the recipient jurisdiction for specific purposes such as schools, roads, or land and resource improvements, while others allow the states more discretion.

Furthermore, once leased under the MLA or some other land management statute, onshore federal lands are generally subject to most state and local taxes. Most noteworthy is the ability of states to levy severance taxes on minerals developed on federal lands within their borders. Additionally, if local governments lose property tax revenue because of the existence of federal lands, there are a variety of programs that provide localities with federal payments in lieu of taxes.

In contrast, the OCSLA specifically prohibits state taxes on OCS activities. Moreover, there is no offshore revenue sharing program comparable to the MLA for coastal states. Proponents of such an initiative argue that although the energy development occurs in federal waters, many of the impacts resulting from such activities occur locally, in and near the states’ coastal zones. They contend that affected states and communities should receive assistance in coping with the costs of facilitating offshore development, including actions to minimize the risk of environmental damage. The executive branch has traditionally opposed revenue sharing, largely because of the potential loss to the federal treasury.
For decades, Congress has debated proposals on OCS revenue sharing—including the Coastal Energy Impact Program in the mid-1970s—to help states address the effects of offshore production and remedy the apparent inconsistency with onshore mineral development. Disputes over the fair division of revenues from resources discovered in fields that straddle state and federal submerged lands were resolved in 1986. In that year, Congress amended the OCSLA to require that 27 percent of revenues from federal leasing and production activity within three nautical miles seaward of the federal–state offshore boundary be given to the affected state. Through the release of money that was being held in escrow, the awarding of past payments owed to the states, and subsequent entitlement to 27 percent of current and future revenues from the three-mile area, the seven OCS “producing” states have received slightly more than $3 billion since 1986. Currently, these states receive approximately $50–60 million annually through this mechanism. In fiscal year 2001, Congress authorized and appropriated $142 million for a Coastal Impact Assistance Program to be allocated among the producing states by the National Oceanic and Atmospheric Administration (NOAA). However, this was a one-year authorization, and no further funding has been provided.

The Federal-State Partnership for Oceans and Coasts
In various parts of this report, recommendations are made not only to strengthen the coordination of ocean policy at the federal level, but also to increase the involvement of nonfederal governmental and nongovernmental stakeholders. The time has come to significantly enhance the ocean and coastal partnership between the federal government and state, territorial, tribal, and local governments. This partnership recognizes that much of the responsibility for managing the nation’s ocean and coastal resources rests with nonfederal authorities. These concepts are at the heart of the CZMA and permeate many other natural resource management programs.

As the federal-state ocean and coastal partnership began to evolve, the nation determined that activities associated with development of nonrenewable resources should not be pursued at the expense of the long-term health of renewable resources. That is why the OCSLA, the CZMA, and other applicable federal statutes call for balanced management of offshore oil and gas, protection of the ocean and coastal environment, and involvement by state and local governments. Eventually, new oil and gas will no longer be found or developed in the nation’s submerged lands but, if the proper policies are pursued, the renewable resources of our estuaries, coasts, oceans, and the Great Lakes—and the economic activities that depend upon them—will remain healthy and strong.

To make certain that the federal-state partnership remains strong and that critical marine ecosystems are protected, more of the resource rents generated from OCS energy leasing and production should be invested in the sustainability of ocean and coastal resources.

Recommendation 24–1
Congress should use a portion of the revenues the federal government receives from the leasing and extraction of outer Continental Shelf (OCS) oil and gas to provide grants to all coastal states that can be invested in the conservation and sustainable development of renewable ocean and coastal resources. States off whose coasts OCS oil and gas is produced should receive a larger share of such revenue to compensate them for the costs of addressing the environmental and socioeconomic impacts of energy activity in adjacent federal waters. None of the programs that currently receive revenues from OCS oil and gas activities should be adversely affected by this new allocation.

Chapter 30, Funding Needs and Possible Sources, includes a more extensive discussion about offshore revenue sharing and its connection to improved ocean and coastal management.
State Involvement in OCS Oil and Gas Decision Making

The partnership between the federal and state governments with respect to activities in federal waters should involve more than the sharing of some revenues. The central role of states in the new ocean policy framework is addressed in practically every chapter of this report. For example, Chapter 6 specifically calls for a more robust federal-regional-state dialogue in the building of coordinated offshore management regime. Chapter 9 addresses the link between coastal and offshore management, including the role of the federal consistency provision of the CZMA, despite some disagreements between levels of government, in enhancing cooperative federalism.

With respect to offshore oil and gas, the 1978 amendments to the OCSLA were intended, among many purposes, to bring state and local governments into much clearer and statutorily specified consultative roles at various points in DOI’s decision-making process. Further, the amendments made clear that the federal consistency provision of the CZMA applied to exploration, development, and production plans submitted to the Secretary of the Interior under the OCSLA. (Box 24.2 provides additional information on the federal consistency provision.)

Environmental Issues Related to Offshore Oil and Gas Production

As with most industrial development activities, along with the economic- and energy-related benefits of OCS oil and gas production, are actual and perceived risks to the environment, coastal communities, and competing users. Since the 1969 Santa Barbara blowout, the U.S. oil industry’s environmental and safety record has improved significantly, as has the regulatory regime of DOI. Today, safety stipulations are more stringent, technologies are vastly improved, inspections are regular and frequent, and oil spill response capabilities are in place. Nevertheless, there remain numerous environmental issues associated with the development and production of oil and gas from the OCS. Foremost among these are:

- Physical damage to coastal wetlands and other fragile areas by OCS-related onshore infrastructure and pipelines.
- Physical disruption of and damage to bottom-dwelling marine communities.
- Discharge of contaminants and toxic pollutants present in drilling muds and cuttings and in produced waters.
- Emissions of pollutants from fixed facilities, vessels, and helicopters.
- Seismic exploration and production noise impacts on marine mammals, fish, and other wildlife.
- Immediate and long-term ecological effects of large oil spills.
- Chronic, low-level impacts on natural and human environments.
- Cumulative impacts on the marine, coastal, and human environments.

The most obvious of these risks, and the one most commonly cited, is the potential for oil spills including drill rig blowouts, pipeline spills, and chronic releases from production platforms. The impacts of large oil spills can last from years to decades, particularly in critical habitats, such as wetlands and coral reefs.

According to MMS, 97 percent of OCS spills are one barrel or less in volume and U.S. OCS offshore facilities and pipelines accounted for only 2 percent of the volume of oil released into U.S. waters for the period 1985–2001 (Figure 24.3).9 The total volume and number of such spills over that period declined significantly due to industry safety practices and improved spill prevention technology. By comparison, the National Research Council (NRC) estimated that 690,000 barrels of oil enter North American ocean waters each year from land-based human activities, and another 1,118,000 barrels result from natural seeps emanating from the seafloor.10
Since 1981, the volume of oil spilled from OCS pipelines is four to five times greater than that from OCS platforms (Figure 24.4). Third party impacts due to events such as anchor dragging and ship groundings, and damages resulting from natural disasters such as hurricanes and underwater landslides, are leading causes of pipeline spills. As noted by the NRC, spills due to structural failures in aging pipelines are also a growing concern. Long-term exposure to weather and marine conditions makes pipelines older than twenty-five years considerably more susceptible to stress fractures and material fatigue that can lead to spills and leaks. In addition, older pipelines do not incorporate the advanced oil spill detection and prevention technologies that have been developed in recent years.

Box 24.2 The Federal Consistency Provision and Offshore Oil and Gas Development

The application of the federal consistency provision of the Coastal Zone Management Act (CZMA) to offshore energy development has been one of the most contentious issues among the federal government, coastal state governments, and outer Continental Shelf (OCS) lessees. In the mid-1970s, Congress amended the original version of the federal consistency provision to add a section that explicitly covered certain OCS activities. Of the thousands of exploration and development plans submitted by oil and gas companies over the years and approved by the U.S. Department of the Interior (DOI), states have concurred with the consistency of such plans with their state coastal management program in virtually all of the cases. But there have been some instances in which states have objected and these are generally cases of high visibility. There have been fourteen OCS oil and gas appeal decisions issued by the Secretary of Commerce, half of which overrode the state’s objection and half of which did not.

In a case that reached the highest court in the land in 1984, the U.S. Supreme Court held that OCS lease sales were not subject to the consistency provision of the CZMA. In 1990, Congress enacted a law, which reversed the effect of the decision, clarified that such sales are subject to a state consistency review, and made a number of other changes to the interpretation of the federal consistency provision that resulted in a lengthy rule-making process by the National Oceanic and Atmospheric Administration (NOAA). The final rule was published in 2000.

In 2001, the Vice President submitted the National Energy Policy report of the National Energy Policy Development Group to the President. The report contained a section on the Outer Continental Shelf Lands Act (OCSLA), as administered by DOI’s Minerals Management Service, and the CZMA, as carried out by NOAA. It noted that the effectiveness of these programs is “sometimes lost through a lack of clearly defined requirements and information needs from federal and state entities, as well as uncertain deadlines during the process.” The report recommended that the Secretaries of Commerce and the Interior reexamine the legal and policy regimes to see if changes were needed regarding energy activities in the coastal zone and the OCS.

In 2003, after a series of negotiations between the two departments, the Department of Commerce published a proposed rule addressing the information needs of states, coordination of timing requirements between the OCSLA and the CZMA, definitive time limits on the Secretary of Commerce’s appeals process, and additional procedural matters. (For a more detailed discussion of the OCS-specific federal consistency provisions of the CZMA and the issues related to their implementation, including a history of related litigation, see Appendix 6.)

The MMS Environmental Studies Program (ESP) is a major source of information about the impacts of OCS oil and gas activities on the human, marine, and coastal environments. Since 1986, annual funding for the program has decreased, in real dollars, from a high of $56 million to approximately $18 million in 2003. Even accounting for the contraction in the areas available for leasing, the erosion in ESP funding has occurred at a time when more and better information, not less, is needed. There continues to be a need to better understand the cumulative and long-term impacts of OCS oil and gas development, especially in the area of low levels of persistent organic and inorganic chemicals, and their cumulative or synergistic effects.

Also, as noted, OCS oil and gas exploratory activities in the Gulf of Mexico are now occurring in water depths approaching 10,000 feet with projections that the industry will achieve 15,000 feet drilling capabilities within the next decade. The technological ability to conduct oil and gas activities in ever deeper waters on the OCS places a significant and important responsibility on MMS to collect the essential environmental deep-water data necessary for it and other agencies to make informed management and policy decisions on exploration and production activities at those depths. Thus, as the knowledge base increases and the industry expands its activities further offshore and into deeper waters, new environmental issues are emerging that cannot all be adequately addressed under the current ESP budget.
Recommendation 24–2

The U.S. Department of the Interior should expand the Minerals Management Service’s Environmental Studies Program.

Priorities for the enhanced Environmental Studies Program should include:

- conducting long-term environmental research and monitoring at appropriate outer Continental Shelf (OCS) sites to better understand cumulative, low-level, and chronic impacts of OCS oil and gas activities on the natural and human environments.
- working with state environmental agencies and industry to evaluate the risks to the marine environment posed by aging offshore and onshore pipelines, particularly in the Gulf of Mexico.

Opportunities for Sharing Ocean Observation Information and Resources

Floating drilling rigs and production platforms are able to maintain position over the tops of wells thousands of feet below the surface without the need for mooring or permanent structures. Dynamic positioning systems compensate for wind, waves, and currents to keep the vessel stationary relative to the seabed, and new hull designs maintain stability. Three- and four-dimensional subsurface images allow operators to obtain a better idea of how a reservoir behaves and increase the likelihood of drilling success. And, the use of horizontal and directional drilling creates more flexibility in deciding where to site offshore platforms.

The movement of oil and natural gas exploration, development, and production activities further offshore into deeper waters and harsher marine environments, such as the Arctic, affords an excellent opportunity for incorporating the industry’s offshore infrastructure into the national Integrated Ocean Observing System (IOOS). In addition to its offshore infrastructure, the industry has the technological capacity to collect, assimilate, and analyze environmental data of use in both IOOS forecasts and more general ocean and environmental models and data products (which are discussed in more detail in Chapter 28). The U.S. offshore industry has a history of partnering with ocean scientists, allowing them to use production platforms for mounting environmental sensors, and in some cases, collecting and providing them with environmental data and information. The industry would also benefit from participation in the IOOS as a user of the system’s data and information products and by being involved in its design, implementation, and future enhancement.

Recommendation 24–3

Ocean.US, working with the National Oceanic and Atmospheric Administration (NOAA) and Minerals Management Service (MMS), should include the offshore oil and gas industry as an integral partner in the design, implementation, and operation of the Integrated Ocean Observing System (IOOS), especially in areas where offshore oil and gas activities occur. Specifically, Ocean.US, NOAA, and MMS should work with the oil and gas industry to:

- employ industry resources, such as pipelines, platforms, and vessels as part of the IOOS.
- incorporate nonproprietary data into IOOS informational products and larger environmental databases, while protecting the security of proprietary data and meeting other safety, environmental, and economic concerns.

Assessing the Potential of Offshore Methane Hydrates

Conventional oil and gas are not the only fossil-based fuel sources located beneath ocean floors. Methane hydrates are solid, ice-like structures composed of water and natural gas. They occur naturally in areas of the world where methane and water can combine at appropriate conditions of temperature and pressure, such as in thick sediment of deep-ocean basins, at water depths greater than 1,650 feet.
The estimated amount of natural gas in the gas hydrate accumulations of the world greatly exceeds the volume of all known conventional gas resources. A 1995 U.S. Geological Survey (USGS) estimate of both marine and Arctic hydrate resources revealed the immense energy potential of hydrates in the United States. These deposits have been identified in Alaska, the east and west coasts of the United States, and in the Gulf of Mexico. USGS estimated that the methane hydrates in U.S. waters hold a mean value of 320,000 trillion cubic feet of natural gas, although subsequent refinements of the data have suggested that the estimate is a slightly more conservative 200,000 trillion cubic feet. Even this lower estimate is enough to supply all of the nation’s energy needs for more than 2,000 years at current rates of use.

However, there is still no known practical and safe way to develop the gas and it is clear that much more information is needed to determine whether significant technical obstacles can be overcome to enable methane hydrates to become a commercially viable and environmentally acceptable source of energy.

In the United States, federal research concerning methane hydrates has been underway since 1982, was intensified in 1997–98, and received further emphasis with the passage of the Methane Hydrate Research and Development Act in 2000. That Act established an interagency coordination mechanism that includes the U.S. Departments of Energy, Commerce, Defense, and the Interior, and the National Science Foundation, and directed the National Research Council to conduct a study on the status of research and development work on methane hydrates. This study is scheduled for release in September 2004.

Recommendation 24–4

The National Ocean Council (NOC), working with the U.S. Department of Energy and other appropriate entities, should review the status of gas hydrates research and development to determine whether methane hydrates can contribute significantly to meeting the nation’s long-term energy needs. If such contribution looks promising, the NOC should recommend an appropriate level of investment in methane hydrates research and development, and determine whether a comprehensive management regime for industry access to hydrate resource deposits is needed.

Developing Offshore Renewable Energy Resources

Environmental, economic, and security concerns have heightened interest among many policy makers and the public in renewable sources of energy. Although offshore areas currently contribute little to the nation’s supply of renewable energy, the potential is significant and could include wind turbines, mechanical devices driven by waves, tides, or currents, and ocean thermal energy conversion, which uses the temperature difference between warm surface and cold, deep-ocean waters to generate electricity.

Offshore Wind Energy Development

While the offshore wind power industry is still in its infancy in the United States, it is being stimulated by improved technology and federal tax credits that have made it more attractive commercially. Additionally, developers are looking increasingly to the lead of European countries such as Denmark, the United Kingdom, and Germany, where growing numbers of offshore projects are being licensed.

In fact, the United States already has a wind energy management program applicable on some federal lands onshore. This comprehensive program is carried out by DOI’s Bureau of Land Management under broad authority provided by the Federal Land Policy and Management Act.
Conversely, there is no comprehensive and coordinated federal regime in place to regulate offshore wind energy development or to convey property rights to use the public space of the OCS for this purpose. In the absence of a specific regime, the U.S. Army Corps of Engineers (USACE) is the lead federal agency responsible for reviewing and granting a permit for this activity. Its authority, however, is based on Section 10 of the Rivers and Harbors Act, which, although it has a public interest requirement, primarily regulates obstructions to navigation, including approval of any device attached to the seafloor.

In reviewing a proposed project under Section 10, the USACE is required by the National Environmental Policy Act to consult other federal agencies. Depending on the circumstances, these agencies and authorities may include:

- The U.S. Coast Guard, which regulates navigation under several federal statutes.
- The Federal Aviation Administration, which regulates objects that may affect navigable airspace pursuant to the Federal Aviation Act.
- The U.S. Environmental Protection Agency, which may conduct a review for potential environmental impacts of a project pursuant to the Clean Water Act and Clean Air Act.
- The National Marine Fisheries Service (NMFS), which may review projects for potential impacts to fishery resources pursuant to the Magnuson-Stevens Fishery Conservation and Management Act. In addition, NMFS’ review includes assessing potential impacts to endangered or threatened species under the Endangered Species Act or the Marine Mammal Protection Act.
- The U.S. Fish and Wildlife Service, which may review projects for potential impacts to endangered species or marine mammals under its jurisdiction pursuant to the Endangered Species Act or the Marine Mammal Protection Act.
- In addition, depending on its location, a wind energy project, or at least its Section 10 permit, may be subject to review by one or more state coastal management programs in accordance with the CZMA federal consistency provisions.

The Section 10 review process stands in stark contrast both to the well established DOI regulatory program for onshore wind energy and, in the marine setting, to the robust regulatory program for offshore oil and gas that has developed under the OCSLA. Using the Section 10 process as the primary regulatory vehicle for offshore wind energy development is inadequate for a number of reasons. First and foremost, it cannot grant leases or exclusive rights to use and occupy space on the OCS. It is not based on a comprehensive and coordinated planning process for determining when, where, and how this activity should take place. It also lacks the ability to assess a reasonable resource rent for the public space occupied or a fee or royalty for the energy generated. In other words, it lacks the management comprehensiveness that is needed to take into account a broad range of issues, including other ocean uses in the proposed area and the consideration of a coherent policy and process to guide offshore energy development.

Wave Energy Conversion—Current and Tidal

Various technologies have been proposed to use wave or tidal energy, usually to produce electricity. The wave energy technologies for offshore use include floating or pitching devices placed on the surface of the water that convert the horizontal or vertical movement of the wave into mechanical energy that is used to drive a turbine. Currently, the offshore wave, tidal, and current energy industry is in its infancy. Only a small proportion of the technologies have been tested and evaluated. Nonetheless, some projects are moving forward in the United States, including one to install electricity-producing wave-energy buoys more than 3 nautical miles offshore Washington State, in the Olympic Coast National Marine Sanctuary. Internationally, there is considerable interest in wave, tidal, and current energy, but the projects are almost all in the research and development stage.
CHAPTER 24: MANAGING OFFSHORE ENERGY AND OTHER MINERAL RESOURCES

The Federal Energy Regulatory Commission (FERC) asserts jurisdiction, under the Federal Power Act (FPA), over private, municipal, and state (not federal) hydropower projects seaward to 12 nautical miles. FERC has formally asserted jurisdiction over the Washington State project, and is likely to assert jurisdiction over all forms of wave, tidal, or current energy projects whose output is electricity, from the shoreline out to 12 nautical miles offshore, on the basis that they are “hydropower” projects under the FPA.

Although in issuing a license for a wave, current, or tidal project, FERC is directed by the FPA to equally consider environmental and energy concerns, it is not an agency with a broad ocean management mission. As with wind energy, several other federal laws may apply to ocean wave projects. For example, NEPA, the federal consistency provision of the CZMA, the National Historic Preservation Act, and the Fish and Wildlife Coordination Act may apply, as may the consultation provisions of the Endangered Species Act and the Marine Mammal Protection Act. But there is no comprehensive law that makes clear which of these individual laws may be applicable, nor is there any indication that overall coordination is a goal, thus leaving implementation to mixed federal authorities.

Ocean Thermal Energy Conversion

The surface waters of the world’s tropical oceans store immense quantities of solar energy. Ocean thermal energy conversion (OTEC) technology could provide an economically efficient way to tap this resource to produce electric power and other products. The U.S. government spent over $200 million dollars in OTEC research and development from the

Box 24.3 A Mighty Wind Blows in Cape Cod

Although offshore wind energy facilities are well-established in other areas of the world, the first proposal for such a facility in the United States is testing the ability of the federal system to manage emerging offshore industries. The proposal calls for use of approximately 23 square miles in the Nantucket Sound, some 5.5 nautical miles off the coast of Cape Cod, Massachusetts. It would consist of 130 wind turbines, each of which would be sunk into the ocean floor and reach up to 420 feet above the ocean surface. The project would generate an annual average of approximately 160 megawatts of electrical power.

This project has divided local citizens, elected officials, environmentalists, business interests, and other stakeholders. Supporters cite the project’s potential to reduce pollution, greenhouse gases, and reliance on foreign oil, while opponents warn of bird deaths, harm to tourism, interference with commercial and sports fishing, and obstructed views.

Despite the controversy, the project is proceeding through the review process contained in Section 10 of the Rivers and Harbors Act. In the meantime, proposals for offshore wind development projects up and down the East Coast are proliferating.

1970s to the early 1990s that produced useful technical information but did not result in a commercially viable technology.18

Early optimism about the potential of OTEC led to the enactment of the Ocean Thermal Energy Conversion Act in 1980, and the creation of a coordinated framework and licensing regime for managing that activity if and when economic considerations permitted. NOAA issued regulations to implement the Act, but because of investor risk for this capital-intensive technology and relatively low fossil fuel prices, no license applications were ever received and NOAA subsequently rescinded the regulations in 1996. Thus, the United States currently has no administrative regulatory structure to license commercial OTEC operations.

Comprehensive Management for Offshore Renewable Energy

Offshore renewable technologies will continue to be studied as a means of reducing U.S. reliance on potentially unstable supplies of foreign oil, diversifying the nation's energy mix, and providing more environmentally benign sources of energy. Similar to offshore aquaculture described in Chapter 22, the offshore renewable processes described in this section present obvious examples of the shortcomings in federal authority when it comes to regulating specific new and emerging offshore activities. As long as federal agencies are forced to bootstrap their authorities to address these activities, the nation runs the risk of unresolved conflicts, unnecessary delays, and uncertain procedures. What is urgently needed is for the National Ocean Council to develop a comprehensive offshore management regime (as recommended in Chapter 6) that considers all offshore uses within a larger planning context. A coherent and predictable federal management process for offshore renewable resources that weighs the benefits to the nation's energy future against the potential adverse effects on other ocean users, marine life, and the ocean's natural processes, should be fully integrated into the broader management regime.

Recommendation 24–5

Congress, with input from the National Ocean Council, should enact legislation providing for the comprehensive management of offshore renewable energy development as part of a coordinated offshore management regime.

Specifically, this legislation should:

- be based on the premise that the oceans are a public resource.
- streamline the process for licensing, leasing, and permitting renewable energy facilities in U.S. waters.
- subsume existing statutes, such as the Ocean Thermal Energy Conversion Act.
- ensure that the public receives a fair return from the use of the resource and that development rights are allocated through an open, transparent process that considers state, local, and public concerns.

Managing Other Marine Minerals

The ocean floor within the U.S. EEZ contains vast quantities of valuable minerals other than oil and gas, but the economics of recovering them, especially in areas far offshore, are not welcoming. These resources include more than 2 trillion cubic meters of sand and gravel reserves on the Atlantic shelf of the OCS alone, enormous phosphate deposits off the East Coast from North Carolina to northern Florida, titanium-rich heavy mineral sands from New Jersey to Florida, manganese nodules from South Carolina to Georgia, high-grade calcium carbonate sands off Florida, gold and platinum deposits off Alaska, polymetallic sulfides off Oregon, barite resources off southern California, and quantities of cobalt and platinum off Hawaii. It is likely that substantial amounts of other valuable minerals will be identified in the future as exploration proceeds. Access to these minerals for
commercial recovery, including offshore sand and gravel for use as construction aggregate, is through the competitive leasing process of the OCSLA.

In 1994, Congress authorized coastal communities to use sand and gravel from the OCS for public works projects without going through the statute's bidding process. Since then, MMS has used this authority to allow federal, state, and local agencies to mine OCS sand to protect shorelines, nourish beaches, and restore wetlands. Between 1995 and 2004, MMS provided over 20 million cubic yards of OCS sand for 14 coastal projects. Louisiana alone is expected to seek millions of cubic yards of OCS sand for various barrier island restoration projects and levee systems.

The depletion of OCS sand in state waters after decades of excavation, and growing environmental opposition to the activity in areas close to shore, are exacerbated by the acceleration of erosion, ever-expanding coastal populations, and on the increasing vulnerability of fragile beaches, exposed beachfront property, and coastal-dependent industries to coastal storms. With the need for sand increasing and its availability in state waters decreasing, the OCS provides the obvious remedy. It is not, however, a remedy without associated problems.

MMS has numerous environmental studies underway or planned to evaluate the effects of OCS dredging on the marine and coastal environment and to identify ways to eliminate or mitigate harmful impacts. There remains, nevertheless, significant uncertainty about the long-term, cumulative impacts of sand and gravel mining on ocean systems and marine life. Changes in bathymetry can affect waves and currents in a manner that could increase shoreline erosion. Alterations to the ocean bottom can affect repopulation of the benthic community, cause increased turbidity, damage submerged resources such as historic shipwrecks, and kill marine organisms, including fish. For economic reasons, the demand for sand and gravel leases will most likely concentrate on OCS areas that are relatively close to shore. Some environmentalists and fishing representatives have opposed mining in state waters and may well oppose similar projects in adjacent federal waters.

A vital component of a national strategy to manage mineral resources located on the OCS is the need for an overall assessment of: the nation's OCS mineral endowment (sand and gravel, as well as other strategic minerals vital to the long-term security of the nation); the need for those resources (highest and best uses); the long-term environmental impacts associated with use of those resources; and the multiple-use implications of other uses of the OCS (including wind farms, cables, and pipelines). While resource managers have identified large volumes of sand off the nation's shores, the ultimate volumes that may be recovered remain unknown. Sand and gravel resources from the OCS are key to protecting the nation's shores and wetlands and to supplementing ever-diminishing onshore supplies of aggregate to support construction activities.

Recommendation 24–6

The Minerals Management Service should systematically identify the nation’s offshore non-energy mineral resources and conduct the necessary cost-benefit, long-term security, and environmental studies to create a national program that ensures the best uses of those resources.

References

6 Ibid.

PART VII

SCIENCE-BASED DECISIONS: ADVANCING OUR UNDERSTANDING OF THE OCEANS

CHAPTER 25
CREATING A NATIONAL STRATEGY FOR INCREASING SCIENTIFIC KNOWLEDGE .. 374

CHAPTER 26
ACHIEVING A SUSTAINED, INTEGRATED OCEAN OBSERVING SYSTEM .. 394

CHAPTER 27
ENHANCING OCEAN INFRASTRUCTURE AND TECHNOLOGY DEVELOPMENT ... 412

CHAPTER 28
MODERNIZING OCEAN DATA AND INFORMATION SYSTEMS ... 428
CHAPTER 25
CREATING A NATIONAL STRATEGY FOR INCREASING SCIENTIFIC KNOWLEDGE

Ocean managers and policy makers need comprehensive scientific information about the ocean and its environment to make wise decisions. Increased knowledge will help achieve sustainable resource use, economic development, and conservation of the ocean’s biological diversity and natural beauty. However, to ensure the highest return on the nation’s investment in ocean research, exploration, and marine operations, a national strategy is needed. The strategy should coordinate and prioritize basic and applied ocean and coastal research supported by all federal agencies, increase partnerships with the academic and private sectors, promote enhanced ocean exploration, and coordinate federal marine operations to reduce redundancies. Significantly increased research in ocean-related natural and social sciences will also be key to fostering a new era of ecosystem-based management supported by sound science.

Fortifying the Foundations of Ocean Understanding

Ocean science and technology are integral parts of the overall U.S. research enterprise and contribute greatly to society. They are essential to understanding the Earth’s environment and how it changes over time, improving climate predictions, managing marine resources wisely, finding beneficial new uses of ocean resources, protecting national security, and unlocking the basic mysteries of life on Earth. In addition, important technological advances have resulted from devices originally developed for ocean research and exploration, such as medical acoustic tools that grew out of sonar technologies.

Components of Ocean Science and Technology

For the purpose of this and the following three chapters of Part VII, the term ocean science and technology is defined as:

- the exploration of ocean environments and the conduct of basic and applied research to increase understanding of (1) the biology, chemistry, physics, and geology of the oceans and coasts, (2) oceanic and coastal processes and interactions with terrestrial,
Knowledge about the oceans advanced remarkably during the 20th century due to significant financial investments, a host of multidisciplinary and interdisciplinary studies, new technologies, and an expanding community of dedicated experts. Despite this progress, the ocean remains one of the least explored and understood environments on the planet and a frontier for discoveries that could provide important benefits. Broader understanding is essential to make ecosystem-based, multi-use, and adaptive management possible and to conserve marine biodiversity. Ocean science and technology will play an increasingly central role in the multidisciplinary study and management of the whole Earth system.

The chapters of Part VII focus on four building blocks of a renewed and restructured U.S. commitment to improving ocean science, technology, and infrastructure in support of sound management practices:

- This chapter presents a national strategy for conducting research, exploration, and marine operations at the federal level, in close partnership with academia and private organizations.
- Chapter 26 explains the need for the Integrated Ocean Observing System to monitor and predict ocean conditions and processes.
- Chapter 27 outlines the infrastructure and technology needed to support ocean and coastal research, management, assessments, enforcement, and monitoring.
- Chapter 28 discusses new requirements in data and information management to receive data from many sources and generate useful products for managers, policy makers, and the general public.

Federal Leadership in Ocean Science and Technology

Since the mid-1900s, the U.S. government has achieved a leadership role in ocean science and technology. For many years, the U.S. Navy was the major supporter, primarily through the Office of Naval Research (ONR). Since the National Science Foundation (NSF) was created in 1950, it has gradually assumed a larger role in this research portfolio, although ONR remains a significant contributor in certain fields. Today, fifteen federal agencies support or conduct diverse activities in ocean research, assessment, and technology. The heads of these agencies direct the National Oceanographic Partnership Program (NOPP), created by Congress in 1997 to coordinate national oceanographic research and education. NOPP has provided a useful venue for agencies to jointly support selected ocean science and technology projects, but it has not realized its full potential as an overarching mechanism for coordination among federal agencies, or between federal activities and those of state, local, academic, and private entities.

Under the new National Ocean Policy Framework proposed in Chapter 4, the National Ocean Council (NOC) will serve as the federal coordinating body for all ocean-related activities and the NOC's Committee on Ocean Science, Education, Technology, and Operations (COSETO) will assume leadership of NOPP. This new structure will allow for creation of a national strategy to promote ocean research, education, observation, exploration, and marine operations. NOPP's existing offices and committees will be incorporated within this structure (Figure 25.1). Ocean.US, the lead office for planning the Integrated Ocean Observing System (IOOS), and the Federal Oceanographic Facilities Committee, which provides advice related to oceanographic facilities, will both report to COSETO. An additional planning and coordinating body, Ocean.IT should be added to COSETO to provide stronger integration for information technology activities. (The creation of Ocean.IT is discussed in Chapter 28.)
Reviving the Federal Investment

The United States has a wealth of ocean research expertise spread across a network of government and industry laboratories and world-class universities, colleges, and marine centers. With strong federal support, these institutions made the United States the world leader in oceanography during the 20th century. However, a leader cannot stand still. Ocean and coastal management issues continue to grow in number and complexity, new fields of study have emerged, new interdisciplinary approaches are being tried, and there is a growing need to understand the planet on a global and regional scale. All this has created a corresponding demand for high-quality scientific information.

Significant federal investments by the Navy and NSF during the cold war years of the 1960s and 1970s enabled scientists to help promote the U.S. economy and security by supporting research on the fundamental physical, chemical, biological, and geological properties of the oceans. During that period, funding for ocean-related research constituted 7 percent of the federal research budget. However, the federal investment began to stagnate in the early 1980s (Figure 25.2), so that ocean research now comprises a meager 3.5 percent or less of the federal research portfolio. Due to this decrease, the NSF must reluctantly turn...
down about one-half of the highly-rated grant proposals it receives in the ocean sciences.

The current annual federal investment of approximately $650 million in marine science is well below the level necessary to adequately address the nation’s needs for coastal and ocean information. Unless funding increases sharply, the gap between requirements and resources will continue to grow and the United States will not be able to generate the information it needs to wisely manage its ocean resources.

Equally important, a failure to invest in fundamental ocean research now will cut off the pipeline of creative ideas that can produce breakthroughs in decades to come. ONR has a proud history of investing in basic research, primarily conducted at universities and private sector research institutions, with long-term benefits in areas such as ocean acoustics and ocean optics. Navy leaders would be wise to recognize and maintain this tradition. In addition to national security payoffs, past investments have also made significant contributions to the nation’s overall well-being and have been a major force in the education and preparation of an internationally superior, multi-disciplinary workforce.

Recommendation 25–1

Congress should double the federal ocean and coastal research budget over the next five years. The new funds should be used to support a balance of basic and applied research.

Creating a National Strategy

The United States has never developed a national strategy for ocean and coastal research that integrates ongoing efforts, promotes synergies among federal, state, and local governments, academia, and the private sector, translates scientific and technological advances into operational applications, and establishes national goals and objectives for addressing high-priority issues. Instead, for the most part, each federal ocean agency independently addresses its own mission needs.

A national strategy can help meet the ocean resource management challenges of the 21st century and ensure that useful products result from federal investments in ocean research. The move toward ecosystem-based management approaches will provide strong motivation for a new generation of scientific understanding. More information is needed about how marine ecosystems function on varying spatial scales, how human activities affect marine ecosystems and how, in turn, these ecosystem changes affect society.

Ecosystem-based management will require a deeper understanding of biological, physical, chemical, and socioeconomic processes and interactions. For example, as coastal population growth feeds a demand for new construction, managers will need to know which activities may cause rapid erosion, increase turbidity that may harm coral reefs, or disrupt coastal economies. In the area of fishery management, scientists and managers must understand the fundamental biology of fish species to protect spawning grounds and other essential habitat, while appreciating the social, cultural, and economic realities in fishing communities.
It is time for the United States to establish a national strategy for ocean and coastal research investments, and oversee implementation and funding of programs throughout the ocean science community. This plan should address issues at the global, regional, state, and local levels. It should emphasize ecosystem-based science to help resolve the current mismatch between the size and complexity of marine ecosystems and the fragmented nature of the scientific enterprise and federal structure. At the same time, the strategy must leave room for creative individuals to pursue the kind of fundamental scientific research that can lead to unforeseen breakthroughs.

Better coordination and integration will help provide the information needed to sustain resources, protect human lives and property, identify and nurture new beneficial uses, and resolve issues that result from competing activities. A unified national approach to ocean research, structured around national investment priorities but with the flexibility to incorporate new ideas, will also result in wiser and more efficient use of resources.

Recommendation 25–2

The National Ocean Council should develop a national ocean and coastal research strategy that reflects a long-term vision and promotes advances in basic and applied ocean science and technology. The strategy should recognize the different ocean science sectors (government, academic, commercial, and nongovernmental), acknowledge their different roles, and maximize the use of partnerships.

Advancing Ocean and Coastal Research

The national ocean and coastal research strategy designed by the NOC will need to include both substantive and procedural guidance for the federal agencies. It should encompass a broad range of issues, as discussed throughout this report and as summarized in Box 25.1. Changes in grant practices and the establishment of strong partnerships are also essential to optimize the national research enterprise.

The national strategy should promote the scientific and technological advances required to observe, monitor, assess, and predict environmental and socioeconomic events and long-term trends. A few areas are worthy of special note.

Climate Change

One of the most important environmental trends to explore is climate change and variability. Although the ocean plays a critical role in climate—it has 1000 times the heat capacity of freshwater lakes and rivers, its circulation drives the global heat balance, and it plays a primary role in the global carbon cycle—these phenomena remain understudied and poorly understood.

The process of climate change should be examined both on geologic time scales that characterize the transitions between ice ages, and over shorter periods of time. The buildup of greenhouse gases in the atmosphere will increase the melting of polar ice, introducing large quantities of fresh water into the North Atlantic. Many researchers now believe this process could drastically change ocean circulation and weather patterns in the span of a few years. In particular, the Gulf Stream could slow or stop, causing colder temperatures along the eastern seaboard of the United States and ramifications around the globe. It is in the nation's interest to learn more about the processes that lead to abrupt climate changes, as well as their potential ecological, economic, and social impacts.

Even as we try to comprehend the role of the ocean in climate change, we need also to understand the effects of climate change on ocean ecosystems. If temperatures around the globe continue to warm, sea level will continue to rise, putting many coastal residents at greater risk from storm surges and erosion. For individual ecosystems, even small changes in
Marine Biodiversity

Maintaining overall ecosystem health requires an improved understanding of biological diversity on different levels, including genetic diversity (the variety of genetic traits within a single species), species diversity (the number of species within an ecosystem), and ecosystem diversity (the number of different ecosystems on Earth). The largest threats to maintaining diversity on all three scales are human activities, such as overfishing, pollution, habitat alteration, and introductions of non-native species. The extent of marine biological diversity, like so much about the ocean, remains unknown. But based on the rate at which new marine species are currently being discovered, continued exploration of the ocean is almost certain to result in the documentation of thousands of additional species that can provide fresh insights into the origins of life and human biology.

Regional Ecosystem Dynamics

Major initiatives, such as the U.S. Climate Change Science Program and the Census of Marine Life, have been launched in the last couple of years to study the large-scale research topics mentioned above. While these are important, many issues relevant to the everyday needs of coastal managers do not occur on such global scales. Implementation of ecosystem-based management approaches will require greater knowledge of physical and biological dynamics on a regional scale. Ocean and coastal research targeted at regional concerns, such as the origins of nonpoint source pollution, the impacts of development on coastal habitat and water quality, socioeconomic trends in coastal areas, and the impacts of global-scale processes on local resources is urgently needed. Currently, insufficient emphasis is placed on this kind of research, although the regional ocean information programs recommended in Chapter 5 could help close this gap.

Social and Economic Research

The ocean and coastal environment is rife with conflicts among competing users and groups of people applying different sets of values to the same issues. To resolve these conflicts, information is needed not only about the natural environment but also about relevant social, cultural, and economic factors. The funding required to increase knowledge in these areas is modest when compared to the cost of the ships, labs, and instruments used in oceanographic research. Nevertheless, social and economic research related to our coasts and oceans has long been overlooked.

A Neglected Research Area

The National Sea Grant College Program does fund some studies that examine legal, political, economic, anthropological, and other human dimensions of ocean and coastal affairs. However, these projects often receive less than 10 percent of the Program’s overall research budget. In other programs, social and economic sciences garner even less support, creating a situation where basic information is not available to support management and planning.

To meet specific programmatic requirements of the National Environmental Policy Act (NEPA) and other laws that require impact analyses, individual resource management agencies have had to pull together social science and economic information at various times. For example, National Oceanic and Atmospheric Administration’s (NOAA’s) National Marine Fisheries Service hired anthropologists and economic researchers follow-
Box 25.1 Examples of Ocean and Coastal Science Needs

Fundamental knowledge about oceans and coasts is essential for assessing and predicting the status of marine resources, finding beneficial new uses of ocean resources, and implementing an ecosystem-based management approach. Greater understanding of these environments will enable policy makers and managers to make wise, science-based decisions at the national, regional, state, tribal, and local levels. However, to achieve this level of understanding, significantly more research will be needed as indicated throughout this report. The list below gives some idea of the range of topics to be covered, although it is by no means a comprehensive list of all needed research.

Aquaculture
- determination of the environmental impacts of marine aquaculture and the development of best management practices
- knowledge about the impacts of aquaculture feeds, species introductions, and the use of chemicals and pharmaceuticals in aquaculture practices

Biodiversity
- baseline measurements of marine biodiversity on different scales (i.e., communities, populations, and individuals)
- methods to mitigate human activities that adversely affect biodiversity and marine ecosystems

Climate Change
- better understanding of the ocean’s role in global carbon and heat cycling
- predictive models of the effects of global warming, including sea-level rise and changes in global circulation

Coastal Habitat
- knowledge about the structure and functioning of coastal habitats and how human activities and natural events affect them
- effective habitat restoration techniques

Coral Reefs
- measurements of ocean temperature, currents, and other variables that affect changes in coral communities
- prediction of the impacts of global climate change and other natural and human-induced events on coral communities
- comprehension about the distribution and ecology of cold water corals

Fisheries
- better understanding of the relationship between fisheries and ecosystem dynamics, including the identification of essential habitat
- measures of the social science and economic aspects of fisheries

International Science
- international scientific partnerships to enhance long-term ocean science and management capacity in other nations

Invasive Species
- comprehension of how or why certain species become invasive
- understanding about why certain factors make an ecosystem more susceptible to invasions
- new techniques for invasive species identification and eradication
- new ballast water treatment and exchange techniques

Marine Debris
- knowledge about debris behavior in the marine environment and its ecological effects on organisms and ecosystems
- effective debris control measures
- identification of marine debris sources

Marine Mammals and Protected Species
- expanded understanding of basic biology and population status
- understanding of the effects of noise, coastal development, offshore oil and gas exploration, vessel traffic, military activities, and marine debris on these species
- methods to mitigate harmful impacts on these animals
Natural Hazards
- basic understanding and site-specific knowledge about a range of natural coastal hazards
- new methods for tracking and predicting hazards and assessing risks
- techniques to mitigate hazard events

Oceans and Human Health
- discovery of new marine bioproducts
- elucidation of the interrelations and causal effects of marine pollution, harmful algal blooms, ecosystem alteration, and emerging marine diseases in disease events
- new methods to monitor and mitigate threats to human health in marine and freshwater systems

Offshore Energy and Minerals
- understanding of cumulative, low-level, and chronic impacts of oil and gas activities on marine environments
- evaluation of the risks to the marine environment due to aging pipelines
- evaluation of the environmental effects of OCS mineral and sediment use

Regional Understanding
- regional-scale research programs to understand ecosystem processes
- integration of biological, physical, and chemical research on a regional, ecosystem basis

Sediment
- data on sediment processes in the marine environment on regional and national scales
- innovative techniques and technologies for managing marine sediment
- comprehensive information about the source, movement, volume, quality, and appropriate use or disposal of sediment—particularly contaminated sediment

Socioeconomic Science
- operational data on the economic factors and human dimension affecting ocean and coastal areas and activities

Vessel Pollution
- understanding of cumulative impacts of commercial and recreational vessel pollution on ecologically sensitive areas
- knowledge of impacts of vessel air emissions, particularly in ports and inland
- disposal options for concentrated sludge resulting from advanced sewage treatment on large passenger vessels

Water Pollution
- advanced treatment options for eliminating nitrogen, phosphorus, and other emerging contaminants, such as pharmaceuticals, from wastewater discharges
- new methods for removing nutrients and pathogens in coastal runoff
- new models and measures of atmospheric transport and deposition of pollutants
ing enactment of the 1976 Magnuson–Stevens Fishery Conservation and Management Act. The Minerals Management Service instituted a relatively comprehensive socioeconomic research program in the 1970s to aid in developing five-year leasing plans that would meet NEPA standards, and to address the requirements of the OCS Lands Act Amendments for monitoring the impacts of offshore oil and gas development on the human environment. The U.S. Army Corps of Engineers has also funded research into marine cultural heritage to meet its NEPA obligations. And, in the 1990s, NOAA’s National Ocean Service created the Coastal Services Center to help generate information on coastal demographics. Although wide-ranging, these efforts remain ad hoc, uncoordinated, and related to specific issues that wax and wane in importance over time. Furthermore, the data developed on an agency-by-agency basis are often mutually incompatible and hard to access.

Recently, NOAA has begun to reassess its needs for social and economic information. In 2003, a panel of social scientists established by its Science Advisory Board concluded that NOAA’s support for social sciences is not comparable to that of other agencies with similar environmental assessment and stewardship responsibilities and that this shortcoming has hindered the agency’s ability to accomplish its mission.2 NOAA’s National Marine Protected Areas Center also issued a report identifying high-priority social science needs to support the planning, management, and evaluation of marine protected areas.3

Some existing and emerging ocean and coastal issues that will require better social and economic information include:

- Multiple-use controversies in the coastal zone.
- Novel offshore uses, such as the proposed introduction of wind farms.
- Consensus-based decision making involving stakeholders, watershed councils, public-private partnerships, and numerous nongovernmental organizations.
- Global climate change and its potential effects on a range of issues including agriculture, water supply, and coastal development.
- Changes in coastal communities due to shifts in fishery policy, growth of the tourism industry, and redevelopment of ports and waterfronts.
- Changes in coastal demographics.
- Varying perceptions of coastal environmental values.

Any decision affecting our oceans and coasts should take socioeconomic information into account, harnessing expertise from a wide range of specialties to deal with issues that demand a broad range of knowledge. This will require integrated assessments by teams of natural and social scientists working together with stakeholders and policy makers. Such an approach, which has been employed in the context of climate change, is especially well suited to emerging ocean issues that require a merger of natural and social sciences, technology, and policy.

The Coastal and Ocean Economies

Cost-benefit analyses to support ocean and coastal decisions require enhanced economic data. However, the major federal economic statistical agencies have neither the mandate nor the means to study the ocean and coastal economies.

NOAA undertakes some economic analyses in support of its various missions. For example, its Coastal and Ocean Resource Economics Program has assessed the economic impacts of fishery management plans and marine sanctuaries. NOAA has also worked with other federal agencies to conduct the first major examination of the economics of marine-related recreation.4 But NOAA’s economic analyses tend to be directed at very specific purposes associated with particular programs. NOAA has not supported sustained, consistent, and comprehensive data collection and analyses on the ocean and coastal economies.

To lay the groundwork for a broader program, NOAA and the U.S. Environmental Protection Agency are helping support the National Ocean Economics Project, a multi-year research initiative involving economists from several universities. While this effort is gener-
ating valuable information, including much of the economic data used in this report, it remains a research project. To be useful in understanding coastal and ocean economies and assessing the impacts of management policies on individuals, businesses and communities, a long-term, operational program is needed. Coordination between the federal government and other entities will be needed to generate the socioeconomic data required for operational activities (Table 25.1). NOAA, as the federal agency with principal responsibility for the oceans, should take the lead in bringing these parties together to provide the economic data needed for ocean and coastal decision making at the federal, state, regional, and local levels. (A study of U.S. ocean and coastal economies, prepared for the Commission by the National Ocean Economics Project, is included as Appendix C to this report.)

Key functions of an operational program for ocean and coastal economic data should include:

- **Data Collection**—Standard measures of employment, income, and output for ocean and coastal economies must be developed. The National Ocean Economics Project provides a foundation for this work, but additional measures are needed to assess: the influence of oceans and coasts on land values; the role of the oceans in the tourism

| Table 25.1 Organizations Collecting Socioeconomic Data on the Ocean and Coasts |
Entity	Role
National Oceanic and Atmospheric Administration	Current economic activities are performed by NOAA’s National Marine Fisheries Service to help draft and defend Fishery Management Plans and by the Coastal and Ocean Resource Economics (CORE) Program, which conducts individual studies on issues of interest, such as economic valuations of beaches or coral reefs.
Bureau of Labor Statistics	In cooperation with the states, the Bureau collects the largest amount of basic employment and wage data on the U.S. economy. These data will continue to be the fundamental elements used for monitoring the coastal and ocean economies at national, regional, and local levels.
Bureau of the Census	The Census Bureau is the other major collector of primary data on the economy, including the tabulation of population, housing, and major economic sectors.
U.S. Department of Agriculture	USDA has responsibility for the Census of Agriculture, which includes data on marine aquaculture.
Bureau of Economic Analysis	BEA uses data from other agencies to maintain the most important measure of annual economic activity: the national income and product accounts, whose best-known element is the gross domestic product. Related measures, such as the gross state product, are key to understanding regional economies.
Minerals Management Service	MMS collects and analyzes socioeconomic data to examine the impacts of outer Continental Shelf activities on natural, historical, and human resources.
U.S. Environmental Protection Agency	EPA undertakes substantial economic research in the fields of land, water, and air pollution. EPA’s economic research focuses particular attention on nonmarket values, and provides an important supplement to NOAA’s work in this area.
National Science Foundation	NSF supports much of the basic research in the sciences, including the social sciences. It has recently undertaken new initiatives to better integrate the natural and social sciences to improve management of the environment and natural resources.
Bureau of Transportation Statistics	BTS collects and analyzes data related to maritime trade and transportation, such as tonnage of U.S. commerce shipped and foreign vessel entries and departures at major U.S. ports.
Universities and Other Research Organizations	The majority of research on coastal and ocean economies is conducted as a cooperative arrangement between the federal government and researchers in the nation’s universities and private research organizations. The interactions among federal, academic, and private researchers strengthen the quality of research by introducing multiple perspectives and organizational missions.
Coastal communities depend on healthy ecosystems and economies for their survival. Research to better understand the inter-connectivity between the economy and the environment ... needs to be greatly expanded.

—Richard DeVoe, Executive Director, South Carolina Sea Grant, testimony to the Commission, January 2002

and recreation industries in terms of both market and non-market values; and the economic value of ecosystem services provided by the oceans and coasts.

- **Data Distribution**—The data that would be generated by this program are urgently needed by local and state managers, researchers, and stakeholders, and must be easily accessible. The availability of modern database and Internet delivery systems has made this function much easier and cheaper than in the past.

- **Data Analysis**—Data only become useful outside the academic realm when they are analyzed and transformed into information products. Data analyses should be tailored to federal, regional, state, and local needs. Socioeconomic trends should be analyzed and linked to environmental trends. Geographic Information Systems will facilitate the integration of socioeconomic and natural resource data.

- **Education and Research**—Additional research should focus on improving measurements of nonmarket values, developing ways to quantify the use of ocean and coastal resources, and standardizing measures such as employment and output. The field of ocean and coastal economics is relatively new and primarily confined to a small group of specialists. To accommodate the growing demand for expertise in this field, expanded training of scientists and policy specialists will be required.

Recommendation 25–3

The National Ocean Council (NOC) research strategy should include a national program for social science and economic research to examine the human dimensions and economic value of the nation’s oceans and coasts. The NOC should direct relevant agencies to include socioeconomic research as an integral part of their efforts.

The national program should include:

- an operational socioeconomic research and assessment function within the National Oceanic and Atmospheric Administration (NOAA).
- an interagency steering group, chaired by NOAA and including the Bureau of Labor Statistics (BLS), Bureau of the Census, Bureau of Economic Analysis (BEA), U.S. Department of Agriculture, U.S. Environmental Protection Agency, and National Science Foundation to coordinate ocean-related socioeconomic research.
- biennial reports by BLS and BEA on the employment, wages, and output associated with U.S. coasts and oceans.
- biennial reports by the Bureau of Transportation Statistics on intermodal access to U.S. ports and maritime facilities and assessments of relevant maritime system performance and economic data.
- periodic reports on such topics as coastal demographics, geographic patterns and trends of ocean and coastal use, economic contributions, attitudes and perceptions, functioning of governance arrangements, and public-private partnerships.
- establishment of partnerships to take maximum advantage of the expertise resident within government agencies, academic institutions, and the private sector.
- increased interactions with regional, state, and local stakeholders through regional ocean councils and regional ocean information programs so their information needs can be met and socioeconomic changes at these levels can be documented and analyzed.

These efforts deserve, and will require, significant new funding, as discussed in Chapter 30. While this may prove challenging in a time of scarce budgetary resources, major federal funding is already devoted to economic research in the agricultural sector, although the ocean economy is two and a half times larger than agriculture in terms of total production of goods and services (Appendix C).
The National Sea Grant College Program

The National Sea Grant College Program offers a unique opportunity to gather state and local input in determining research needs, and provides a proven mechanism for applying research results to management activities. The Sea Grant program, a partnership between NOAA, thirty state Sea Grant programs, and over 200 universities, is a highly-leveraged program. To the $60 million in federal funds appropriated in fiscal year 2003, the states contributed an additional $36 million, a match of nearly 60 percent.

Sea Grant's emphasis on applied research, education, and outreach results in projects that respond directly to local and national needs as determined by the marine industry, government representatives, resource managers, and the public. Sea Grant advisory specialists and coastal field agents convey the needs of the marine communities to university scientists, and in turn, transfer research results to resource users and managers at the state and local level. Sea Grant also advances formal and informal education. Its communications specialists package and deliver research, outreach, and educational information on a wide range of topics.

Sea Grant's current strategic plan focuses on promoting ecosystem-based management and involving constituencies from government, universities, and the private sector to strengthen the U.S. marine research enterprise. The Sea Grant program has additional untapped capacity to promote coastal economic growth, improve the quality of coastal environments, educate students in marine sciences, and solve critical marine and Great Lakes resource problems. However, limited funding has stymied Sea Grant's ability to fund research and outreach activities.

In addition, in some regions, Sea Grant could potentially assume responsibility for the regional ocean information programs discussed in Chapter 5, if it is able to take on new tasks and its organizational structure is extended beyond the state level.

Recommendation 25–4

Congress should significantly expand the National Sea Grant College Program as part of doubling ocean and coastal research funding.

Agency Strategies and Funding Mechanisms

To ensure that new investments are used wisely and that important research activities continue, federal agencies will need to create their own long-term strategic plans and remedy structural problems in their grant mechanisms. Improved cooperation between federal ocean agencies, academic institutions, and industry can draw on the strengths of each, ensure that quality research is conducted, satisfy multiple national objectives, and achieve a balance between basic and applied science.

In creating long-term plans, a balance must be reached between support for basic, curiosity-driven research conducted mostly at universities and marine research centers, and more applied research, often conducted at government laboratories to support operations, management, and monitoring activities. Immediate national needs tend to exert pressure for more applied research, but the enduring value, and often unexpected outcomes, of basic research should never be underestimated. Basic oceanographic research in the 1940s, 1950s, and 1960s, primarily supported by the U.S. Navy, increased our understanding of ocean circulation and stratification, marine optics, marine acoustics, seafloor geology, and robotics, and led to many widely-used and versatile new technologies with both military and domestic applications, such as the Global Positioning System.

Problems in the current system for awarding federal research grants make it difficult to conduct the kind of interdisciplinary, ecosystem-based research required to understand the ocean environment. Short-term research grants of two- to five-years duration are now...
typical. This type of funding is useful for research on discrete topics of limited scope, and has the advantage of giving agencies the flexibility to adjust quickly to changing priorities. However, it is not adequate to acquire the continuous data sets that will be essential for examining environmental changes over time or to accommodate the practicalities and uncertainties of marine research in a dynamic and unpredictable environment.

In addition, a variety of mechanisms are used by federal agencies to review proposed ocean research grants, some of which work better than others. Grant systems that are not open to all applicants or that do not use an objective review process for ranking proposals are unlikely to produce the highest quality research. Systems that favor established researchers to the detriment of young scientists, whether intentionally or not, are also flawed, stifling diversity and limiting the infusion of new ideas. When all research proposals, including those from scientists working at federal laboratories, are subject to the same rigorous review process, tax dollars are more likely to support the best science. Streamlined grant application and review processes will also help get more good science done in a timely way.

The ocean science community includes many scientists outside academic and federal labs. Although coordination among sectors has steadily improved, the process will remain mainly ad hoc without the backing of a national strategy and leadership. A clearer understanding of the respective strengths and roles of the different sectors could lead to productive new research partnerships, foster intellectual risk-taking, leverage funding, and encourage participation in large multi-sector research efforts valuable to the nation.

There is also a need to gain feedback from managers at state and federal levels and from the private sector to guide new research directions and technology development and ensure that research results are translated into useful products in a timely manner. Coordination with the regional ocean information programs recommended in Chapter 5 and increased feedback through the Sea Grant programs will provide needed avenues for gaining such input.

Recommendation 25–5

The National Ocean Council (NOC) should direct ocean-related agencies to develop ten-year science plans and budgets consistent with the national strategy. The NOC should provide additional guidance concerning granting mechanisms.

The NOC guidance should:

- require agencies to provide multi-year (greater than five-year) funding opportunities in addition to traditional grant mechanisms.
- reiterate the importance of balancing basic and applied research projects and promote the transition of basic research results to applied uses.
- require a system of independent review for all grant applications, including those from federal laboratories.
- incorporate the science needs and priorities of local, state, regional, and national managers, working with the regional ocean information programs.

Each agency’s first ten-year science plan should describe how the proposed doubling of federal ocean research investments would enhance new and ongoing activities.

Building a National Ocean Exploration Program

Ocean exploration missions conducted during the 19th and 20th centuries were the first attempts to document how deep the oceans are, to chart key bathymetric features, and to identify and study marine life. Previously, the oceans were viewed as mere highways for maritime commerce, void of life below 1,000 feet. But despite the important discoveries made during these missions, we still have only a cursory understanding of the deep ocean.
The Value of Ocean Exploration

About 95 percent of the ocean floor remains unexplored, much of it located in harsh environments such as the polar latitudes and the Southern Ocean. Experience teaches us, however, that these vast regions teem with undiscovered species and natural and cultural resources. On virtually every expedition, oceanographers make fascinating new discoveries. Hydrothermal vents in the Pacific, chemosynthetic communities in the Gulf of Mexico, numerous new species of fish and invertebrates, and important archeological sites are but a few of the important discoveries made in the past thirty years.

Advances in deep-sea technologies have made it easier to locate shipwrecks and historical artifacts lost in the ocean depths, such as the stunning discovery of the RMS Titanic in 1985. The continued exploration of marine archaeological sites will help us to better understand human history and our global cultural heritage. In addition, preliminary evidence indicates that immense new energy sources exist in the deep sea. The amount of carbon bound in frozen gas hydrates on the seafloor is conservatively estimated to be twice the total amount of carbon existing in all the other known fossil fuels on Earth.6

Ocean exploration also offers an unprecedented opportunity to engage the general public in marine science and conservation. Exploration missions to the depths of the ocean provide images of ancient human artifacts, amazing creatures, and never-before-seen ecosystems. These images fire the imagination of people of all ages and can be used in both formal and informal educational settings. This kind of popular excitement and support can be an enormous asset in sustaining exploration projects over the long term.

Given the importance of the ocean in human history and in regulating climate change, guaranteeing food security, providing energy resources, and enabling worldwide commerce, it is astounding that we still know so little about it. This is due primarily to the lack of a long-term, large-scale national commitment to ocean exploration. The ocean and its depths need to be systematically explored to serve the interests of the nation and humankind.

Growing Calls for a National Program

Although our dependence on healthy marine ecosystems continues to grow, ocean exploration remains a relatively minor component of U.S. ocean science and is a missing link in the national strategy to better understand Earth’s environment. Comprehending the genetic diversity of ocean life, developing fisheries, discovering energy resources, investigating submerged cultural resources, and mapping the seafloor all require more extensive exploration. U.S. leadership in ocean exploration will increase what is known about all aspects of ocean life and resources and make it possible to reach management decisions based on more complete scientific information.

There have been many calls for a dedicated national ocean exploration program. The Stratton Commission recommended an international program on a global scale.7 In response, the United States led the International Decade of Ocean Exploration (IDOE) in the 1970s. IDOE programs greatly improved ocean observation systems, and led to such important research programs as Geochemical Ocean Sections, the Joint Global Ocean Flux Study, the Ridge Interdisciplinary Global Experiments, and the World Ocean Circulation Experiment. These initiatives dramatically enhanced understanding of the global climate system, geochemical cycling, ocean circulation, plate geodynamics, and life in extreme environments.

In 1983, President Reagan directed the U.S. Department of the Interior to take the lead role in exploring the waters of the newly-recognized U.S. exclusive economic zone (EEZ). Three years later, in a report to the President and Congress, the National Advisory Committee on Oceans and Atmosphere (NACOA) detailed the economic importance of the EEZ and emphasized the need to improve efforts to assess its resources.8 The NACOA report recognized that federal science programs were making important contributions, but concluded that individual efforts based on separate agency missions were neither comprehensive nor making...
acceptable progress. In response, the U.S. Geological Survey (USGS) and NOAA were tasked with developing a ten-year exploration plan. Although reconnaissance surveys of much of the EEZ were completed through 1990, more detailed assessments were never pursued. During the late 1990s, efforts to explore the EEZ and beyond lagged due to budgetary constraints.

In 2000, however, the President’s Panel on Ocean Exploration called for a robust national ocean exploration program propelled by the spirit of discovery. The panel proposed multidisciplinary expeditions and annual funding of $75 million, not including the cost of providing a dedicated ship and undersea vehicle. These recommendations led to the establishment of the Office of Exploration within NOAA, at a token funding level of $4 million in fiscal year 2001, increasing to $14 million in each of fiscal years 2002 and 2003. This is helping NOAA fulfill its applied science, environmental assessment, and technology development responsibilities, although the program’s small budget and agency-specific focus limit its effectiveness.

A 2003 National Research Council report reiterated the need for a comprehensive national ocean exploration program strongly linked to traditional research, with broad international partnerships, and a commitment to educational opportunities. The report offered specific recommendations on exploration priorities, management models, and technology and infrastructure requirements. It also presented detailed cost analyses and projections for programs at various levels of sophistication, including costs for capital construction and annual operations.

NOAA and the National Science Foundation (NSF), by virtue of their missions and mandates, are well positioned to lead a global U.S. ocean exploration effort. NOAA currently runs the Office of Ocean Exploration, but NSF’s focus on basic research provides an excellent complement to NOAA’s more applied mission. Working together, the two agencies have the capacity to systematically explore and conduct research in previously unexamined ocean environments. To succeed, coordination, joint funding, and interactions with academia and industry will be essential.

Recommendation 25–6
The National Oceanic and Atmospheric Administration and the National Science Foundation should lead an expanded national ocean exploration program, with additional involvement from the U.S. Geological Survey and the U.S. Navy’s Office of Naval Research. Public outreach and education should be integral components of the program.

The dedicated infrastructure needed for an expanded national ocean exploration program is discussed in Chapter 27.

Coordinating and Consolidating Marine Operations

The need for routine mapping, monitoring, and assessment of U.S. ocean and coastal waters (referred to as marine operations) has grown significantly in the past two decades. Accurate, up-to-date maps and charts of harbors, coastlines, and the EEZ are necessary for many activities, including shipping, military operations, and scientific research. In addition, expanded regulatory regimes rely heavily on routine assessments of living and non-living marine resources and water quality. Unfortunately, the accuracy and resolution of existing information is inadequate, and ocean and coastal environments are changing faster than can be documented by the current number and frequency of surveys.

Modern sensor technologies, which can detect new variables in greater detail in the water column and seafloor, have improved our ability to follow changing ocean and terrestrial dynamics. As these new technologies are implemented, they need to be calibrated against previous methods, as well as with each other, to provide useful environmental characterizations and ensure the consistency of long-term data sets.
Integrated National Maps and Assessments

At least eleven federal agencies (Box 25.2), almost all coastal states, and many local agencies, academic institutions, and private companies are involved in mapping, charting, and assessing living and nonliving resources in U.S. waters. However, different organizations use varying methods for collecting and presenting these data, leading to disparate products that contain gaps in the information they present.

Ideally, a variety of information, such as bathymetry, topography, bottom type, habitat, salinity, and vulnerability, should be integrated into a single map using Global Positioning System coordinates and a common geodetic reference frame. In addition, it is important for these maps to include information on living marine resources, energy resources, and environmental data when available. Only then will it be possible to create the complete ocean characterizations necessary for developing and implementing science-based, ecosystem-based management approaches. However, achieving this integration in the coastal zone is an extremely complex proposition.

By launching the Geospatial One-Stop Portal, the Office of Management and Budget has taken steps to avoid the collection of redundant data, facilitate information sharing, and plan for future integrated mapping and charting. This Web-based server provides national base maps with administrative and political boundaries that can also incorporate information on agriculture, atmosphere and climate, hazards vulnerability, ecology, economics, conservation, human health, inland water resources, transportation networks, and utilities. Furthermore, federal agency coordination is led by the Federal Geographic Data Committee (FGDC)—a nineteen member interagency committee composed of representatives from the Executive Office of the President and departments and independent agencies that promotes the coordinated use, sharing, and dissemination of geospatial data on a national basis. The FGDC is currently developing the National Spatial Data Infrastructure in cooperation with state, tribal, and local governments, the academic community, and the private sector. This initiative includes policies, standards, and procedures for organizations to cooperatively produce and share geographically-linked data.

Federal agencies must continue to integrate and share data in the quest to create readily accessible maps that track geological, physical, biological, and chemical features in three dimensions. The fourth dimension—time—should also be incorporated wherever possible to track changes in ocean and coastal resources over the short and long terms.

Federal Mapping and Charting Activities

Maps of coastal land areas, and charts of nearshore and offshore areas, are essential for safe navigation and for defining boundaries, mitigating hazards, tracking environmental changes, and monitoring uses. Because many organizations have mapping and charting responsibilities, there are significant overlaps. This situation results in multiple entities within government, industry, and academia undertaking the expensive and time-consuming
task of repeating surveys of the same area for different purposes. Furthermore, differences in scale, resolution, projection, and reference frames inhibit the integration of onshore and offshore data. It is impossible to merge most existing maps and charts to provide a continuous picture of the coastal zone. However, recent advances in the development of satellite positioning systems, sensors, and data manipulation techniques have created a new generation of geospatial data products that address some of the key challenges faced by ocean and coastal managers and policy makers.

The U.S. marine transportation system is in particular need of better charts. As this industry prepares for exponential growth over the next twenty years, a backlog of required surveys is developing. Approximately 35,000 square nautical miles of navigationally significant U.S. waters have been designated by NOAA as critical areas requiring updated information on depth and obstructions. New maps and charts of these waters and ports are essential to minimize shipping accidents and to support the national security missions of the U.S. Navy and Coast Guard.

Another significant issue is the need to conduct extensive multi-beam sonar mapping of the U.S. continental shelf, to the outer edge of the continental margin where it extends beyond 200 miles. In this area, a potential $1.3 trillion in resources (including oil, minerals, and sedentary species) could become available under provisions of the United Nations Convention on the Law of the Sea (LOS Convention). If the United States accedes to the LOS Convention, it will be able to present evidence to the United Nations Commission on the Limits of the Continental Shelf in support of U.S. jurisdictional claims to its continental shelf. The University of New Hampshire’s Center for Coastal and Ocean Mapping/Joint Hydrographic Center, in conjunction with NOAA and USGS, has already identified regions in U.S. waters where the continental shelf is likely to extend beyond 200 nautical miles and is developing strategies for surveying these areas. Bathymetric and seismic data will also be required to establish and meet a range of other environmental, geologic, engineering, and resource needs.

A recent National Research Council report on national needs in coastal mapping and charting provides a comprehensive review of the topic and offers sound recommendations for: setting common reference frames and protocols; achieving data integration, interchangeability, and accuracy; and improving data accessibility. While all of these steps are essential to improving federal mapping and charting activities, the National Research Council’s recommendations for reducing redundancy in mapping and charting missions are of utmost importance.

Coordination of the many existing federal mapping activities is necessary to increase efficiency and help ensure that all necessary surveys are conducted. Registering all federally funded mapping and charting activities within a common database will allow agencies to know what missions are being scheduled and will provide opportunities for coordinating similar activities. Once implemented, this registry could serve as the focal point for national coordination of geospatial data collection and analysis efforts.

The Marine and Coastal Spatial Data Subcommittee of the FGDC, whose membership is composed of representatives from NOAA, USACE, National Geospatial-Intelligence Agency, the U.S. Navy, USGS, and MMS, plus other relevant organizations such as the U.S. Department of State and EPA, is the logical organization to coordinate and standardize federal mapping and charting activities. To achieve the best results at the lowest cost, it will be essential to draw on mapping and charting expertise found in the private sector and academia. Coordination with state efforts will further reduce redundancies.
Recommendation 25–7
The Federal Geographic Data Committee (FGDC) should coordinate federal ocean and coastal mapping and charting activities with the goal of creating standardized, easily accessible national maps. These maps should be able to incorporate living and nonliving marine resource data along with bathymetry, topography, and other natural features, and should provide seamless data across the shoreline, coastal zone, nearshore areas, and open ocean waters. To accomplish these goals, the FGDC should:

- coordinate an interagency budget strategy to accelerate the completion of mapping priorities throughout coastal areas, the exclusive economic zone, and continental shelf.
- establish and maintain a Web-accessible registry that allows federal agencies to coordinate mapping and charting missions.
- establish and maintain a single Web-based source to provide easy access to geospatial data and integrated national maps.
- ensure that federal mapping and charting activities take full advantage of resources available in the academic and private sectors.
- ensure that federal mapping activities take advantage of state resources and address state information needs.

Providing Useful Information to Congress

A theme reiterated throughout this report is that increased research, exploration, and marine operations can provide decision makers with the information they need to make better decisions. While Chapters 26 and 28 address the collection, analysis, and presentation of environmental data for research and management, a specific gap remains in the flow of scientific information to Congress.

Until its termination in 1995, the Office of Technology Assessment (OTA) provided nonpartisan analytical information to Congress and assisted members and staff in understanding the complex and highly technical issues that increasingly affect society. While OTA’s mission covered a wide range of issues, it produced many reports important to ocean and coastal policy, including studies on fisheries, wetlands, marine technologies, offshore energy, oil pollution, climate, aquaculture, maritime trade, and more (Box 25.3).

Box 25.3 Selected Ocean and Coastal Reports from the Former Congressional Office of Technology Assessment

- Establishing a 200-Mile Fisheries Zone (1977)
- Wetlands: Their Use and Regulation (1984)
- An Assessment of Maritime Trade and Technology (1983)
- Oil and Gas Technologies for the Arctic and Deepwater (1985)
- Technologies for Underwater Archaeology and Maritime Preservation (1987)
- Bioremediation for Marine Oil Spills (1991)
- Science and Technology Issues in Coastal Ecotourism (1992)
- Preparing for an Uncertain Climate-Vols. I and II (1993)
- Global Change Research and NASA’s Earth Observing System (1993)
- Fish Passage Technologies: Protection at Hydropower Facilities (1995)
OTA occupied a unique role among the congressional information agencies. Although the General Accounting Office evaluates ongoing government programs and the Congressional Research Service provides congressional members and staff with information on legislative topics, OTAs assignments covered a broad range of technical areas and its studies were comprehensive, serving as an important congressional resource for crafting public policy. OTAs work influenced many pieces of legislation and contributed to improved communication between policy makers and the scientific, technical, and business communities.

Congress’s need for comprehensive scientific and technical information is as strong today as it has ever been, if not stronger. In particular, many emerging ocean and coastal activities will require comprehensive analyses to ensure that new legislation is based on the best information possible.

Recommendation 25–8
Congress should re-establish an Office of Technology Assessment to provide it with objective and authoritative analyses of complex scientific and technical issues.

References

Coastal and ocean observations provide critical information for protecting human lives and property from marine hazards, enhancing national and homeland security, predicting global climate change, improving ocean health, and providing for the protection, sustainable use, and enjoyment of ocean resources. While the technology currently exists to integrate data gathered from a variety of sensors deployed on buoys, gliders, ships, and satellites, the implementation of a sustained, national Integrated Ocean Observation System (IOOS) is overdue and should begin immediately. Care should be taken to ensure that user needs are incorporated into planning and that the data collected by the IOOS are turned into information products and forecasts that benefit the nation. In addition, the IOOS should be coordinated with other national and international environmental observing systems to enhance the nation’s Earth observing capabilities and enable us to better understand and respond to the interactions among ocean, atmospheric, and terrestrial processes.

Making the Case for an Integrated Ocean Observing System

About 150 years ago, this nation set out to create a comprehensive weather forecasting and warning network and today most people cannot imagine living without constantly updated weather reports. Virtually every segment of U.S. society depends on the weather observing network. Millions of citizens check reports each day to decide how to dress, whether to plan outdoor activities, and to determine if they need to prepare for severe weather. Commercial interests use daily and seasonal forecasts to plan business activities and to safeguard employees and infrastructure. Government agencies use forecasts to prepare for and respond to severe weather, issue warnings to the general public, and decide whether to activate emergency plans.

Recognizing the enormous national benefits that have accrued from the weather observing network, it is time to invest in a similar observational and forecasting capability for the oceans. This system would gather information on physical, geological, chemical, and biological parameters for the oceans and coasts, conditions that affect—and are affected by—humans and their activities. The United States currently has the scientific
and technological capacity to develop a sustained, national Integrated Ocean Observing System (IOOS) that will support and enhance the nation's efforts for:

- Improving the health of our coasts and oceans.
- Protecting human lives and livelihoods from marine hazards.
- Supporting national defense and homeland security efforts.
- Understanding human-induced and natural environmental changes and the interactions between them.
- Measuring, explaining, and predicting environmental changes.
- Providing for the sustainable use, protection, and enjoyment of ocean resources.
- Providing a scientific basis for the implementation and refinement of ecosystem-based management.
- Educating the public about the role and importance of the oceans in daily life.
- Tracking and understanding climate change and the ocean's role in it.
- Supplying important information to ocean-related businesses such as marine transportation, aquaculture, fisheries, and offshore energy production.

The United States simply cannot provide the economic, environmental, and security benefits listed above, achieve new levels of understanding and predictive capability, or generate the information needed by a wide range of users, without implementing the IOOS.

Assessing Existing Observing Systems

The United States has numerous research and operational observing systems that measure and monitor a wide range of terrestrial, atmospheric, and oceanic environmental variables (Appendix 5). For the most part, each system focuses on specific research objectives or limited operational applications. Among these are the U.S. Geological Survey (USGS) stream gage monitoring system that helps predict flooding and droughts, the National Weather Service's atmospheric observation system for weather, wind, and storm predictions and warnings, and the USGS/National Aeronautics and Space Administration (NASA) Landsat satellite system that characterizes landscape features and changes for land use planning. The technologies used run the gamut from simple on-the-ground human observations to highly sophisticated instruments, such as radar, radiometers, seismometers, magnetometers, and multispectral scanners.

Coastal and Ocean Observing Systems

Currently, the United States has more than forty coastal ocean observing systems, operated independently or jointly by various federal, state, industry, and academic entities (Appendix 5). The federal government also operates or participates in several large-scale, open-ocean observing systems. Examples include the National Oceanic and Atmospheric Administration’s (NOAA’s) Tropical Atmosphere Ocean program in the central Pacific Ocean that provides data to monitor and predict El Niño–La Niña conditions and the global-scale Argo float program for monitoring ocean climate.

There are several independent regional ocean and coastal observing systems. For the most part, they were built for different purposes and applications, measure different variables at different spatial and temporal scales, are not intercalibrated, and use different standards and protocols for collecting, archiving, and assimilating data. They also compete with each other for the limited funding available to support such efforts. As a result, despite considerable interest among stakeholders and the existence of required technology and scientific expertise, the United States has progressed very slowly in the design and implementation of a cohesive national ocean observing system.
An integrated ocean and coastal observing system that is regionally, nationally, and internationally coordinated, and is relevant at local to global scales, can serve a wide array of users, be more cost-effective, and provide greater national benefits relative to the investments made. Although the current regional systems are valuable assets that will be essential to the implementation of the IOOS, they are insufficiently integrated to realize a national vision.

Committing to Creation of the IOOS

The global ocean community has consistently articulated the need for a sustained ocean observing system to address the myriad challenges facing the world’s oceans. In 1991, the United Nations Intergovernmental Oceanographic Commission proposed implementation of the Global Ocean Observing System (GOOS) and in 1992, participating nations at the United Nations Conference on Environment and Development (known as the Earth Summit) in Rio de Janeiro agreed to work toward establishment of this global system.

The U.S. National Ocean Research Leadership Council (NORLC), the leadership body for the National Oceanographic Partnership Program, has taken the lead in creating the IOOS, which will serve in part as the U.S. contribution to the GOOS. In response to congressional requests, the NORLC drafted two reports outlining the steps for creating a national system: *Toward a U.S. Plan for an Integrated, Sustained Ocean Observing System* (1999); and *An Integrated Ocean Observing System: A Strategy for Implementing the First*.

Figure 26.1 Many Different Platforms Collect Data as Part of the IOOS

This picture is an artist's rendering of the various water-, air-, and space-components of ocean observing systems. The data collected by each of these different sensors are transmitted via seafloor fiber optic cables and satellites to a central location on land.

Source: HARRIS Corporation Maritime Communications, Melbourne, FL.

Box 26.1 Components of the Integrated Ocean Observing System

The IOOS, an integrated and sustained ocean and coastal observing and prediction system, is a complex amalgam of many different land-, water-, air-, and space-based facilities and technologies (Figure 26.1). Some broad categories of components are:

- **Platforms**, such as ships, airplanes, satellites, buoys, and drifters, that are used for mounting or deploying instruments, sensors, and other components.
- **Instruments and sensors** that sample, detect, and measure environmental variables.
- **Telecommunication systems** that receive and transmit the data collected by the instruments and sensors.
- **Computer systems** that collect, store, assimilate, analyze, and model the environmental data and generate information products.
Steps of a U.S. Plan (2000). The second report provided a blueprint for the system’s design and implementation. In October 2000, the NORLC established a federal interagency office called Ocean.US and charged it with coordinating development of the IOOS.

Ocean.US has made significant progress on a strategic plan for design and implementation. The plan is based on two distinct components: open ocean observations conducted in cooperation with the international GOOS and a national network of coastal observations conducted at the regional level. The coastal component will include the U.S. exclusive economic zone, the Great Lakes, and coastal and estuarine areas.

Developers of the IOOS must ensure that the global component is not minimized and that the connectivity with GOOS, including U.S. funding and leadership, remains strong and viable. GOOS data will be essential for assimilating environmental data that spans many spatial scales, and for creating forecasts of national and regional impacts that may originate hundreds or thousands of miles away. Strong U.S. involvement in the GOOS will also demonstrate the nation’s commitment to working toward an inclusive Earth observing system.

Although many individuals and agencies have spent countless hours creating plans for the IOOS, its successful realization will require high-level visibility and support within the administration, Congress, and the broad stakeholder community.

Recommendation 26–1

The National Ocean Council should make development and implementation of a sustained, national Integrated Ocean Observing System (IOOS) a key element of its leadership and coordination role. As an essential component of IOOS development, the NOC should promote strong partnerships among federal, state, territorial, tribal, and local governments, non-governmental organizations, industry, and academia, drawing upon the strengths and capabilities of each sector in the design, development, and operation of the IOOS.

Support from a broad-based, multi-sector constituency is critical to the success of the IOOS, particularly in light of the funding levels required to build, operate, and sustain such a system. Establishing partnerships among all sectors will help to solidify stakeholder involvement and commitment to the IOOS. Implementation of a few national and international pilot projects can test the links with existing systems and begin to produce operational applications relevant to national policy and a broad spectrum of users. The pilot projects will provide important visibility and demonstrate the potential economic and societal benefits of the full system, while advancing research and development of useful technologies and applications.

Creating a Governance Structure for the IOOS

National Planning

A strong national governance structure is required to establish policy and provide oversight for all components of the IOOS and to ensure strong integration among the regional, national, and global levels. Interagency coordination and consensus through the National Ocean Council and Ocean.US will be essential. While regional systems will retain a level of autonomy, achievement of the IOOS with nationwide benefits will require the regional systems to adhere to some national guidelines and standards. Regional observing systems can and should pursue needs outside the scope of the national system as long as these activities do not conflict with the smooth operation of the national IOOS.

NOAA’s role as the nation’s civilian oceanic and atmospheric agency, and its mission to describe and predict changes in the Earth’s environment and to conserve and manage the

Although the challenges are significant, we are witnessing a convergence of societal needs and technical capabilities that provide the motivation and means to begin the implementation of an integrated and sustained ocean observing system.

—Dr. Thomas Malone, Professor, University of Maryland Center for Environmental Science and Co-Chair, U.S. GOOS Steering Committee, testimony to the Commission, July 2002
nation’s coastal and marine resources, make it the logical federal agency to implement and operate the national IOOS. In addition, assigning the lead to NOAA will encourage close coordination and information transfer between the national IOOS and the National Weather Service.

Recommendation 26–2

Ocean.US should be responsible for planning the national Integrated Ocean Observing System (IOOS). The National Oceanic and Atmospheric Administration should serve as the lead federal agency for implementing and operating the IOOS, with extensive interagency coordination and subject to approval of all plans and budgets by the National Ocean Council.

Ocean.US

A memorandum of agreement (MOA) among ten federal agencies (Box 26.2) created Ocean.US as an interagency ocean observation office, supported by annual contributions from the signatories. The fundamental problem with the current arrangement is that Ocean.US has a number of responsibilities without any real authority or control over budgets. Its ephemeral existence under the MOA, its dependence on personnel detailed from the member agencies, and its lack of a dedicated budget severely detract from its stature within the ocean community and its ability to carry out its responsibilities.

A more formal establishment of the Ocean.US office is needed for it to advise the National Ocean Council and achieve its coordination and planning mandates. The office requires consistent funding and dedicated, full-time staff with the expertise and skills needed to ensure professional credibility. In addition, outside experts on rotational appointments could help Ocean.US meet its responsibilities.

Recommendation 26–3

Congress should amend the National Oceanographic Partnership Act to formally establish Ocean.US under the National Ocean Council (NOC).

Ocean.US should:

- report to the NOC’s Committee on Ocean Science, Education, Technology, and Operations.
- be provided with funding as a line item within the National Oceanic and Atmospheric Administration’s budget, to be spent subject to NOC approval.
- have authority to bring in outside experts on rotational appointments when needed.

Regional Structure

Ocean.US continues to move forward in developing regional coastal observing systems that will provide a backbone of estuarine, coastal, and offshore observations for the national IOOS. Its plan calls for each regional observing system to establish a Regional Association (RA), formed in a grassroots manner through alliances among data providers and users, including government agencies (local, state, tribal and federal), private compa-

Box 26.2 Signatories to the Ocean.US Memorandum of Agreement

- Coast Guard
- Department of Energy
- Environmental Protection Agency
- Minerals Management Service
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Science Foundation
- U.S. Army Corps of Engineers
- U.S. Geological Survey
- U.S. Navy
Each RA will be responsible for:
- Defining and prioritizing issues to be addressed and related science requirements.
- Identifying all potential data sources.
- Generating value-added products through public-private partnerships.
- Providing easy and rapid access to data and information on the coastal ocean.
- Fostering research and development and incorporating new technologies and knowledge to improve the capacity of regional observing systems to meet societal needs.
- Developing programs to improve public awareness and education on the marine environment.
- Coordinating monitoring and research activities within the region and with adjacent regions.

Coordination among RAs will be assisted by formation of the National Federation of Regional Associations, which will represent all regions, interact closely with Ocean.US, and serve as a source of local and regional input in developing requirements for the national system. The RAs and their Federation must also work side-by-side with NOAA and the U.S. Navy on information management and communications in order to generate timely, useful information products (discussed further below and in Chapter 28).

To fully address the needs of coastal managers, ocean observations should be integrated into other information gathering activities such as regionally-focused research, monitoring, outreach and education, and ecosystem assessments. Thus, a RA could serve as a good starting point for addressing broader regional information needs and should consider expanding its mission and membership beyond observational activities to assume the duties required of the regional ocean information programs proposed in Chapter 5. Where a regional ocean information program exists in addition to a RA, close coordination will be needed to ensure that observations are incorporated into the other activities of the information program.

Reaching Out to the User Community

To fulfill its mission, the IOOS must draw on and meet the needs of a broad suite of users, including the general public. However, at this early stage, many people do not even know what the national IOOS is, nor do they grasp the potential utility and value of the information it will generate. This has slowed progress in its implementation.

Some important stakeholders outside of the federal agencies and ocean research community have not been sufficiently integrated into the initial planning process. Some of those who were consulted are concerned that they were brought into the process after important design and other decisions had already been made. While Congress and the administration have both expressed support for the concept of a national Integrated Ocean Observing System, there has been insufficient constituent demand to compel appropriation of significant public funds. Clearer communication about the benefits of the IOOS, and broader participation in planning activities, are necessary to help create a groundswell of support.

To get the most out of the IOOS, resource managers at federal, state, regional, territorial, tribal, and local levels will need to supply input about their information needs and operational requirements and provide guidance on what output would be most useful. Other users, including educators, ocean and coastal industries, fishermen, and coastal citizens, must also have a visible avenue for providing input. Ocean.US and the Regional Associations will need to devote significant time and thought to proactively approaching users and promoting public awareness of the enormous potential of the IOOS.
One obvious application of the observing system will be to monitor potential terrorist threats to the United States, including the possible use of commercial and recreational vessels to introduce nuclear, chemical, or biological weapons through the nation’s ports to attack large metropolitan areas or critical marine infrastructure. Thus, it is important that homeland security personnel be actively engaged in defining their needs as part of the IOOS design process.

Recommendation 26–4
Ocean.US should proactively seek input from coastal and ocean stakeholder communities to build cross-sector support for the national Integrated Ocean Observing System (IOOS) and develop a consensus on operational requirements.
Specifically, Ocean.US should seek input on its plans from:
- agencies with homeland security responsibilities, including ideas for future research and development to improve and enhance the system.
- state, local, territorial, and tribal agencies, industry, academia, nongovernmental organizations, and the public in the design and implementation of regional observing systems and their integration into the national IOOS.

Assembling the Elements of a Successful IOOS

The success of the IOOS will depend on several design elements: measuring the right set of environmental variables to meet regional, national, and global information requirements; transitioning research accomplishments into operational applications; and developing technologies to improve all aspects of the system, especially the timeliness and accuracy of its predictive models and the usefulness of its information products.

Critical Environmental Variables

To establish a uniform national system, a consistent core of environmental variables must be measured by all of the system’s components. This core needs to strike a balance, remaining manageable and affordable while including enough parameters to address watershed, atmosphere, and ocean interconnections and support resource management, research, and practical use by many stakeholders. Measurements should include natural variables as well as human influences.

Based on an evaluation of more than one hundred possible environmental variables, Ocean.US identified an initial priority set of physical, chemical, and biological parameters for measurement by the IOOS (Table 26.1). It also created a supplemental list of meteorological, terrestrial, and human variables that are related to ocean conditions (Table 26.2).3

While these lists provide a starting point for further discussion, many of the items included are actually broad categories rather than specific variables to be measured. The lists do not specify which variables can be measured with current technologies, which particular contaminants and pathogens should be observed, or which sets of observations can be assimilated to predict potentially hazardous environmental conditions, such as harmful algal blooms. Surprisingly, several important variables, such as inputs of air- and river-borne pollutants, are not included at all.

These lists will require further refinement and review by potential users of the system and a mechanism must be established to solicit additional feedback. Regional observation needs, such as fish stock assessments, assessments of sensitive and critical habitats, or monitoring for invasive species, are best understood by those in the affected regions. Therefore, input from local and regional groups, organized through the RAs, will be essential for determining which variables should be included as national priorities.
Variables should be prioritized based on their value in resolving specific issues or questions, their application across issues, and the cost of measuring them. An additional factor to consider is the variable's importance for global, national, regional, state, and local information purposes. Future deliberations will need to identify those variables which can be measured using current capabilities and those that will require new technologies.

Table 26.1 Proposed Core Variables for the IOOS
Participants at an Ocean.US workshop recognized the following variables as important measurements to be made by the national Integrated Ocean Observing System.

<table>
<thead>
<tr>
<th>Physical</th>
<th>Chemical</th>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity</td>
<td>Contaminants: water</td>
<td>Fish species</td>
</tr>
<tr>
<td>Water temperature</td>
<td>Dissolved nutrients</td>
<td>Fish abundance/biomass</td>
</tr>
<tr>
<td>Bathymetry</td>
<td>Dissolved oxygen</td>
<td>Zooplankton species</td>
</tr>
<tr>
<td>Sea level</td>
<td>Carbon: total organic</td>
<td>Optical properties</td>
</tr>
<tr>
<td>Directional wave spectra</td>
<td>Contaminants: sediments</td>
<td>Ocean color</td>
</tr>
<tr>
<td>Vector currents</td>
<td>Suspended sediments</td>
<td>Pathogens: water</td>
</tr>
<tr>
<td>Ice concentration</td>
<td>pCO₂</td>
<td>Phytoplankton species</td>
</tr>
<tr>
<td>Surface heat flux</td>
<td>Carbon: total inorganic</td>
<td>Zooplankton abundance</td>
</tr>
<tr>
<td>Bottom characteristics</td>
<td>Total nitrogen: water</td>
<td>Benthic abundance</td>
</tr>
<tr>
<td>Seafloor seismicity</td>
<td></td>
<td>Benthic species</td>
</tr>
<tr>
<td>Ice thickness</td>
<td></td>
<td>Mammals: abundance</td>
</tr>
<tr>
<td>Sea-surface height</td>
<td></td>
<td>Mammals: mortality events</td>
</tr>
</tbody>
</table>

Table 26.2 Proposed Supplemental IOOS Variables
In addition to the ocean-specific variables listed in Table 26.1, the participants at the Ocean.US workshop highlighted a number of other variables that affect ocean and coastal environments.

<table>
<thead>
<tr>
<th>Meteorological</th>
<th>Terrestrial</th>
<th>Human Health & Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind vector</td>
<td>River discharge</td>
<td>Seafood contaminants</td>
</tr>
<tr>
<td>Air temperature</td>
<td>Groundwater discharge</td>
<td>Pathogens: seafood</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td></td>
<td>Fish catch and effort</td>
</tr>
<tr>
<td>Precipitation (dry and wet)</td>
<td></td>
<td>Seafood consumption</td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
<td>Beach usage</td>
</tr>
<tr>
<td>Aerosol type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric visibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud cover</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 26–5
Ocean.US should develop a set of core variables to be collected by all components of the national Integrated Ocean Observing System. This set of core variables should include appropriate biological, chemical, geological, and physical variables and be based on input from the National Federation of Regional Associations.

Converting Research into Operational Capabilities

Research Observatories
A number of research observatories now in operation were created primarily by academic institutions to develop new observation technologies. Rutgers University's Long-term Ecosystem Observatory and the Monterey Bay Aquarium Research Institute's Ocean Observing System are two examples of programs that have made significant advances in developing observation technologies and the data management systems needed to support them. These observatories provide valuable scientific and engineering information that will be essential in building the IOOS. However, they can not be easily integrated into an operational, national IOOS, which will need to be based on stable, proven technologies and structured to deliver long-term observations.

The national IOOS will also have significant synergies with the NSF Ocean Observatories Initiative, which is being designed to address the ocean research community's needs for long-term, in situ measurements of biological, chemical, geological, and physical variables over a variety of scales. The NSF observatories will be used to examine the processes that drive atmospheric, oceanic, and terrestrial systems, and will serve as an incubator for new technologies to monitor these processes. While the IOOS and NSF observatories have thus far been planned independently, the basic research and technology development from the NSF observatories and the information generated by the IOOS are in reality interdependent, with each program supplying ingredients essential to the other. Close coordination and cooperation between NOAA and NSF will be necessary to capitalize on these benefits.

To ensure that the best available science and technology are continuously integrated into the national IOOS, mechanisms are needed for transitioning findings from research settings to routine operational applications. A new NOAA Office of Technology, recommended in Chapter 27, would be instrumental in making this transfer proceed smoothly. It would oversee coordination between NOAA, NSF, the Navy (including the Office of Naval Research, Naval Research Laboratory, Naval Oceanographic Office, Fleet Numerical Meteorology and Oceanography Command, and National Ice Center), NASA, other pertinent federal agencies, academia, and the private sector, all of which are essential in creating the bridge from research to operations.

New Sensor Technologies
One area where additional capabilities are critically needed is in sensor technologies. Currently, the ability to continuously observe and measure physical variables (such as water temperature, current speed, and wave height) far surpasses the ability to measure chemical and biological parameters. With a few exceptions, most chemical and biological measurements are still obtained mainly by direct sampling and analysis. This shortcoming seriously hampers real-time observations of a broad range of biological parameters and populations of special interest, such as corals, marine mammals, and fish stocks. To realize the full promise of the IOOS, accelerated research into biological and chemical sensing techniques will be needed, with rapid transitions to operational use.
Another gap is in the development of satellite sensors for coastal observations. Coastal waters typically display very different environmental characteristics than the open ocean, with variability occurring over much smaller time and space scales, requiring specialized satellite sensors. NOAA, NSF, the Navy, and NASA should fund the development, and subsequent integration, of new sensors for the IOOS as high priorities. Sensor development is discussed in more detail in Chapter 27 as part of the broader need to develop and implement new technologies.

Recommendation 26–6

The National Oceanic and Atmospheric Administration, the National Science Foundation (NSF), the Office of Naval Research, and the National Aeronautics and Space Administration should require investigators who receive federal funding related to ocean observatories, including the NSF Ocean Observatories Initiative, to plan for the transfer of successful technologies to an operational mode in the Integrated Ocean Observing System.

Coordinating Civilian Satellite Observations

Space-borne sensors can provide comprehensive, real-time, widespread coverage of ocean conditions and features and their data will form an integral part of the national IOOS. A growing international constellation of satellites allows extensive observation of ocean-surface conditions, as well as the ability to extrapolate from *in situ* measurements. Satellites can also provide baseline measurements at local, regional, national, and global scales to help assess long-term environmental changes and the impacts of catastrophic events.

However, achieving sustained observations from space presents daunting challenges. Because of the high cost, the long time frame for constructing and launching satellites, and the inability to modify satellites once in orbit, five- to ten-year plans are required to ensure that reliable satellite observations will be available on a continuous basis, employing the most useful and modern sensors.

In addition, development of a multi-decadal record of observations requires space missions with sufficient overlaps to avoid gaps in data and allow intercalibration of successive generations of sensors. Lack of such coordination can seriously impair our understanding, as occurred during the eleven-year hiatus (1986–1997) in the collection of ocean color data during the transition from the Coastal Zone Color Scanner to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission.

Planning for Space-based Observation Missions

Because NASA develops satellite technologies and analysis techniques and launches each satellite, Ocean.US is in charge of planning the integrated components of the IOOS, and NOAA is responsible for ongoing IOOS operations, close coordination will be necessary to achieve effective IOOS satellite observations. As part of its planning responsibilities, Ocean.US will need to reach out to a diverse group of users to identify national priorities for space-based observations, in a manner similar to that recommended for determining IOOS environmental variables.

NOAA and NASA will both benefit from cooperative planning of future space missions, including the submission of coordinated budgets that account for their respective responsibilities. Improved coordination among NOAA, NASA, and Ocean.US can create opportunities to transition research-oriented satellite missions into operations and to extend the use of newly proven sensors to other applications, such as weather satellites. Coordination with international satellite programs will also be necessary to integrate the national IOOS with the GOOS and to accelerate integration of new sensor technologies.
Recommendation 26–7
Ocean.US should recommend priorities for space-based missions as an essential component of the national Integrated Ocean Observing System (IOOS). The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) should work together on the development, budgeting, and scheduling of IOOS satellite missions, based on Ocean.US plans.
Ocean.US, NOAA, and NASA should:
- work closely with the user community and the space industry to identify the most important space-based ocean observation needs.
- work with the international community to ensure that requirements for the Global Ocean Observing System are coordinated with U.S. plans for satellite remote sensing.
- implement phased satellite missions and equipment replacement to maintain unbroken, consistent data streams based on Ocean.US plans.

Configuring Earth Observing Satellites to Achieve Long-term Data Acquisition
Achieving continuity in satellite observations is essential for the national IOOS to be successful. Both NOAA and NASA currently operate civilian, space-based, Earth observing programs that measure terrestrial, atmospheric, and oceanic variables (Appendix 5). NOAA’s primary mission in this area is to provide sustained, operational observations for monitoring and predicting environmental conditions and long-term changes, with a focus on weather and climate. In contrast, NASA’s primary mission is to advance research efforts and sensor development. As a result, NASA projects are relatively short, lasting from a few days to a few years.

While NASA-led research missions have greatly advanced our understanding of the oceans, they are developed without regard to ongoing, operational observing needs beyond the planned duration of the individual mission. NASA also lacks the extensive atmospheric, land, and ocean ground-truthing infrastructure needed to verify remote observations for operational purposes. Thus, NASA’s efforts have not, and will not, result in the sustained operational capabilities needed for the national IOOS.

In fact, improvements in technology have already created situations where the lifetime of a NASA satellite, and its continued ability to collect and transmit data, can outlast the funding planned for the mission. The nation is then faced with the prospect of abandoning missions that still have great operational potential. No standard interagency process has yet been developed to assure continued funding and operation under these circumstances.

Thus, in addition to improved coordination in planning satellite missions, a process is needed to plan for the transition of appropriate NASA Earth observing research satellites to NOAA in order to achieve sustained operations and data collection. Because of its expertise and capabilities, it is appropriate for NASA to maintain responsibility for research, engineering, development, and launch of Earth observing satellites. However, operational control of these satellites should be turned over to NOAA after the integrity of the satellite is confirmed in orbit.

The consolidation of space-based Earth environmental observing operations into one agency will greatly ease the implementation of a functional national system. By transferring the operation of Earth, and particularly ocean, observing satellite missions to NOAA, more seamless concept-to-operations data collection will be possible. This handoff has been demonstrated with the Polar-orbiting Operational Environmental Satellites and the Geostationary Operational Environmental Satellites, which provide the continuous, space-based coverage needed for weather observations and predictions.

Our efforts in the past decade have resulted in a wealth of observations, but NASA could not have been successful had we worked alone. Our collaboration with other federal agencies and international partners was a critical element in this success.

—Dr. Ghassem Asrar, Associate Administrator for Earth Science, National Aeronautics and Space Administration, testimony to the Commission, October 2002
Recommendation 26–8
Congress should transfer ongoing operation of the National Aeronautics and Space Administration (NASA) Earth environmental observing satellites to the National Oceanic and Atmospheric Administration (NOAA) to achieve continuous collection of critical space-based Earth environmental measurements. NOAA and NASA should work together to identify research satellite missions that have operational applications and to ensure the smooth transition of each Earth environmental observing satellite after its launch and testing.

Planning for Satellite Data Management
A number of infrastructure and organizational changes will be needed at NOAA to ensure the seamless transition of Earth environmental observing satellites from research to operations. Enhanced science, technology, and management coordination will also be needed within NOAA and among NOAA, other agencies, and the private and academic sectors. Foremost among the needed changes is fundamental improvement of NOAA's data management capabilities.

To guide these changes, NOAA should first review its past achievements and challenges in remote-sensing, satellite data collection and processing, and data distribution and archiving. To be successful, NOAA will need to deliver raw data and useful analytical products to the public on an ongoing basis, and archive all incoming data in readily accessible formats for future assessments of environmental change.

NOAA's data and information management practices will need to be flexible, address customer needs, allow for continuous feedback and improvement, and be based on partnerships with industry and academia to the maximum extent possible. (Additional recommendations concerning data management and information product development are provided in Chapter 28.) NOAA will also need to plan for continued calibration of observing satellites, using academic and private sector partners to form calibration and validation teams.

Recommendation 26–9
The National Oceanic and Atmospheric Administration (NOAA) should improve its capacity to calibrate, collect, and disseminate satellite data and to integrate satellite-derived information with traditional ocean and coastal databases. NOAA should ensure that a suitable archive exists to preserve historical satellite data, particularly those related to long-term trends such as climate.

Developing Useful End Products Based on IOOS Data
To justify large federal investments in the IOOS, the system must result in tangible benefits for a broad and diverse user community, including the general public, scientists, resource managers, emergency responders, policy makers, private industry, educators, and homeland security officials. The IOOS cannot be developed as a narrow system useful only for research or federal government applications.

Tailoring Information to Users
The longtime partnership between the National Weather Service (NWS) and the private sector, which results in both general and tailored weather forecast and warning products that are widely acknowledged as valuable, is a good model upon which to build the IOOS. NWS and commercial meteorological products have applications ranging from scientific research to human safety, transportation, agriculture, and simple daily forecasts. Similarly, IOOS products should be wide-ranging and based on the needs of regional and local organizations and communities, as well as national needs.

The Regional Associations will be essential in providing information products that benefit regional, state, and local managers and organizations. The Regional Associations
can also provide important feedback to national planners about making national IOOS products more useful. But the information will only be truly valuable if its users know how to access and interpret it. Thus, NOAA, Ocean.US, and the Regional Associations will also need to provide technical training and tools to help coastal and ocean resource managers and decision makers use the information provided by the national IOOS.

Improving Coordination for Product Development

Both NOAA and the Navy have the computer infrastructure and human resources needed to produce data and information products at varying spatial and temporal scales, and both have experience tailoring products to the requirements of stakeholders in different regions and for different purposes. A joint NOAA–Navy ocean and coastal information management and communications partnership, as recommended in Chapter 28, can help ensure high-quality end products from the national IOOS. Working together, and in conjunction with regional organizations, these agencies will be able to produce routine operational ocean condition reports, forecasts, and warning products, based on data from the IOOS. In addition, coordination among NOAA, the Navy, Ocean.US, the Regional Associations, and Ocean.IT (a new data management office recommended in Chapter 28) will help target the development of new forecast models to areas where results are most urgently needed.

Recommendation 26–10

Ocean.US and the National Oceanic and Atmospheric Administration (NOAA) should work with state and local governments, the Regional Associations, educators, nongovernmental organizations, and the private sector, to ensure that information products generated from the Integrated Ocean Observing System (IOOS) are useful to a broad user community. In particular, Ocean.US and NOAA should:

- work with the U.S. Navy, the Regional Associations, Ocean.IT, and the private sector to create new models and forecasting methods to meet user information needs.
- work with the Regional Associations to provide the training and tools necessary for users to work with, and benefit from, IOOS information products.

Funding the National IOOS

The existing IOOS implementation plan calls for a distributed funding structure under which funds for implementation and operation of the national IOOS would be appropriated to many individual ocean agencies to support their respective contributions to the system. This approach is not conducive to timely and seamless implementation of the national
IOOS. The differences in missions and priorities among the ocean agencies could slow the implementation of key components of the IOOS. Additionally, the federal ocean agencies answer to different congressional committees and subcommittees for authorizations and appropriations, which could result in inconsistent and incomplete funding of the national system. Furthermore, in times of tight budgets, federal agencies may be tempted to tap into their IOOS budgets to support shortfalls or unfunded initiatives. Only by consolidating the IOOS budget within one agency, with input and agreement on spending from the other agencies, can full implementation be assured. Nevertheless, many agencies and nonfederal organizations will continue to play a vital role in implementing different components of the IOOS, and mechanisms must be in place for quickly transferring appropriate portions of the IOOS budget to these essential partners.

System Cost Estimates

Ocean.US has provided estimates of the costs of implementing, operating, maintaining, and enhancing a national IOOS. The plan for the system involves a 4-year ramp-up of funding, from a $138 million start-up cost in fiscal year 2006 to $500 million annually starting in fiscal year 2010 (Table 26.3). Details of the $138 million start-up cost are provided in Table 26.4. The cumulative cost over the first 5 years is estimated at $1.8 billion.

However, these cost estimates are not complete. They do not include all requirements for building, operating, and maintaining the system, such as costs associated with dedicated satellite sensors, spaceborne platforms, and data stream collection and assimilation. Considering these additional system elements, rough estimates suggest that total funding for the national IOOS over the first five years may be closer to $2 billion.

Although Ocean.US has estimated ongoing costs for the IOOS at $500 million per year, continuous improvements to IOOS observation and prediction capabilities will require sustained investments in technology development. Considering the costs of sensor development, telecommunications, computer systems, and improvements in modeling and prediction capabilities, an additional annual investment of about $100 million will most likely be needed. Furthermore, the operation of Earth observing satellites, along with collection and management of the resulting data, will add approximately $150 million more per year, depending on the number of satellites in operation. Thus, the eventual ongoing costs for operating, maintaining, and upgrading the national IOOS could approach $750 million a year, not accounting for inflation.

Given the importance of the IOOS as an element in an integrated Earth observing system, these costs are in line with federal expenditures for other elements, including

Table 26.3 Proposed Annual Costs for Implementation of the IOOS

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$138 million (start-up costs)</td>
</tr>
<tr>
<td>2007</td>
<td>$260 million</td>
</tr>
<tr>
<td>2008</td>
<td>$385 million</td>
</tr>
<tr>
<td>2009</td>
<td>$480 million</td>
</tr>
<tr>
<td>2010</td>
<td>$500 million (fully operational system)</td>
</tr>
<tr>
<td>Total for first five years</td>
<td>$1.8 billion</td>
</tr>
<tr>
<td>Out years</td>
<td>$500 million/yr (to keep system operational, not accounting for inflation)</td>
</tr>
</tbody>
</table>

Source: Ocean.US, Arlington, VA.

Table 26.4 Proposed Start-up Costs for the IOOS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost to Perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerate the implementation of the U.S. commitment to the Global Ocean Observing System</td>
<td>$30 million</td>
</tr>
<tr>
<td>Develop data communications and management systems for the national IOOS</td>
<td>$18 million</td>
</tr>
<tr>
<td>Enhance and expand existing federal observing programs</td>
<td>$40 million</td>
</tr>
<tr>
<td>Develop regional observing systems</td>
<td>$50 million</td>
</tr>
<tr>
<td>Total</td>
<td>$138 million</td>
</tr>
</tbody>
</table>

atmospheric, hydrologic, and pollution-related monitoring. For example, the ongoing cost of operating the National Weather Service is a comparable $700 million a year.

To fulfill its potential, the IOOS will require stable, long-term funding. The lack of stable funding for existing regional ocean observing systems has contributed to their piecemeal implementation. Consistent funding will help ensure that the American public receives the greatest return for its investment in the form of useful information, reliable forecasts, and timely warnings (Box 26.4).

Recommendation 26–11

Congress should fund the Integrated Ocean Observing System (IOOS) as a line item in the National Oceanic and Atmospheric Administration (NOAA) budget, to be spent subject to National Ocean Council (NOC) direction and approval. IOOS funds should be appropriated without fiscal year limitation. NOAA should develop a streamlined process for distributing IOOS funds to other federal and nonfederal partners based on the NOC plan.
Strengthening Earth Observations through National and International Partnerships

Other U.S. Operational Observing Systems

Atmospheric, terrestrial, and oceanic conditions and processes are inextricably intertwined. Progress in managing and protecting global resources will depend on understanding how those systems interact and what their impacts are on all scales, from local to global, over minutes or decades. Understanding such interactions is essential for accurately forecasting global climate change (long-term or abrupt), seasonal to decadal oscillations (like El Niño–La Niña, the North Atlantic Oscillation, or the Pacific Decadal Oscillation), and short- and long-term ecosystem responses to environmental change.

The IOOS cannot exist as a stand-alone system, developed without considering associated observations. Rather, it should be integrated with other environmental observing systems to link weather, climate, terrestrial, biological, watershed, and ocean observations into a unified Earth Observing System. Such a system would improve understanding of environmental changes, processes, and interactions, making ecosystem-based management possible.

Integration of the IOOS with NWS’s ground-, water-, space-, and atmosphere-based observations, with USGS’s stream gage, water quality monitoring, and landscape observations, and with EPA’s pollution monitoring, should be essential steps in implementation of the IOOS. The IOOS should also be linked with the broad national monitoring network recommended in Chapter 15. Credible data gathered through other agencies and mechanisms, such as the Coral Reef and Invasive Species task forces, should all be considered in creating a coordinated Earth Observing System.

Recommendation 26–12
The National Ocean Council should oversee coordination of the Integrated Ocean Observing System with other existing and planned terrestrial, watershed, atmospheric, and biological observation and information collection systems, with the ultimate goal of developing a national Earth Observing System.

Enhancing Global Cooperation

The United States should continue to participate in the international Global Ocean Observing System to gain a better understanding of global ocean circulation patterns and biological processes, and answer pressing policy questions about global climate change and resource availability. In July 2003, the Earth Observation Summit was held in Washington, D.C. to focus on building an integrated global observation system over the next ten years. Thirty-four nations, the European Commission, and twenty international organizations joined the United States in adopting a declaration that affirmed the need for timely, high-quality, long-term global Earth observations as a basis for sound decision making. The ad hoc Group on Earth Observations has been formed to implement the declaration, co-chaired by the United States, the European Commission, Japan, and South Africa, and an implementation plan is scheduled to be completed by late 2004.

A recurring limitation of international scientific agreements and programs is the growing divide between scientific capacity and resources in developed and developing nations. Global programs function most effectively when all partners can participate fully. In addition to expanding scientific knowledge and stimulating technological development, capacity-building programs serve U.S. interests by creating goodwill and strengthening ties with other nations (including the Freely Associated States of Micronesia, the Marshall
Islands, and Palau). Examples of capacity-building techniques include: providing access to U.S. scientific and technological expertise on a continuing basis; establishing education and training programs; securing funding for travel grants to allow scientists from less developed countries to participate in symposia, conferences, and research cruises; and funding international student fellowships.

High-level U.S. participation in international global observing planning meetings is essential, particularly by top-level NASA and NOAA officials. Furthermore, the United States should be strongly involved in international Earth observation satellite missions. This includes supporting U.S. scientists to participate in foreign satellite mission planning and execution activities, such as planning for enhanced data management and access protocols.

Compatibility and accessibility of data collected by all participants in the GOOS will be needed to make the whole worth more than the sum of its parts. Although the United States has always supported full and open access to oceanographic data, this policy has met with resistance in some nations, especially where basic data collection and management activities have been outsourced to private companies. The United States should encourage foreign entities to engage in a policy of reciprocity, with a commitment to mutual sharing of data.

Recommendation 26–13
The National Ocean Council (NOC) should promote international coordination and capacity building in the field of global ocean observations.
Specifically, the NOC should:
• lead the interagency implementation of the 2003 Declaration on Earth Observing.
• encourage and support developing nations’ participation in the Global Ocean Observing System.
• continue to advocate full, open, and meaningful data access policies and contribute technological expertise to ensure access by all participants.

References

5 Ibid.
CHAPTER 27

ENHANCING OCEAN INFRASTRUCTURE AND TECHNOLOGY DEVELOPMENT

The future success of ocean and coastal research, management, enforcement, and observations in the United States will depend on the availability of modern ships, undersea vehicles, aircraft, satellites, laboratories, and observing systems, as well as the continuous development and integration of new technologies into these facilities. A renewed commitment, a clear national strategy, and significant interagency coordination are needed to plan for the acquisition, maintenance, and operation of such expensive, large-scale assets. In addition, better mechanisms are needed to transition new technologies into operational use and virtual centers for marine technology will help make these technological advances widely available.

Supporting Ocean and Coastal Activities with Modern Tools

A robust infrastructure with cutting-edge technology forms the backbone of modern ocean and coastal science and effective resource management and enforcement. The nation has long relied on technological innovation, including satellites, early-warning systems, broadband telecommunications, and pollution control devices to advance economic prosperity, protect life and property, and conserve natural resources. Ocean research, exploration, assessments, and enforcement activities will continue to rely on modern facilities and new technologies that can operate in the open ocean, along the coasts, in polar regions, on the seafloor, and even in space.

The three major components of the nation’s infrastructure for oceans and coasts are:

- **Facilities**—land-based structures (such as laboratories and monitoring stations) as well as remote platforms (such as ships, airplanes, satellites, and submersibles) where research, observations, monitoring, and enforcement activities are conducted;
- **Hardware**—research equipment, instrumentation, sensors, and information technology systems used in the facilities; and
- **Technical Support**—the expert human resources needed to operate and maintain the facilities and hardware and participate in monitoring, research, modeling, resource assessments, education, and enforcement.
This chapter does not attempt to provide a comprehensive review of all marine-related infrastructure and technology needs. Rather, it highlights several key areas where improvements in federal planning, coordination, and investment are sorely needed.

Improving Infrastructure and Technology

Gaps in Infrastructure

Periodic surveys have attempted to assess various aspects of academic, private-sector, and federal ocean infrastructure, but many of these attempts have been incomplete, particularly regarding private and academic assets. The last official inventory of marine facilities, undertaken in 1981 by the Congressional Office of Technology Assessment, did not include information related to maritime commerce, marine safety, or education.1

As one of its early tasks, the U.S. Commission on Ocean Policy, as required by the Oceans Act of 2000, authorized an extensive assessment of the infrastructure associated with ocean and coastal activities (Appendix 5). This inventory documents the U.S. infrastructure for maritime commerce and transportation; ocean and coastal safety and protection; research, exploration, and monitoring; and marine education and outreach. The number and types of assets included are extensive and cover a wide range of federal, state, academic, institutional, and private-sector entities. Together, they represent a substantial public and private investment that has made possible great strides in modern oceanography, coastal management, and marine commerce over the last fifty years. But the assessment also revealed that significant components of the U.S. ocean infrastructure are aged or obsolete and that, in some cases, current capacity is insufficient to meet the needs of the ocean research, education, enforcement, and operations community.

Gaps in Technology Development

In both the federal and academic arenas, it is difficult to incorporate rapidly changing technology into ongoing activities. To ensure that the nation’s ocean infrastructure is as effective as possible, the science community must learn how to rapidly transition new marine technologies from the research and development stages to sustained applications. In 2003, the National Science Board (NSB), the governing board of the National Science Foundation (NSF), concluded that academic research infrastructure has not kept pace with rapidly changing technology, expanding opportunities, and increasing numbers of users.2 New technologies should allow researchers, managers, educators, and enforcement personnel to be remotely connected to a sophisticated array of facilities, instruments, and databases; however, these technologies are not readily available today. Better planning and new funding will be needed to bridge this technology gap and revolutionize ocean science and management.

If not remedied, a decline in U.S. leadership in marine technology development will result in increasing reliance on foreign capabilities. In 2001, the U.S. Commission on National Security/21st Century reported that federal investment in non-defense technology development has remained flat since 1989 and that the United States is losing its technological edge in many scientific fields.3 Japan, the European Community, India, and China are all making great strides in marine technology development and have the potential to outcompete the United States in the near future. Changes in the policies and priorities of foreign nations, and a potential reluctance to freely share technology and environmental information, may leave this nation’s ocean research and observation activities behind.
Maximizing Resources through Collaboration

An overarching message from the Inventory of U.S. Coastal and Ocean Facilities (Appendix 5) is the need for continued partnerships among public and private entities to reduce costs, leverage resources, and encourage information sharing. Many successful collaborations have formed across the nation and around the world in recent decades. Ocean and coastal laboratories are frequently focal points for these efforts, drawing additional resources and new facilities supported by government, private, or academic institutions to advance the capabilities of a region.

For example, Narragansett, Rhode Island is home to a strong coalition of diverse research organizations, including the Atlantic Ecology Division of the U.S. Environmental Protection Agency’s (EPA’s) National Health and Environmental Effects Research Laboratory, the National Oceanic and Atmospheric Administration’s (NOAA’s) Northeast Fisheries Science Center Narragansett Laboratory, and the University of Rhode Island’s Graduate School of Oceanography. Similarly, at the Hollings Marine Laboratory in Charleston, South Carolina, NOAA’s National Ocean Service, and the National Institute of Standards and Technology have partnered with the South Carolina Department of Natural Resources, the College of Charleston, and the Medical University of South Carolina to construct and operate a state-of-the-art marine laboratory dedicated solely to collaborative, interdisciplinary research.

The Monterey Bay National Marine Sanctuary and the Monterey Bay Aquarium regularly collaborate with the Monterey Bay Aquarium Research Institute and other research institutions in the area, sharing ships and undersea vehicles, as well as information, to improve management practices and educational outreach. Partnerships of other kinds, such as the Cooperative Enforcement Program between the National Marine Fisheries Service and state agencies, allow these organizations to coordinate missions and responsibilities in order to maximize vessel use.

Consortia and joint programs, with facilities that support several organizations, create marine communities that interact closely, share knowledge, enhance career pathways, and promote collaboration among government, academic, and private sectors. The most cost-effective means of making infrastructure available to the largest number of people is to emphasize such partnerships.

In 1969, the Stratton Commission recognized that the technological and scientific demands of global ocean research would overtax the means of any single nation, stressing the need for international partnerships. Realizing the expense involved in building and maintaining infrastructure and developing new technologies, nations have joined together in extremely successful ways. Current examples of such shared resources include satellite-based sensors, Argo profiling floats that measure meteorological and ocean variables as part of the Global Ocean Observing System, the Global Climate Observing System, and the Integrated Ocean Drilling Program. It is in the interests of the United States to continue to pursue partnerships with foreign nations for high-cost technology development activities with worldwide applications, while ensuring that foreign efforts are complementary to those in the United States, not replacements for them.

A National Strategy

Despite the growing need to improve ocean science, resource assessments, education, operations, and enforcement, the federal government has yet to develop a long-range strategy to support the necessary infrastructure and technology needed for these purposes. Although federal agencies have made efforts to improve their coordination in some areas through the National Oceanographic Partnership Program and other mechanisms, infrastructure and technology planning is still not conducted in an integrated fashion that reflects regional, national, and international priorities.
Furthermore, while some facilities are operated with joint funding, interagency budgeting for shared facilities has had limited success due to differences in congressional oversight and financial and project approval processes. As a result, facilities are typically constructed or modernized in a piecemeal fashion, often through earmarked congressional funding. A unified national strategy can help achieve and maintain an appropriate mix of federally supported, modern ocean facilities that meet the nation’s needs for quality science, resource management, enforcement, education, and assessments. Federal coordination can also accelerate the development of new research-based technologies and their rapid transfer into operational settings.

Recommendation 27–1

The National Ocean Council (NOC) should develop a national ocean and coastal infrastructure and technology strategy, including detailed plans for funding and implementation, to support science, resource management, assessments, enforcement, and education. The strategy should guide agency plans for facility construction, upgrading, or consolidation and for new technology development.

In particular, the national strategy should:
- be developed through the NOC’s Committee on Ocean Science, Education, Technology, and Operations.
- set specific priorities for acquiring and upgrading ocean and coastal infrastructure, including vessels, facilities, instrumentation, and equipment.
- build on the existing capabilities of federal, state, academic, and private entities.
- identify emerging technologies that should be incorporated into agency operations.
- promote international partnerships to deploy and share major oceanographic assets.

The incorporation of useful new ocean technologies into operational infrastructure requires directed funding and coordination. The U.S. Navy, in particular, devotes significant attention to transferring new technologies into military operations. Domestic management programs can also benefit by having a centralized office responsible for accelerating the transition of technological advances made by federal and academic laboratories into routine, nonmilitary operations. NOAA, by virtue of its mission, is the logical agency to take on this role.

Recommendation 27–2

The National Oceanic and Atmospheric Administration should establish an Office of Technology Transfer with responsibility for expediting the transition of proven ocean-related technologies into operational applications. This office should work closely with the National Science Foundation, the U.S. Navy, the National Aeronautics and Space Administration, academic institutions, regional organizations, and private industry to achieve its mission.

Periodic Reviews and Assessments

In conducting its inventory of U.S. coastal and ocean facilities, the Commission discovered few long-term plans for maintaining, replacing, or modernizing facilities (Appendix 5). As the first such assessment conducted in twenty-two years, the need for periodic future infrastructure assessments became obvious. A meaningful accounting of national assets, facilities, and human resources requires regular updates to ensure that the national strategy is based on an up-to-date understanding of capacity, capabilities, and trends.

Developing a national facilities database based on comprehensive inventories would improve plans for asset replacement or refurbishment. Furthermore, organizing such a database along regional lines would help identify the facility needs of each region and
improve the prospects for resource sharing. State, academic, and private-sector capabilities should be included in the inventory to alert scientists to the existence and potential availability of these assets.

Recommendation 27–3
The National Ocean Council should undertake an assessment of U.S. ocean and coastal infrastructure and technology every five years. These assessments should account for all federal, state, academic, and private assets and should be used to create and update a national facilities database.

The assessments should build on this Commission’s efforts (Appendix 5), including information on:

- the location, ownership, availability, remaining service life, and replacement cost for a wide range of ocean infrastructure assets.
- maintenance and operational costs associated with these assets.
- associated human resource needs.
- the outcomes of past federal investments in ocean technology and infrastructure, with recommendations for improvements.

Funding the Modernization of Critically Needed Assets

Too often during the past decade, federal and state agencies have had to delay, reduce, or cancel infrastructure upgrades due to budgetary constraints or changing agency priorities. Similar challenges arise within the academic community, which must balance the cost of expensive facilities with other institutional priorities.

Recent fiscal crises have exacerbated the problem at the state and local level, and a significant decline in the both private and state funding at universities has delayed modernization and expansion activities at many institutions. Funds dedicated for operations and maintenance of existing equipment have also declined. As a result, significant parts of the ocean and coastal infrastructure are outmoded, limiting the progress of ocean research and education and hindering the implementation of improved management and enforcement practices.

Essential Science Infrastructure and Technology Components

The following discussion provides a summary of the condition of several major ocean science infrastructure categories, highlighting those most in need of coordinated planning and increased investment.

Surface Vessels
Despite the increasing availability of moored instruments, drifters, gliders, and satellites to collect ocean data, the need remains for traditional ships to conduct research, exploration, and education. But insufficient vessel capacity, vessel deterioration, and outdated shipboard equipment and technology hinder the conduct of vessel-based science. In some cases, these conditions also present safety issues and increase costs.

The nation’s existing surface vessels for research are spread across federal and state agencies, universities, private research institutions, and private industry. The four largest U.S. government fleets conducting global, coastal, and nearshore research are operated by NOAA, the Navy, EPA, and the U.S. Department of the Interior. The University-National Oceanographic Laboratory System (UNOLS) is an organization of sixty-two academic institutions and national laboratories involved in oceanographic research that coordinates oceanographic ship schedules. There are currently twenty-seven UNOLS research vessels—owned by the Navy, NSF, or individual research institutions—located at twenty operating
institutions. Most coastal states also own and operate vessels of various sizes and mission capabilities to satisfy state research needs. A significant and growing number of privately-owned vessels are also being used by federal and state agencies and academic institutions through contract or lease arrangements, particularly for highly specialized work.

The U.S. Coast Guard operates three icebreakers in coordination with UNOLS, which provide polar research capabilities. This fleet was recently updated with a new vessel specifically designed for research, but two of these ships will reach the end of their service life within the next four to seven years. NOAA has enlarged its fleet by refitting surplus Navy vessels and launching a ten-year plan to build four specialized fishery research ships at a price of $52 million per vessel. Two of the ships are under construction, but funding has not been finalized for the remaining two.

While all of the agency research fleets would benefit from upgrades, the UNOLS fleet is in need of immediate attention. Twelve of the seventeen largest UNOLS ships will reach the end of their service life over the next fifteen years, and almost all UNOLS ships require significant enhancements. The National Ocean Partnership Program’s Federal Oceanographic Facilities Committee, comprised of representatives from thirteen federal organizations and one representative from UNOLS, was established to oversee oceanographic facility use, upgrades, and investments. The Committee’s 2001 plan for recapitalization of the UNOLS academic research fleet is an excellent example of successful interagency planning at the national level. Unfortunately, its plan has not yet been funded or implemented.

Furthermore, as the international Integrated Ocean Drilling Program gets underway, the United States has pledged to provide a modernized non-riser drilling vessel with enhanced coring and drilling capabilities at an estimated cost of $100 million. Modern research ships are designed as flexible platforms that can accept different instrument systems to suit particular projects. However, the built-in instrumentation (such as sonars, mapping systems, and computer labs) must be considered part of the vessel. These onboard technologies typically require much more frequent maintenance and upgrades than the vessels themselves. Thus, fleet planning strategies need to consider the costs of maintaining existing instrumentation and integrating emerging technologies.

The R/V Kilo Moana, based at the University of Hawaii, is the newest U.S. oceanographic research vessel. The twin hull design provides a stable platform for research in coastal and deep ocean areas, even in high sea conditions.
Undersea Vehicles

Scientists working in the deep ocean have made fundamental contributions to understanding ocean and planetary processes and the nature of life itself. Further scientific breakthroughs are likely if more regular access to the ocean depths can be provided. Ninety-seven percent of the ocean floor can be accessed by existing undersea vehicles with depth capabilities of around 20,000 feet. The remaining 3 percent—an additional 16,000 feet of ocean depth—remains largely inaccessible, although it includes most of the deep ocean trenches and comprises an area the size of the continental United States, Alaska, and about half of Mexico combined.

Human-occupied deep submersible vehicles came into operation in the late 1950s, followed by tethered remotely operated vehicles, and later by autonomous underwater vehicles. All three types of vessels are still used, and this variety allows researchers to choose the best tool for their needs, based on factors such as task, complexity, cost, and risks.

Today French, Russian, and Japanese human-occupied submersibles regularly work at depths of 20,000 feet or more. The last such vehicle owned by the United States was the Sea Cliff, which was retired in 1998 and not replaced. U.S. capability today is limited to the Alvin, built in 1964, which can only descend to 15,000 feet and stay submerged for relatively short periods. The University of Hawaii operates two submersibles that have the next deepest capabilities in the United States. The Pisces IV and Pisces V can dive to about 6,500 feet, with missions lasting seven to ten hours. For missions of long duration, the United States relies on the Navy’s NR-1 nuclear research submarine, which can stay submerged for thirty days but has a maximum depth of only 3,000 feet. The NR-1 was constructed in 1969, and its service life will end in 2012.

The United States has a well-developed remotely operated vehicle (ROV) industry, and ROVs are readily available for academic and industrial purposes. The last twenty-five years have witnessed extraordinary advances in the field of subsea robotics, developed mainly for the oil and gas industry, and there is a wide array of ROVs available with working depths of 9,800 feet. Current U.S. ROV capabilities are led by Jason II, with a maximum operating depth of 21,325 feet, but it is the only vehicle in the federal fleet capable of reaching this depth. Federal funding has expedited the development of ROVs that can dive to 23,000 feet and deeper, but a concerted effort will be needed to make deep-water capabilities more economical and accessible.

Submersibles in the federal research fleet, including Alvin and Jason II, are currently housed at the National Deep Submergence Facility at the Woods Hole Oceanographic Institution. The facility is funded through a partnership among NSF, the Office of Naval Research (ONR), and NOAA. In addition, the NOAA-funded Undersea Research Program provides scientists with tools and expertise needed to work in the undersea environment. The vehicles owned and operated by the Undersea Research Program are divided into six regional centers that choose research missions based on a peer review process.

The U.S. autonomous underwater vehicle (AUV) industry has just begun to emerge from the research, development, and prototype phase. Over the past decade, close to 60 development programs have been initiated throughout the world, producing approximately 175 prototypes. About twenty of these programs remain active, with at least eight in the United States. While the primary financial drivers of AUV development in the United States have been the U.S. military and the oil industry, significant programs are in place at a few academic institutions and private institutes.

Nevertheless, a 2003 report by the National Research Council found that the scientific demand for deep-diving vehicles is not being met. The report suggests a mix of vehicles to support current and future research needs. Recommendations include: setting aside funds at the National Deep Submergence Facility to gain access to vehicles outside the federal fleet for specific missions; acquiring a second ROV to join Jason II by 2005, at a

Dramatic advances in submergence vehicle technologies and instruments will help foster a revolution in our ability to measure the chemical, biological, and physical processes that occur in the oceans.

—Dr. Margaret Leinen, Assistant Director for Geosciences, National Science Foundation, testimony to the Commission, April 2002
cost of approximately $5 million; and initiating an engineering study to evaluate various options for replacing Alvin, with a goal of providing submergence capability up to 21,000 feet, at a cost of approximately $20 million. The report noted that, over time and with additional funding, new platforms with greater capabilities could be profitably added to the fleet.

Dedicated Ocean Exploration Platforms

The success of a robust national ocean exploration program (described in Chapter 25) will depend on the availability of sufficient vessel support, particularly ships and submersibles. Given that the existing suite of platforms requires upgrading just to meet current demands, implementation of a robust, national ocean exploration program will require additional support facilities. These assets should provide dedicated support for exploration missions and the flexibility to investigate many ocean areas and environments.

In 2003, the National Research Council recommended U.S. participation in an international exploration effort and discussed the benefits of providing a $70 million modern flagship and several modernized underwater vehicles and platforms. Such assets should be included in the national strategy for ocean infrastructure and technology.

Airborne Ocean Science Platforms

Piloted and autonomous aircraft are an integral part of modern ocean science. They are needed for precise airborne observation and measurements of the ocean, air-sea interface, and atmosphere. Many multidisciplinary, ocean-atmosphere field projects require a mix of observational platforms, particularly aircraft teamed with ships and satellites. Research aircraft are also instrumental in developing new satellite and airborne sensors.

The future of airborne ocean science and monitoring rests on the increased availability of autonomous or remotely-piloted aircraft. These research platforms, which are being developed now, possess a greater range, duration, and ceiling than conventional aircraft, and present less risk when operating in hazardous environments. The research community has suggested the need for a worldwide fleet of autonomous aircraft for ocean and atmospheric observation by 2005. The National Aeronautic and Space Administration (NASA), ONR, and NSF currently have active autonomous airborne ocean research programs, and are working to develop additional resources.

The national airborne fleet is operated by a partnership of federal agencies and academia. Private aircraft are also used for specialty and operational projects such as aerial mapping, marine mammal surveys, and supply missions. The Interagency Coordinating Committee for Airborne Geoscience Research and Applications, which is composed of federal agencies and academic institutions that operate research aircraft programs, works to improve cooperation, foster awareness, and facilitate communication among its members, and serves as a resource to senior managers. In an effort to coordinate ocean research aircraft, UNOLS recently established the Scientific Committee for Oceanographic Aircraft Research. This committee coordinates the operators and agencies whose aircraft have been chosen by UNOLS to be a part of the National Oceanographic Aircraft Facility.

The demand for these assets is increasing, particularly as collaborative ocean-atmosphere projects become more common, and currently exceeds availability. Inadequate funding for research flight time is exacerbating the problem. Furthermore, as with surface vessels, emerging technologies and updated safety and personnel requirements will require significant funding that must be included in planning.

In 2003, NOAA drafted a ten-year plan for airborne platforms that provides an extensive analysis of agency requirements. The plan included an examination of historical flight requests, allocations, and budgets, and delineated future requirements, contracts for service, and a recapitalization schedule and cost.
The Ocean Observatories Initiative

Investigation of the oceans as a dynamic system requires sustained observational capabilities in remote locations not routinely accessible by ships. NSF’s Ocean Observatories Initiative (OOI) will develop and construct the initial infrastructure for an integrated research observatory network, providing the research and education communities with a new mode of access to the oceans. The scientific problems driving creation of the OOI are broad in scope and encompass nearly every area of ocean science. Once established, the observatories constructed as part of this initiative will provide earth and ocean scientists with unique opportunities to study multiple, interrelated processes over timescales ranging from seconds to decades, to conduct comparative studies of regional processes and spatial characteristics, and to map whole-Earth and basin scale structures.

Funding support for the OOI is scheduled to come from NSF’s Major Research Equipment and Facilities Construction account. The OOI is listed as a priority new start for fiscal year 2006, although funding has not yet been appropriated by Congress.

While the OOI is an essential component of the federal research infrastructure, care should be taken to ensure that it is developed in close coordination with its operational counterpart, the Integrated Ocean Observing System (IOOS). The outcomes of research and technology development in the OOI will be indispensable for development and continual enhancement of the IOOS. Likewise, the operational measurements and products of the IOOS will provide OOI researchers with essential ocean background information for experimental planning and execution purposes. Thus, it is imperative that the OOI Project Office, Ocean.US, NSF, and NOAA, work closely together to ensure mutually beneficial interactions and coordination between these two efforts.

Laboratories and Instrumentation

Maintaining academic laboratory space and instrumentation over the past decade has been challenging due to increased construction of facilities to meet rising student and faculty needs and increased upkeep needs for aging facilities. This problem is aggravated by the prohibition against academic institutions setting aside adequate federal funds for ongoing maintenance and replacement. A recent RAND study estimated that the true cost of providing facilities and administration to support research projects is about 31 percent of the grant amount. However, federal regulations limit the share that can be covered with federal funds to between 24 and 28 percent, leaving the difference to be covered by the institutions.

In 2002, the Consortium for Oceanographic Research and Education surveyed eighty-six non-UNOLS academic ocean programs to examine facility age and replacement plans (Appendix 4). Relatively few institutions had replacement plans for their facilities, and a number of institutions noted that lack of available funds was the primary factor preventing planning and upgrades. Yet increases in both laboratory space and instrumentation capacity will be essential for the continued conduct of cutting-edge ocean research.

Many federal research facilities are also deteriorating due to growing budget pressures and new mandates related to safety, homeland security, and environmental health compliance. NOAA characterizes its need for improvements to equipment and labs as a major impediment to future science capabilities. Other agencies like EPA, U.S. Geological Survey (USGS), and the U.S. Army Corps of Engineers (USACE) also fund and operate laboratories throughout the United States, conducting much needed ocean and coastal research and monitoring. All of these laboratories contribute to our national research goals and need to be maintained in order to support new, cutting-edge science for years to come.

Advanced Telecommunications Technology and Broadband Capabilities

The satellite communications infrastructure provides affordable, global broadband coverage to support ocean observations and exploration. However, current coverage does not provide links to important polar regions or portions of the Southern Ocean. Advanced
communication capabilities are also required for scientists to remotely operate ocean exploration vehicles, similar to the highly successful use of space probes. These telecommunication technologies also provide excellent educational opportunities for the general public, allowing them to participate in virtual voyages to deep and inaccessible parts of the ocean. Telepresence—the transmission of real-time, high-quality video, audio, and other digital data from undersea exploration sites over the Internet—will demand modern broadband data transfer capabilities.

A variety of other research activities require upgrades in the current data transmission infrastructure, such as the fiber optics needed for cabled sensor systems. Active partnerships between ocean scientists and the private telecommunications industry will be crucial to ensure that the United States has the capability to transmit and assimilate the data streams of the future.

A Federal Commitment to Scientific Infrastructure

Coordinated federal support for ocean science infrastructure in all the areas discussed above is urgently needed to build or upgrade critical facilities and acquire related instrumentation and equipment. Improved coordination of similar equipment purchases, where feasible, can achieve significant economies of scale.

NSF has traditionally been the lead federal agency for supporting academic infrastructure. NSF can propose funding for large research facilities (those costing hundreds of millions of dollars) through its Major Research Equipment and Facilities Construction account, while small infrastructure projects (costing millions of dollars or less) have generally been funded through the regular disciplinary science programs. In 1997, NSF launched the Major Research Instrumentation program to provide additional support for instrumentation ranging in cost from $100,000 to $2 million, although funding for this program falls far short of the needs. There is currently no NSF program dedicated to funding mid-size facilities (costing millions to tens of millions of dollars).

Recommendation 27–4

Congress should create a mechanism to ensure a dedicated funding stream for critical ocean science infrastructure and technology needs. Spending priorities should be based on the National Ocean Council’s ocean and coastal infrastructure and technology strategy. High-priority areas for funding include the following:

- the renewal of the University-National Oceanographic Laboratory System fleet and other essential air fleets and deep-submergence vehicles.
- the completion of the third and fourth dedicated fishery research vessels.
- the acquisition of vessels and infrastructure needed for an expanded national ocean exploration program.
- the Integrated Ocean Drilling Program non-riser drilling vessel.
- the refurbishment or replacement of two U.S. Coast Guard polar ice breakers.
- the ongoing modernization of existing assets, including telecommunications assets, laboratories, and other facilities.

Other Essential Infrastructure and Technology Components

Ocean-related agencies maintain the infrastructure needed to carry out their responsibilities in resource management, navigation and safety, enforcement, and environmental protection and response. While the Coast Guard and NOAA generally lead these efforts, other federal agencies such as USACE, Navy, USGS, and EPA also possess assets for specific purposes. With so many government agencies involved and such a wide range of activities included, cooperation among these agencies in planning and deploying these assets is critical. For example, while the Coast Guard is the lead agency for responding to environmental incidents, it receives support for these activities from the Navy, Minerals Management Service...
AN OCEAN BLUEPRINT FOR THE 21ST CENTURY

(MMS), and EPA, and indirect help with scientific information, surveying, and modeling from NOAA and other parties. Establishing collaborative efforts among agencies, and acquiring infrastructure assets that can respond to multiple mission mandates, will enhance overall federal capabilities.

The following provides an overview of the range of assets the United States requires in order to manage resources, protect human lives, enforce ocean and coastal laws, and predict ocean conditions.

Vessels and Aircraft
A robust federal fleet of vessels and aircraft is required to conduct monitoring, mapping, enforcement, response, and safety activities in both coastal waters and the open ocean. While some activities, such as monitoring and mapping, can be conducted by private companies under contract, the nation will always need to maintain a federal fleet that can quickly and effectively respond to environmental disasters, conduct assessments on a routine basis, and enforce applicable laws. Regular upgrades to these vessels and aircraft are needed to incorporate cutting-edge technologies, increase fleet capacity, and address both national and international safety requirements.

After the Navy, the Coast Guard has the largest fleet of any agency and performs the largest range of activities on the water. It conducts search and rescue missions, prevents and responds to oil spills and other environmental threats, enforces fishery laws and other measures designed to ensure the sustainability of living marine resources, facilitates maritime commerce, and provides for maritime safety, security, and national defense. The Coast Guard’s role in enforcement will remain an essential element in the effective management of offshore activities. In addition to their obvious roles, enforcement personnel can provide valuable feedback on the real-world impacts of management regimes and can suggest potential improvements to enhance their effectiveness. Enforcement activities also provide excellent opportunities to inform and educate the public about resource management requirements.

To accomplish its duties, the Coast Guard fleet includes 223 cutters (vessels over 65 feet), 211 aircraft, and 1400 boats (vessels under 65 feet). Unfortunately, the Coast Guard air and surface fleet is aging and falling behind technologically—over half of these assets will reach the end of their service life in the next four years. The consequences of allowing these resources to decline have become even more severe as a result of the Coast Guard’s dramatically increased maritime security responsibilities. Accelerated recapitalization of the Coast Guard fleet is critically important because of the wide-ranging roles the Coast Guard plays in furthering U.S. ocean interests.

NOAA operates fourteen vessels for environmental monitoring and fishery and oceanographic research, and maintains a fleet of four additional vessels dedicated to conducting hydrographic surveys. Two of these vessels are stationed in the Pacific and two in the Atlantic. A reconditioned NOAA hydrographic vessel is expected to enter service in the Pacific in late 2004. NOAA also maintains a smaller hydrographic boat in the Chesapeake Bay. NOAA’s own hydrographic survey capability is roughly matched by contracts it maintains with private sector vessels; both capabilities will become increasingly important as the nation strives to address the survey backlog discussed in Chapter 25.

Most ocean agencies undertake both biological and physical monitoring activities that require significant ship time. USGS has some vessels that collect samples for sediment and water quality monitoring, and others, including a number in the Great Lakes, that conduct fish stock assessments and determine the effectiveness of stocking programs. EPA also has several ships that monitor potential environmental threats and support coastal marine protection programs. The EPA ships collect environmental information from harbors, ports, and offshore waters in the ocean, as well as the Great Lakes. NOAA conducts extensive fish stock surveys throughout U.S. waters, using both its own ships and contract vessels.
In addition to ship-based monitoring programs, much of the coastal and open ocean monitoring supported by the federal government is conducted using buoys and in situ sensors. In addition to the buoys themselves (discussed below), both NOAA and the Coast Guard maintain the ships needed to deploy and care for buoys in the open ocean. The development of the Integrated Ocean Observing System (IOOS), discussed in detail in Chapter 26, will intensify the demand for ship support to install and maintain ocean buoys. This capability is not available in the federal fleet today, nor is it foreseen in the near future.

Other routine activities such as marine salvage, dredging, ensuring safe navigation, and monitoring offshore oil and gas activities also require significant support. While most salvage in the United States is conducted by private contractors, both the Coast Guard and the Navy maintain some assets for these activities. In particular, the Navy has four manned rescue and salvage ships and several unmanned underwater vehicles. Like salvage activities, most port and waterway dredging projects are conducted by private companies under contract (over 160 contracts were granted by USACE in fiscal year 2003); however, USACE does keep a small fleet of twelve dredging vessels throughout the country to help maintain navigable waterways. The Coast Guard conducts icebreaking activities to permit vessels to move safely on frequently traveled routes. In particular, the Coast Guard owns and operates thirteen primary icebreaking vessels (some of which are also used for research as discussed above) and conducts numerous ice reconnaissance flights using HC-130 aircraft. As part of its mandate to oversee oil and gas activities in the outer Continental Shelf, MMS must monitor coastal and ocean areas for oil spills. This responsibility is carried out primarily through a fleet of contract helicopters that are used to transport inspectors to over 4,000 offshore oil and gas platforms annually.

Land-based Facilities

Federal ocean agencies own hundreds of buildings and structures across the country that house thousands of employees on the front lines of ocean management and protection at the regional, state, and local level.

A small sampling of these facilities includes:

- The Coast Guard’s 186 multi-mission stations that operate boats and provide personnel to conduct a variety of operations, including search-and-rescue, law enforcement, and marine environmental protection missions. They also operate twenty-five air stations that provide mission capable aircraft.
• The USGS Coastal and Marine Geology program field centers that collect data and monitor conditions related to geologic processes and hazards, environmental conditions, habitats, and energy and mineral resources.

• EPA’s ten regional offices, each of which is responsible for several states and territories. Within some regions there are additional program offices, such as the Chesapeake Bay Program Office which oversees protection and restoration of the Bay.

However, many agencies are experiencing shortfalls in the funds needed to maintain and upgrade these facilities. As an example, in a 2002 performance review, NOAA showed holdings of 800 buildings at 500 installations, representing 6 million square feet of space. Approximately 50 percent of the properties were over 30 years old, and there was a backlog of 316 maintenance and repair projects. Of the estimated $65 million in costs needed to remedy this backlog, $25 million was required just to remedy health and safety problems. Comprehensive planning, including consolidation or elimination where possible, is needed to ensure that ocean agencies have the facilities required to fulfill their responsibilities for management, monitoring, and enforcement.

Monitoring Stations and Buoy Arrays

In situ monitoring stations that collect and transmit continuous data streams, are essential for forecasting marine and weather conditions, predicting marine hazards, and evaluating water quality. In particular, NOAA operates several ocean observing arrays that collect data on climate, weather, air quality, and ocean variables, including: the Marine Observation Network; the National Water Level Observation Network; the Tropical Atmosphere Ocean (TAO) buoy array; and the Drifting Buoy Program.

Each of these networks can include hundreds of moored or drifting buoys used to collect and transmit data for predicting tsunamis, monitoring El Niño conditions, compiling long-term baseline measurements, and contributing to safe navigation. NOAA also manages the National Ice Center’s U.S. Interagency Arctic Buoy Program in conjunction with the Coast Guard and the Navy. This program supports the International Arctic Buoy Program, an international collaborative effort that maintains thirty-six operational buoys that monitor air temperature, surface pressure, and ice drift. The Navy also has several buoys and current measurement systems consisting of acoustic profiling instruments which, among other things, are being explored as a method of monitoring marine mammals in cooperation with MMS and the National Marine Fisheries Service.

In addition to ocean monitoring, NOAA, USGS, EPA, and other federal and state agencies oversee a number of coastal and estuarine monitoring programs throughout the nation. For example, USGS operates around 2,900 stations that monitor coastal streams. These monitoring systems are discussed in more detail in Chapter 15.

Satellites

In addition to the satellite operations discussed in Chapter 26 as part of the national IOOS, many environmental management and monitoring programs rely on a constellation of orbiting satellites to collect operational data.

NOAA currently operates two different kinds of satellites in support of its missions. Two Geostationary Operational Environmental Satellites (GOES) collect and transmit data related to many essential weather variables and potential environmental hazards such as hurricanes and flood warnings. In addition, NOAA maintains five Polar-orbiting Environmental Satellites (POES) (some are in orbit as backups if needed) that are able to monitor the entire Earth on a daily basis for a variety of land, ocean, and atmospheric applications. Data support a broad range of environmental monitoring applications, including weather analysis and forecasting, climate research and prediction, global sea
surface temperature measurements, atmospheric soundings of temperature and humidity, ocean dynamics research, volcanic eruption monitoring, search and rescue, and many other applications. These satellites send more than 16,000 global measurements daily to NOAA computers, adding valuable information for forecasting models, especially for remote ocean areas where conventional data are lacking.

In 1994, a decision was made to merge the nation’s military and civilian operational meteorological satellite systems to lower costs. As a result, NOAA, NASA, and the U.S. Department of Defense designed the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The first NPOESS satellite, which will collect and disseminate data on Earth’s weather, atmosphere, oceans, land, and near-space environment, is expected to be launched in 2008.

Since 1972, NASA and USGS have collaborated to collect important environmental data through the Landsat satellite program, joined in 1994 by NOAA. Landsat’s mission is to guarantee repeated observations over the Earth’s land mass, coastal boundaries, and coral reefs as needed to monitor long-term changes. The continuity of Landsat satellites (currently Landsat 7 is in operation) ensures the collection of consistently calibrated Earth imagery.

Satellites are also essential for transmitting data from sensors and buoys deployed throughout the world. For example, the data collected by the TAO buoy array located in the tropical Pacific Ocean are transmitted to NOAA via the Argos satellite system. The implementation of the IOOS and Global Observing System will intensify the need to transmit large amounts of coastal, oceanic, and atmospheric data in real and near-real time, increasing the demand for advanced telecommunications technology and infrastructure.

Infrastructure Planning to Support Ocean and Coastal Activities

Most ocean agencies periodically produce infrastructure maintenance and upgrade plans. One important example of such a plan is the Coast Guard’s Integrated Deepwater System, a twenty-year program to modernize its fleet through acquisition of new cutters, patrol boats, aircraft, and communications capabilities designed to operate as an integrated system. However, this program was initiated prior to September 11, 2001, before significant new demands were placed on Coast Guard resources. A 2004 study concluded that the Deepwater acquisition program will no longer provide the Coast Guard with the assets and capabilities needed to meet all its responsibilities.

All ocean agencies, both working separately and in coordination through the National Ocean Council, will need to plan for future acquisitions and upgrades of their infrastructure assets related to management, operations, and enforcement missions. Periodic national ocean and coastal infrastructure and technology assessments, as called for in Recommendation 27–3, will aid these agencies in drafting strategic plans that take full advantage of private sector assets and will highlight possible opportunities for interagency coordination.

Recommendation 27–5

Congress should support the infrastructure and technology requirements related to ocean and coastal management, operations, and enforcement. Priorities should be based on the National Ocean Council’s ocean and coastal infrastructure and technology strategy. High-priority areas for funding include the following:

- recapitalization of the Coast Guard fleet based on an accelerated modernization plan.
- modernization of other federal fleets as needed.
- ongoing maintenance and upgrades of land-based operational and enforcement facilities.
- maintenance and upgrading of monitoring buoys, gages, and stations.
- coordinated satellite observing deployment.

—Gregory Withee, Assistant Administrator for National Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration, testimony to the Commission, October 2002

It is critical to continue construction of the long-time record of ocean observations, incorporating measurements from historical and current satellites and in-situ platforms, as well as from new instruments such as those on NPOESS.
Creating Virtual Marine Technology Centers

Fundamental oceanographic questions require the best scientific and engineering talent working cooperatively to obtain answers. Interdisciplinary oceanographic research programs typically require large numbers of platforms and sensors operating in a coordinated manner. While new technologies are enabling the creation of more powerful sensors, robotic platforms, and ocean observing systems, it would be extremely difficult for any individual research group to acquire all these technologies and master the increasingly complex instrumentation. By sharing expensive technologies, infrastructure, and expertise, more investigators will have greater access to these assets.

Virtual centers will require a smaller federal investment than if numerous institutions all attempt to acquire the same essential instrumentation. By electronically linking existing academic, government, and private-sector capabilities and instrumentation, virtual centers for ocean and coastal technology could maximize the use of the excellent capabilities and facilities already present in the United States. These interdisciplinary virtual centers could simultaneously operate remote submersibles, receive in situ ocean measurements taken halfway around the globe, and schedule satellite time to collect additional data from space. Infrastructure components available through the center could be used by small-scale, pilot projects that would not normally have access to such sophisticated facilities. Investigators could apply for grants to join an ongoing team linked by computers, not geography. The multipurpose focus of each center would also lend itself to the development of new approaches to education and public outreach.

Marine technology centers can serve as incubators for innovations and new technologies necessary to achieve and sustain national competitiveness in ocean science and engineering research. In particular, these virtual centers could provide the critical mass of interest to develop much needed new environmental sensors. Sensors for measuring basic oceanographic parameters such as currents, temperature, and salinity are already widely available, but sensors that illuminate the chemistry and biology of the ocean are just emerging. A new generation of sensors will be able to measure such parameters as carbon dioxide, acidity, alkalinity, dissolved oxygen, nitrates, photosynthetically active radiation, spectral radiance and irradiance, back-scattered light, and stimulated fluorescence. Some of the innovative biological technologies currently being investigated include acoustic monitoring and optical scanning systems for identifying and tracking marine life, DNA probes for identifying harmful algal blooms, and nanotechnology sensors for monitoring potentially harmful pathogens. Although prototypes exist, many sensors still need considerable development before they can be expected to operate unattended for long periods of time in the harsh ocean environment.

The virtual marine technology centers, like other successful programs of this kind, should be located at established universities, museums, and science centers in order to take advantage of existing infrastructure and expertise, but should also strive to incorporate outside research groups to ensure an influx of new ideas. A strengthened NOAA, as the lead ocean agency, is the logical organization to coordinate and provide funding for these centers.

Recommendation 27–6

The National Oceanic and Atmospheric Administration should establish four to six national virtual marine technology centers at existing institutions to provide coordinated access, through electronic means, to cutting-edge, large-scale research technologies.
References

CHAPTER 28

MODERNIZING OCEAN DATA AND INFORMATION SYSTEMS

Ocean and coastal research, observing, and monitoring activities are generating new data at ever-increasing rates—data that must eventually be analyzed, distributed, and stored. The nation’s ocean and coastal data management systems should be modernized and integrated to promote interdisciplinary studies and provide useful information products for policy makers, resource managers, and the general public. Better interagency planning is needed to coordinate federal data management. An information management and communications program will help produce operational ocean and coastal forecasts and disseminate information products relevant to national, regional, and local needs. Ultimately, the goal should be to transition all environmental data archiving, assimilation, modeling, and information systems, which are currently divided by environmental sectors, into a fully integrated Earth environmental data system.

Turning Oceans of Data into Useful Products

Ocean and coastal data are essential for understanding marine processes and resources. They are the foundation for the science-based information on which resource managers depend. Previous chapters have provided ample evidence of the importance of data from ocean, coastal, and watershed observations; but processing these data, and converting them into information products useful to a broad community of end users, remains a huge challenge.

In the following discussion, data refer to direct measurements collected during scientific research, observing, monitoring, exploration, or marine operations. Information, on the other hand, includes both synthesized products developed through analyses of original data using statistical methods, interpolations, extrapolations, and model simulations, and interpreted products developed through incorporation of data and synthesized products with additional information that provides spatial, temporal, or issue-based context.

There are two major challenges facing data managers today: the exponentially growing volume of data, which continually strains ingestion, storage, and assimilation capabilities; and the need for timely accessibility of these data to the user community in a variety of useful formats. Meeting these challenges will require a concerted effort to integrate and modernize the current management system. The ultimate goal of improved data manage-
ment should be to effectively store, access, integrate, and use a wide and disparate range of data needed to better understand the environment and to translate and deliver scientific results and information products in a timely way.

Reviewing the Data Management Structure

Data centers throughout the nation collect and analyze environmental data and information. Because these centers often operate in isolation, users who need to gather and integrate data from multiple sources can face an inefficient and lengthy process.

Types of Data Centers

National Civilian Data Centers

The national data centers that archive and distribute environmental data have been evolving since the late 1950s. Federal science agencies maintain eleven national data centers, some with regional extensions (Table 28.1). These centers collect, archive, and provide access to an assortment of publicly available data sets streaming in from local, regional, and global environmental observing systems. Nine of the centers are run by federal agencies, including the National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), National Aeronautics and Space Administration (NASA), and U.S. Department of Energy. Of the remaining centers, one is housed at Columbia University and sponsored by twenty-two federal and nonfederal organizations and the other is located at the University of Colorado and affiliated with NOAA through a cooperative agreement.

Each federal data center collects and archives complementary data and information sets. Yet, for the most part, these centers are disconnected from each other, and attempting
Table 28.1 National Civilian and Military Data Centers

Listed below are the existing federal data centers with their sponsoring agencies and scientific specialties.

<table>
<thead>
<tr>
<th>Name of Center</th>
<th>Sponsoring Agency</th>
<th>Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Data Centers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide Information Analysis Center (CDIAC)</td>
<td>U. S. Department of Energy</td>
<td>Atmospheric trace gases, global carbon cycle, solar and atmospheric radiation</td>
</tr>
<tr>
<td>Center for International Earth Science Information Network (CIESIN)</td>
<td>Columbia University (supported by contracts from 22 nonfederal and federal agencies)</td>
<td>Agriculture, biodiversity, ecosystems, world resources, population, environmental assessment and health, land use and land cover change</td>
</tr>
<tr>
<td>Earth Resources Observation Systems (EROS) Data Center (EDC)</td>
<td>U. S. Geological Survey (USGS)</td>
<td>Cartographic and land remote-sensing data products</td>
</tr>
<tr>
<td>National Earthquake Information Center (NEIC)</td>
<td>USGS</td>
<td>Earthquake information, seismograms</td>
</tr>
<tr>
<td>National Climatic Data Center (NCDC)</td>
<td>National Oceanic and Atmospheric Administration (NOAA)</td>
<td>Climate, meteorology, alpine environments, ocean-atmosphere interactions, vegetation, paleoclimatology</td>
</tr>
<tr>
<td>National Geophysical Data Center (NGDC)</td>
<td>NOAA</td>
<td>Bathymetry, topography, geomagnetism, habitat, hazards, marine geophysics</td>
</tr>
<tr>
<td>National Oceanographic Data Center (NODC)</td>
<td>NOAA</td>
<td>Physical, chemical, and biological oceanographic data</td>
</tr>
<tr>
<td>National Snow and Ice Data Center (NSIDC)</td>
<td>University of Colorado (under cooperative agreement with NOAA)</td>
<td>Snow, land ice, sea ice, atmosphere, biosphere, hydrosphere</td>
</tr>
<tr>
<td>National Ice Center (NIC)</td>
<td>NOAA, U. S. Coast Guard, U. S. Navy</td>
<td>Global ice, meteorology, and oceanographic data</td>
</tr>
<tr>
<td>National Coastal Data Development Center</td>
<td>NOAA</td>
<td>Data relevant to coastal managers</td>
</tr>
<tr>
<td>National Space Science Data Center (NSSDC)</td>
<td>National Aeronautics and Space Administration (NASA)</td>
<td>Astronomy, astrophysics, solar and space physics, lunar and planetary science</td>
</tr>
<tr>
<td>Distributed Active Archive Centers (DAACs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oak Ridge National Laboratory (ORNL) DAAC</td>
<td>NASA</td>
<td>Terrestrial biogeochemistry, ecosystem dynamics</td>
</tr>
<tr>
<td>Socioeconomic Data and Applications Center (SEDAC) DAAC</td>
<td>NASA</td>
<td>Population and administrative boundaries</td>
</tr>
<tr>
<td>Land Processes (EDC) DAAC</td>
<td>NASA</td>
<td>Land remote-sensing imagery, elevation, land cover</td>
</tr>
<tr>
<td>National Snow and Ice Data Center (NSIDC) DAAC</td>
<td>NASA</td>
<td>Sea ice, snow cover, ice sheet data, brightness, temperature, polar atmosphere</td>
</tr>
<tr>
<td>Goddard Space Flight Center (GSFC) DAAC</td>
<td>NASA</td>
<td>Ocean color, hydrology and precipitation, land biosphere, atmospheric dynamics, and chemistry</td>
</tr>
<tr>
<td>Langley Research Center (LaRC) DAAC</td>
<td>NASA</td>
<td>Radiation budget, clouds, aerosols, and tropospheric chemistry</td>
</tr>
<tr>
<td>Physical Oceanography (PO) DAAC</td>
<td>NASA</td>
<td>Atmospheric moisture, climatology, heat flux, ice, ocean wind, sea-surface height, temperature</td>
</tr>
<tr>
<td>Alaska Synthetic Aperture Radar (SAR) Facility DAAC</td>
<td>NASA</td>
<td>Sea ice, polar processes</td>
</tr>
<tr>
<td>Military Data Centers of Particular Importance to Ocean-related Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Oceanographic Office</td>
<td>U. S. Navy</td>
<td>Bathymetry, hydrography, oceanography</td>
</tr>
<tr>
<td>Naval Ice Center</td>
<td>U. S. Navy</td>
<td>Global ice, meteorology, and oceanographic data</td>
</tr>
<tr>
<td>Fleet Numerical Meteorology and Oceanography Center</td>
<td>U. S. Navy</td>
<td>Atmosphere and oceans</td>
</tr>
</tbody>
</table>

to gather and integrate data from several centers can be a time-consuming and sometimes impossible task due to differences in storage formats and computer software. Ever-increasing amounts of incoming data will only exacerbate this untenable situation, impeding the creation and dissemination of critical information products.

Distributed Active Archive Centers

NASA operates eight Distributed Active Archive Centers (DAACs) as part of its Earth Observing System Data and Information System. Each DAAC collects data within a different Earth science discipline and manages and distributes data products based on its specialty. However, implementation of the DAACs has been costly, and they have not yet fulfilled their potential. In an effort to ensure long-term data storage and coordination, NASA has entered into memoranda of agreement with NOAA and USGS that call for the orderly transfer of NASA data to NOAA or USGS within fifteen years after their collection.

Military Data Centers

Several military data centers exist in addition to the civilian centers. Of particular importance are the U.S. Department of Defense assets at the Naval Oceanographic Office and the U.S. Navy's centers for ocean observation and prediction, which include the Fleet Numerical Meteorology and Oceanography Center, the Naval Oceanographic Office, and the Naval Ice Center. These centers are integrated with the civilian sector's national data centers through memoranda of agreement, primarily with NOAA, NASA, the Department of Energy, and the National Science Foundation (NSF). The purpose is to incorporate certain classified data into civilian research and operational products while retaining their confidentiality.

Other Specialized Data Centers

Fifteen discipline-based World Data Centers exist in the United States that collect and archive data related to atmospheric trace gases, glaciology, human interactions in the environment, marine geology and geophysics, meteorology, oceanography, paleoclimatology, remotely sensed land data, seismology, and solar-terrestrial physics. Individual states also operate data centers associated with certain state environmental offices, such as weather or geological offices. Independent specialized data collections have also been assembled by interagency groups, university and research centers, and consortia in various fields of science.

Ocean and Coastal Data

Ocean, coastal, and watershed data are primarily located in NOAA, NASA, USGS, the Minerals Management Service (MMS), the U.S. Environmental Protection Agency, and the Navy. A number of ocean industries, notably the marine transportation and offshore oil and gas sectors, also collect substantial amounts of ocean information that could be of enormous value to the nation.

NOAA has the unique mission of archiving environmental data, with a special focus on ocean and coastal data, and making it accessible to support management and economic decisions and ecosystem-based research. NOAA carries out this mission through its three national data centers, which jointly manage large collections of atmospheric, oceanographic, and geophysical data. Despite the fact that these centers are all within NOAA, they function independently of each other, and it remains difficult for users to acquire and integrate data in a seamless manner. Other agencies are also experiencing problems with incorporating, storing, and distributing large amounts of environmental data. For example, USGS has struggled with the large volumes of Landsat satellite data which have historically been very helpful in ocean and coastal research and management activities.
Coping with the Flood of Incoming Data

Throughout the 1990s and into the 21st century, all of the national military and civilian data centers have experienced tremendous growth in the inflow and archiving of data, and this growth is expected to continue. In 2001, NOAA projected that its environmental data holdings would grow by a factor of 100 between 2002 and 2017 (Figure 28.1), while a more recent report indicates that these holdings could actually be greater than 140,000 terabytes by 2017. The civilian data centers make data available to support operational products and forecasts and to fill specific requests. During the 1990s, NOAA’s online data requests grew to 4 million a year (an average of 11,000 per day), while offline requests doubled to a quarter of a million (Figure 28.2). Although many users increasingly rely on electronic access, only 4 percent of NOAA’s digital data archive is currently available online and many of NOAA’s historical data sets have yet to be converted to digital form.

Ongoing improvements to ocean databases have substantially increased the amount of available data and have dramatically improved accessibility. However, data collection and information needs continue to outpace archiving and assimilation capabilities.

Reinventing Data and Information Management

Several improvements can help make the national system for storing and distributing ocean and coastal data more effective. Agencies tasked with collecting, archiving, assimilating, and disseminating data need to increase their cooperation and coordination and provide faster, easier, and more unified access to raw and processed data. In return, scientists and other data generators need to feed valuable, high quality data into the national system in a timely way.

Interagency Planning

Growing observational capabilities, improved numerical models of the world, and formal methods for linking data and models now permit scientists to study ecosystems with an unprecedented degree of realism. The impact of these developments on the understanding
of oceanic processes pervades all disciplines and fuels cross-disciplinary links between physical, biological, and chemical oceanography, marine geology and geophysics, and atmospheric sciences.

Nevertheless, inadequate information technology infrastructure inhibits progress. Continuing efforts to establish modeling and data assimilation nodes within the National Ocean Partnership Program agencies provide just one example of a high-priority activity where infrastructure limitations are acute. Topics of particular concern include:

- **Data Incorporation**—Scientists and managers need to combine data from disparate sources to produce information products, often in real time. As computer software and hardware technologies evolve, data stored in older formats need to be upgraded. In particular, enormous archives of historical data exist only in nondigital formats. Differences in data protocols also remain among scientific fields; physical and biological variables are measured using very different parameters. New methods are needed to incorporate biological data into ocean and coastal information products.

- **Computer Hardware**—Ocean scientists are expected to require 10 to 1,000 times the current hardware capacity over the next five to ten years, with the most critical bottlenecks occurring in the availability of computer processing power, memory and mass-storage capacity, and communications network bandwidth. Many oceanographic models have grown in computational size to the point that they require dedicated, long-term computing that exceeds the time available on computers currently used for most medium- and large-scale ocean projects.

- **Software and Modeling**—Software challenges include the need to redesign models and methods to assimilate new data sources and improve visualization techniques to deal effectively with increasing volumes of observations and model outputs. There is a need throughout the ocean science community for well-designed, documented, and tested models of all types. Models of living systems lag significantly behind those related to physical variables; the capacity to run simulations of organisms, populations, and ultimately ecosystems, is currently not available.

- **Human Resources**—In the early days of collecting and storing environmental data in digital formats, many of the technical staff were environmental scientists who gained experience through on-the-job training and trial and error. By the mid-1980s, this
type of education was wholly inadequate to meet the ever-increasing complexity of computer hardware and software systems, and the volumes of digitized data being collected and archived. As technical requirements grew, the federal government fell far behind academia and the private sector in attracting and retaining highly trained experts, particularly because government pay scales for information technology specialists were well below those of the private sector. This scenario continues today. A strategy is needed for attracting and retaining highly trained technical staff in the federal government.

- **Meeting User Needs**—Data and information must be available to a wide range of users, from scientists looking for raw data, to individuals interested in forecasts, to students looking for educational information. User needs should be determined at national, regional, and local levels. The regional ocean information programs, discussed in Chapter 5, will be an essential link to user communities when deciding on priorities.

An interagency group, dedicated to ocean data and information planning, is needed to enhance coordination, effectively use existing resources for joint projects, schedule future software and hardware acquisitions and upgrades, and oversee strategic funding. Most importantly, this entity will create and oversee implementation of an interagency plan to improve access to data at the national data centers, DAACs, and other discipline-based centers. The plan will need to be appropriately integrated with other national and international data management plans, including those for the Integrated Ocean Observing System (IOOS) and Global Ocean Observing System (discussed in Chapter 26) and the national monitoring network (discussed in Chapter 15), and should be flexible enough to integrate data from a variety of other sources, such as the environmental data collected through the Vessel Monitoring System (discussed in Chapter 19) and data from the offshore oil and gas industry (discussed in Chapter 24).

This coordination must extend beyond ocean data. The ocean community needs to take a leading role in broader environmental data planning efforts, such as the federal cyber infrastructure initiative. An interagency planning group could also coordinate the development of a viable, long-term strategy for partnering with the private sector to enhance environmental data and information management capabilities. This organization should not have an operational role, but instead should be responsible solely for interagency planning and coordination, similar to the role of Ocean.US for the IOOS.

Recommendation 28–1

Congress should amend the National Oceanographic Partnership Act to establish Ocean.IT as the lead federal interagency planning organization for ocean and coastal data and information management. Ocean.IT should consist of representatives from all federal agencies involved in ocean data and information management.

Ocean.IT should:

- report to the National Ocean Council’s Committee on Ocean Science, Education, Technology, and Operations.
- create an interagency plan to improve coordination between the existing data centers and to integrate ocean and coastal data from different agencies and from the academic and private sectors.
- set priorities for archiving historical and nondigital data.
- coordinate shared resources and the acquisition of new hardware for use by the ocean sciences community.
- work with existing supercomputer centers to negotiate adequate time for ocean science needs.
- assess federal agency software needs and initiate interagency programs to create high-priority applications, such as new modeling programs.
• coordinate federal agency efforts to attract information technology expertise into the ocean sciences community.
• communicate with regional, state, and local organizations, including the regional ocean information programs, to determine user needs and feed this information back to relevant agencies.

Access to Data and Information

There are two distinct types of data sought by users. Scientists are generally interested in calibrated, long-term time series of basic data that can be used to study topics such as atmospheric composition, ecosystem change, carbon cycles in the environment, the human dimensions of climate change, and the global water cycle. At the other end of the spectrum, the general public is most often interested in outcomes based on data analysis, such as forecasts and models, and do not wish to see the original data. Users seeking information products include commercial users, policy makers, and educators who wish to develop curricula and class materials.

Information Products and Forecasts

Compared to a few decades ago, an impressive array of data and information products for forecasting ocean and coastal conditions is now available from a wide range of sources. A mechanism is now needed to bring these data together, including the enormous amounts of information that will be generated by the national IOOS and the national monitoring network, and use them to generate and disseminate products beneficial to large and diverse audiences.

At the national level, civilian operational ocean products and forecasts are produced mainly by NOAA’s National Weather Service and National Ocean Service. The National Weather Service routinely issues marine and coastal information and forecasts related to meteorological conditions and issues marine warnings, forecasts, and guidance for maritime users. The National Ocean Service’s Center for Operational Oceanographic Products and Services also collects and distributes oceanographic observations and predictions related to water levels, tides, and currents.

Military ocean informational products are produced mainly by two offices. The Fleet Numerical Meteorology and Oceanography Center provides weather and oceanographic products, data, and services to the operating and support forces of the Department of Defense. The Naval Oceanographic Office located at the Stennis Space Center in Mississippi is the hub of oceanographic data collection, archiving, fusion, modeling, and distribution. It supplies global oceanographic products and generates strategic, operational, and tactical oceanographic and geospatial products to guarantee safe navigation and weapon/sensor performance.

While each of these offices possesses unique missions, as well as resources, infrastructure, and data, a partnership between them could lead to a new generation of ocean and coastal information and forecasts. A national ocean and coastal information management and communications partnership that builds on the Navy’s model for operational oceanography would take advantage of the strengths of both agencies, reduce duplication, and more effectively meet the nation’s information needs. This partnership would also allow for the prompt incorporation of classified military data into information products, without publicly releasing the raw data. Working together, NOAA and the Navy can rapidly advance U.S. coastal and ocean analyses and forecasting capabilities by drawing on the distinct, yet complementary capabilities of each organization and using all available physical, biological, chemical, and socioeconomic data.

Private-sector and academic involvement in creating ocean analyses and forecast products has matured over the last thirty years through highly successful partnerships.

One of the major challenges in information technology is not just producing the science and giving it to policy-makers, but producing the science and giving it to citizens so they can be adequately informed about the coastal and marine environment.

—Dr. Michael Orbach, Director, Duke University Marine Laboratory, testimony to the Commission, January 2002.
Interactions between private companies, the academic community and the NOAA-Navy partnership could produce a wide range of general and tailored forecast and warning products. An interface between national forecasters at the federal level, the regional ocean information programs, and the Regional Associations of the national IOOS would also help identify ocean and coastal information products of particular value at the regional and local levels.

Recommendation 28–2

The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Navy should establish an ocean and coastal information management and communications partnership to generate information products relevant to national, regional, state, and local operational needs.

The NOAA-Navy partnership should:

- prioritize products and forecasts based on input from regional ocean information programs, Ocean.IT, Ocean.US, the Regional Associations of the IOOS, and other federal, regional, state, and local users.
- base products and forecasts on all available data sources.
- support the generation of new models and forecasts in collaboration with Ocean.IT, academia, and the private sector.

NOAA will need to develop a variety of dissemination techniques and educate potential users about information access and applications to ensure that the products produced in cooperation with the Navy fulfill their potential.

Raw Data

Although many paths exist to access data, there is currently no focal point where users can go to gain access to all available ocean data and information. As a result, the process can be tedious, and the risk of missing key databases high. Interdisciplinary users face even greater challenges when attempting to integrate data sets from different centers. The varied data standards, formats, and metadata that have evolved over time make data exchange complex and unwieldy. Other problems arise when important data sets are kept by individual scientists or institutions, rather than being integrated into national databases.

One area of critical concern, particularly for coastal resource managers, is the integration of coastal data, including maps, charts, and living and nonliving resource assessments. The user community is frustrated by the difficulties in accessing coastal geospatial data. Serious concerns continue regarding the timeliness, accuracy, and descriptions associated with coastal data, and the difficulties of integrating data sets from various sources. Coastal managers and researchers still lack a seamless bathymetric/topographic base map and database for the U.S. coast—an essential underpinning for improved understanding of the processes that occur across the land-sea interface. (The integration of maps and charts is also discussed in Chapter 25.)

Several innovative and highly promising interagency efforts to increase data accessibility are underway. The National Virtual Ocean Data System project is a primary example. Funded by the National Ocean Partnership Program, it facilitates seamless access to oceanographic data and data products via the Internet, regardless of data type, location of the storage site, the format in which the data are stored, or the user's visualization tools and level of expertise. The National Virtual Ocean Data System uses OPeNDAP technology that provides machine-to-machine interoperability within a highly distributed environment of heterogeneous data sets. This is similar to other successful Internet-based file sharing systems that allow users to access data (typically music files) that reside on another individual's computer. The Ocean.US data management plan envisions that the National Virtual Ocean Data System will be implemented to allow access to IOOS data.
Recommendation 28–3
Ocean.IT should work with developers of the National Virtual Ocean Data System and other innovative data management systems to implement a federally-supported system for accessing ocean and coastal data both within and outside the national data centers.

Incorporating Data into the National Data Centers

Academic Research Data
The discussion of the IOOS in Chapter 26 points to the importance of collecting data from stable, long-term, calibrated *in situ* and satellite sensors. However, there is also value in capturing more ephemeral observational data, typically collected as a part of research projects. Recipients of federal research grants and contracts are required by law to submit their data to the appropriate national data center within a specified time period. Most oceanographic data must be submitted to the National Oceanographic Data Center or the National Geophysical Data Center. Oceanographic data arising from international programs must also be submitted, according to policies established by the Intergovernmental Oceanographic Data Exchange program. However, there are wide variations among agencies in their enforcement of these requirements and their tracking of compliance. Research data are often not submitted to national databases for years after a project ends, if ever. Strengthened procedures, both domestically and internationally, are urgently needed to provide for the timely inclusion of all ocean data into data centers, and to ensure full and open access to data collected at taxpayers’ expense.

Recommendation 28–4
The National Ocean Council (NOC) should establish and enforce common requirements and deadlines for investigators to submit data acquired during federally funded ocean research projects.

In establishing these requirements, the NOC’s Committee on Ocean Science, Education, Technology, and Operations should:
- develop incentives to ensure more timely submission of investigator data to the national centers.
- require that a certification of data deposit be supplied to investigators who comply with the new regulations and that this certificate be presented before subsequent federal funding is provided.

Reviewing Classified Data
A significant proportion of all oceanographic data is collected and archived by the Navy. However, these data are generally classified and not available for access by the larger oceanographic community. In 1995, the Measurement of Earth Data for Environmental Analysis (MEDEA) Special Task Force was created to determine the potential for important environmental research based on classified or restricted Navy databases, and to prioritize data for declassification or release. Opportunities were identified for mutually beneficial collaborations between the civilian and naval ocean sciences communities, and approaches were suggested to realize broader national benefits from public investments in data collection and modeling by the Navy. Increased access to data declassified as a result of the MEDEA initiative, although limited, has been very useful to the oceanographic community. Both scientists and managers can continue to benefit from ongoing declassification of Navy data, particularly bathymetric data critical to improved ocean modeling.
Recommendation 28–5
The U.S. Navy should periodically review and declassify appropriate naval oceanographic data for access by the civilian science community.

Meeting the Challenges of a New Century

Looking beyond the data management needs for ocean sciences, the environmental challenges of the 21st century will require access to the full spectrum of environmental data. As a robust ocean observing system and national monitoring network are created, and as the nation moves toward integrating ocean, climate, atmospheric, and terrestrial monitoring systems within the comprehensive Earth Observing System, both the volume of data and the need to integrate widely varied datasets will continue to grow. At the same time, historical environmental data must continually be preserved to enable long time-series analyses of natural processes that occur over decades, centuries, and millennia. Revolutionary discoveries about the Earth’s environment and the ability to better predict its dynamics will result from the use of diverse, long-term, integrated data sets.

Critical improvements in the environmental data management infrastructure at the federal level must be made today and sustained into the future to realize the full benefits of an integrated system. Numerous valuable studies, pilot projects, recommendations, and strategies for improved management of environmental data have been produced over the years. However, the integration of existing environmental data is continually impeded by the lack of a unified interagency strategy and a national financial commitment to a modern, integrated data management system.

Recommendation 28–6
The President should convene an interagency task force to plan for modernizing the national environmental data archiving, assimilation, modeling, and distribution system with the goal of creating an integrated Earth environmental data and information system.
The task force should:
• be comprised of all federal agencies with environmental data collection responsibilities.
• propose a plan for the national environmental data system that includes specific cost estimates and phasing requirements to ensure timely implementation.

References
CHAPTER 29

ADVANCING INTERNATIONAL OCEAN SCIENCE AND POLICY

The United States has long been a leader in developing and supporting international initiatives vital to the health of the world’s oceans and coasts. These include agreements to protect the marine environment, conserve whales and other marine mammals, implement responsible fishing practices, preserve coral reefs, and enhance port security. The nation can continue to protect and advance its maritime interests by actively engaging in international policy making, global scientific initiatives, and programs to build ocean management capacity in developing nations. In particular, it is imperative that the nation ratify the United Nations Convention on the Law of the Sea, the preeminent legal framework for addressing international ocean issues. Until that step is taken, the United States will not be able to participate directly in the bodies established under the Convention that make decisions on issues of importance to all coastal and seafaring nations.

Acting Globally to Safeguard the Oceans

Just as the well-being of U.S. citizens and the productivity of the U.S. economy depend on the ocean, the same holds true for most other nations. The oceans provide vital food and energy supplies, facilitate waterborne commerce, and create valuable recreational opportunities. It is in America’s interest to work with the international community to preserve the productivity and health of the oceans and to secure cooperation among nations everywhere in managing marine assets wisely.

Over the last several decades, we have seen the creation of a comprehensive body of international ocean law and policy, renewed efforts in ocean and coastal management by many nations, enhanced scientific understanding of the marine environment, and a proliferation of new actors who participate in ocean governance at global, regional, and national levels. Despite this rise in activity and scrutiny, resource depletion has continued, conflicts persist over the management of ocean uses, and many countries in the developing world lack the means to effectively manage the marine areas and resources within their jurisdictions.

International ocean challenges should be familiar to U.S. policy makers because parallel problems are found to varying degrees along our own coasts. Virtually every topic covered in this report has a corresponding international dimension and the proposed solutions are often similar, including an emphasis on sustainability, the adoption of an ecosystem-based management approach, enhanced education and stewardship, better science, smoother
Reviewing the Evolution of the International Ocean Regime

As discussed in Chapter 2, the international ocean management regime has evolved from virtually unregulated, open access to a system of well-defined national zones of authority. Beginning in the early 1600s and continuing for almost four centuries, the dominant paradigm for governing the oceans was the principle of freedom of the seas, based on the premise that the oceans were infinite and marine resources inexhaustible. There was nothing, it was assumed, that humans could do to cause irreversible damage to such a vast and bountiful resource.

This view of the oceans began to change dramatically in the middle of the 20th century, when it became apparent that problems of overfishing and pollution threatened ocean assets that had previously been taken for granted. Coastal nations began to assert exclusive jurisdiction over ocean areas and resources off their coasts, creating a bewildering array of claims about the extent of these areas and the powers that could lawfully be exercised within them.

To restore a sense of order and predictability, the international community developed a global ocean regime that specifies the rights and duties of coastal nations in 200-mile exclusive economic zones off their coasts, while maintaining freedoms of navigation essential for security and world trade. This regime also sets forth the collective rights and responsibilities of nations in the use of ocean resources outside areas of national jurisdiction.

Today, a plethora of mechanisms and institutional arrangements exist at the bilateral, regional, and global levels to address ocean-related issues. Many of these arrangements benefit from the participation of nongovernmental organizations, scientists, the private sector, development assistance agencies, and other stakeholders, in addition to government representatives.

On June 3, 2003, the leaders of the eight largest industrialized democracies (known as the G–8), issued a joint statement declaring their intention to implement a global action plan for environmental responsibility and sustainable development of the oceans. If carried out, this action plan could serve as a basis for more effective ocean management worldwide.

Developing and Implementing International Policy

The United States has traditionally been a leader in international ocean policy making and has participated in the development of many international agreements that govern the world's ocean areas and resources. That leadership must be maintained and reinvigorated. The challenges of the 21st century will require improved collaboration among policy makers everywhere to establish ambitious objectives and take the actions necessary to achieve them.
Guiding Principles

The guiding principles for sound ocean management discussed in Chapter 3 of this report are also relevant to U.S. policies in the international arena. These include an emphasis on sustainability, good stewardship, ecosystem-based management, preservation of biodiversity, use of the best available science, and international responsibility. This last principle calls for the United States to act cooperatively with other nations in developing and implementing ocean policy, reflecting the deep connections between U.S. interests and the world’s oceans.

U.S. interests internationally can be most effectively advanced through coordinated global, regional, and bilateral initiatives. International regional forums, such as those dealing with issues in the Great Lakes, Pacific islands, and Arctic and Caribbean regions, provide excellent opportunities to identify and address ocean issues on a regional ecosystem basis and to implement broad international objectives regionally. Bilateral agreements, such as the Great Lakes Water Quality Agreement, also provide opportunities to enhance ecosystem- and watershed-based management. The participation of U.S. states, territories, and indigenous peoples within each region provides important perspectives, and builds on established ties and shared interests and experiences.

In developing and implementing international ocean policy, the United States should:
- Use multilateral approaches, including participation in international forums, to achieve solutions to global ocean issues where coordinated action by many nations is required.
- Use regional and bilateral approaches, with input from U.S. states, territories, and tribes in those regions, to address regional ecosystem-based ocean and coastal management problems.
- Provide technical and financial assistance to build ocean science and management capacity in developing nations and small island states.
- Engage in partnerships with nongovernmental organizations, the scientific community, the private sector, regional institutions, and others to combine government and nongovernmental resources and expertise.

The Law of the Sea Convention

For more than two centuries, the United States participated in the formation of customary international ocean law, a set of uniformly applied rules that nations accepted as binding. The 1982 United Nations Convention on the Law of the Sea (LOS Convention) codified much of this body of law, and created new rules to address unresolved issues, such as the balance between freedom of navigation and expanding claims of coastal state jurisdiction.

The LOS Convention is, in essence, an international constitution for the oceans. It provides a comprehensive delineation of the rights, duties, and responsibilities of each nation within its territorial sea, exclusive economic zone (EEZ), continental shelf, and on the high seas. It addresses specific subjects such as marine scientific research, seabed mining, and environmental protection. The LOS Convention also creates institutions for managing ocean issues and provides mechanisms for settling disputes.

The United States is not among the 145 parties to the LOS Convention, despite having been at the forefront of its development. When the Convention was adopted in 1982, the United States and other industrial nations had concerns about the regime established to govern deep seabed mining in areas outside national jurisdiction. To address these concerns, an agreement was reached in 1994 that substantially modified the provisions that the United States and others found objectionable.

Today, the LOS Convention enjoys widespread backing within the United States across a broad range of stakeholders in government, industry, environmental groups, and academia, and bipartisan support in Congress. There are many compelling reasons for the United States to expeditiously accede to the Convention. International bodies established under
the LOS Convention are in the process of making decisions that directly affect important U.S. interests. For example, the Commission on the Limits of the Continental Shelf is considering jurisdictional claims over resources on the continental margin, an area of particular importance to the United States with its broad continental margin rich in energy resources. Measures to guide the future exploration and exploitation of deep seabed resources under the Convention are also being developed.

The Convention will no doubt continue to evolve. In 2004, the Convention will be open for amendment by its parties for the first time. If the United States is to ensure that its interests as a maritime power and coastal state are protected, it must participate in this process. The best way to do that is to become a party to the Convention, and thereby gain the right to place U.S. representatives on its decision-making bodies. Participation in the Convention would also enhance America’s prestige and credibility as a leader on global ocean issues.

Recommendation 29–1

Other Ocean-related International Agreements

There are many international agreements in addition to the LOS Convention that address either ocean management generally, or specific issues such as fishery regulation, species protection, cultural heritage, vessel safety, and coral reefs. Here again, the United States has played a major role in designing and gaining support for many of these agreements, which are briefly summarized in Table 29.1.

Binding international agreements signify a commitment by participating nations to carry out specific actions, often allowing measurable progress to be made in meeting objectives. For example, parties to the International Convention for the Conservation of Atlantic Tunas must abide by catch limits placed on tunas and related species.

Nonbinding agreements can also prove useful in influencing nations to act responsibly. These agreements establish goals toward which nations agree to work and sometimes serve as a preliminary step to binding action. They are often preferable for addressing a problem where scientific uncertainty or temporarily insurmountable economic costs make firmer commitments unobtainable.

In addition to international agreements that directly address ocean and coastal management issues, international trade agreements also have indirect but significant consequences for ocean management. The impacts of these agreements on ocean and coastal policies need to be carefully considered, and efforts made to review each agreement to ensure that its provisions and U.S. ocean policy objectives are consistent and mutually supportive.

Agreements Stemming from the Earth Summit

Several major nonbinding agreements were reached at the 1992 United Nations Conference on Environment and Development held in Rio de Janeiro, Brazil, known as the Earth Summit. This event built on the U.N. Conference on the Human Environment held in Stockholm twenty years previously. The Stockholm conference placed environmental matters on the global agenda for the first time and led to the creation, among other landmark outcomes, of the U.N. Environment Program and of environmental programs and associated legislation in many countries, including the United States.

At the center of the Earth Summit's agenda was a commitment to advancing sustainable development—the principle that economic development and the environment are inextricably linked and must be addressed together. Summit negotiations were intense, requiring the resolution of differences among developed and developing nations. The Summit was also characterized by the inclusion of an unprecedented number of representatives from nongovernmental organizations. Among the major international agreements forged at the Summit were the Rio Declaration of Principles, the Framework Convention on Climate
An examination of ocean-related international treaties and agreements reveals the wide range of international ocean policy issues, including fisheries management, species protection, vessel safety, and coral reef preservation. (Note: some of the listed agreements are not formal treaties or conventions, and thus, ratification is not applicable.)

<table>
<thead>
<tr>
<th>Agreement Name</th>
<th>Description</th>
<th>Date of Agreement</th>
<th>Date Entered Into Force</th>
<th>Has the U.S. Signed?</th>
<th>Has the U.S. Ratified?</th>
</tr>
</thead>
<tbody>
<tr>
<td>United Nations Convention on the Law of the Sea (LOS)</td>
<td>LOS is a comprehensive regime of law and order for the world’s oceans and seas. LOS is comprised of 320 articles and 9 annexes and governs all aspects of ocean space, such as delimitation, pollution control, scientific research, resource management, technology transfer, and dispute settlement.</td>
<td>12/10/82</td>
<td>11/16/94</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Agreement on Part XI of the LOS Convention (Deep Seabed Mining Agreement)</td>
<td>This agreement amends the LOS regime governing the deep seabed, reflecting a shift to more free-market oriented policies. It modifies decision making to reflect political and economic interests and financial contributions of states, while retaining the principle that the seabed is the “common heritage of mankind.”</td>
<td>07/28/94</td>
<td>07/28/96</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fisheries-related Agreements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agreement for the Implementation of the LOS Relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks (FSA)</td>
<td>The FSA sets out principles for the conservation and management of straddling stocks and highly migratory fish on the high seas and places new regulatory authority in the hands of regional fishery bodies.</td>
<td>08/04/95</td>
<td>12/11/01</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Agreement to Promote Compliance with International Conservation and Management Measures by Fishing Vessels on the High Seas</td>
<td>The Compliance Agreement promotes compliance by fishing vessels on the high seas with international conservation and management measures. It requires a party to make all efforts to ensure that vessels flying its flag do not engage in any activity that undermines the conservation or management of biological resources.</td>
<td>11/24/93</td>
<td>04/24/03</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>International Convention for the Conservation of Atlantic Tunas (ICCAT)</td>
<td>ICCAT is a fishery treaty for the conservation of tunas and tuna-like species in the Atlantic Ocean and its adjacent seas.</td>
<td>05/14/66</td>
<td>03/21/69</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Marine Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention)</td>
<td>The London Convention regulates the disposal of waste materials into the sea. It establishes “black-and gray-lists” for wastes that can be considered for disposal at sea according to the hazard they present to the environment.</td>
<td>12/29/72</td>
<td>08/30/75</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protocol to the London Convention</td>
<td>The Protocol is more restrictive than the Convention and in principal part creates a “reverse list,” which implies that all dumping is prohibited unless explicitly permitted.</td>
<td>11/08/96</td>
<td>Not in force</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Agreement Name</td>
<td>Description</td>
<td>Date of Agreement</td>
<td>Date Entered Into Force</td>
<td>Has the U.S. Signed?</td>
<td>Has the U.S. Ratified?</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>International Convention for the Prevention of Pollution from Ships (MARPOL 1973/1978)</td>
<td>MARPOL is concerned with the prevention of accidental and operational vessel-source pollution. It is implemented through six technical annexes. Annexes I (oil) and II (noxious liquids carried in bulk) are mandatory. Annexes III (harmful substances carried in package form), IV (sewage), V (garbage from ships), and VI (air emissions) are optional.</td>
<td>MARPOL</td>
<td>10/02/83</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Annexes I and II</td>
<td>10/02/83</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annex III</td>
<td>07/01/92</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annex IV</td>
<td>09/27/03</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annex V</td>
<td>12/31/88</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annex VI</td>
<td>Scheduled to enter into force 5/19/05</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Global Plan of Action for the Protection of the Marine Environment from Land-based Activities (GPA)</td>
<td>The GPA is designed to be a source of conceptual and practical guidance to be drawn upon by national and/or regional authorities in devising and implementing sustained action to prevent, reduce, control, and eliminate marine degradation from land-based activities.</td>
<td>11/03/95</td>
<td>Not a treaty</td>
<td>Supported</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR)</td>
<td>CCAMLR established a Commission with the authority to adopt measures for the conservation of Antarctic marine living resources, including the designation of protected species, open and closed seasons and areas for harvesting, and catch limits.</td>
<td>05/20/80</td>
<td>04/07/82</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Antarctic Treaty</td>
<td>The Treaty provides that Antarctica shall be used for peaceful purposes only and for scientific investigation and cooperation. It prohibits nuclear explosions and disposal of radioactive waste.</td>
<td>12/01/59</td>
<td>06/23/61</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Protocol on Environmental Protection to the Antarctic Treaty</td>
<td>The Protocol provides for the comprehensive protection of the Antarctic environment and dependent and associated ecosystems.</td>
<td>10/04/91</td>
<td>01/14/98</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Declaration on the Establishment of the Arctic Council</td>
<td>The Arctic Council is a high-level forum that promotes cooperation, coordination, and interaction among Arctic states, with the involvement of Arctic indigenous communities on common issues (except military security), in particular, sustainable development and environmental protection in the Arctic.</td>
<td>09/19/96</td>
<td>Not a treaty</td>
<td>Supported</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Boundary Waters Treaty</td>
<td>This treaty established the International Joint Commission between the United States and Canada to prevent and resolve disputes relating to the use and quality of boundary waters such as the Great Lakes.</td>
<td>01/11/1909</td>
<td>05/05/1910</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Change, and Agenda 21—a comprehensive set of international guidelines for achieving sustainable development in all areas, including the oceans and coasts.

Another product of the Earth Summit was the Convention on Biological Diversity (CBD), which aims to conserve biological diversity worldwide while providing guidance for the sustainable use of its components and the equitable sharing of any benefits derived from the use of genetic resources. In 1995, the parties to the CBD issued the Jakarta Mandate, which initiated a marine and coastal resource work program focused on five topics: integrated ocean and coastal area management; ocean and coastal protected areas; sustainable use of ocean and coastal living resources; marine aquaculture; and non-native species.

Most nations have ratified the CBD, but the United States has not, largely because of divergent views regarding the ownership of genetic resources. Many coastal nations regulate access by foreign scientists and explorers to genetic resources in waters under their jurisdiction. These nations often seek royalties from the commercialization of these resources, including pharmaceutical products resulting from bioprospecting. The United States has expressed concerns about balancing legal protections for private biotechnology investors with the rights of sovereign nations to their resources.

Because the United States is not a party to the CBD, the nation cannot directly participate in the development of the CBD regime or in negotiations on its protocols. For example, the Cartagena Protocol on Biosafety, which provides a framework for the safe transfer, handling, and use of living modified organisms, has important implications for U.S. economic sectors. Other CBD areas of interest to the United States include efforts to combat invasive non-native species, creation of compilations of marine scientific data, and facilitation of member nation negotiations concerning access and collection agreements for scientists.

Recommendation 29–2

The National Ocean Council should coordinate an expedited review and analysis of the ocean-related components of the United Nations Convention on Biological Diversity and recommend to the U.S. Department of State whether, from an ocean perspective, ratification of this treaty would be beneficial to U.S. interests.
Meeting International Obligations

Although the next decade will undoubtedly see new international agreements on ocean issues, the main challenge for the world community will be wider ratification and more effective implementation and enforcement of existing agreements. To achieve their goals, the international organizations charged with carrying out these agreements must also be adequately funded. This will require every participating nation, including the United States, to fully meet its financial commitments, consistent with relevant treaty obligations.

Collaboration for International Ocean Policy

To lead in the international ocean arena, the United States must maintain a vigorous national discussion about global ocean issues. Enhanced communication, coordination, and collaboration among U.S. government agencies, scientific institutions, the private sector, and other stakeholders will strengthen U.S. performance at international negotiations and enable the nation to be more influential in shaping and executing world ocean policy. Similarly, at the international level, governments, agencies, United Nations bodies, and scientific associations must work closely together to achieve success.

U.S. Coordination

Within the U.S. government, the U.S. Department of State is the lead agency for most international negotiations. However, the role of more specialized agencies is extremely important due to the scientific and resource focus of many multilateral ocean issues. For example, living marine resources are primarily the responsibility of the National Oceanic and Atmospheric Administration; the U.S. Coast Guard generally takes the lead in developing and enforcing vessel safety and environmental protection regulations; the U.S. Environmental Protection Agency does the same in mitigating pollution from land- and water-based sources; and the U.S. Trade Representative has a role in the interface of international trade and ocean policy.

Consistent application of a wide range of expertise is essential both to establish international ocean standards that reflect U.S. interests, and to make certain that subsequent actions by the United States and others are in accordance with those standards. A new mechanism is needed to provide improved coordination among U.S. agencies that share responsibility for, and knowledge about, international ocean issues. Since the early 1970s, various interagency groups have attempted to address these issues, most recently as a subcommittee under the National Security Council’s (NSC’s) Global Environmental Affairs Policy Coordinating Committee. While the NSC subcommittee should continue to focus on specific security-related issues, the National Ocean Council will be a better home for a broad interagency committee dealing with all facets of international ocean policy.

Recommendation 29–3

The National Ocean Council (NOC) should establish and oversee an interagency committee to support the development and implementation of ocean-related international policy.

The international committee of the NOC should:

- be chaired by the U.S. Department of State.
- make recommendations to the Assistant to the President, the Secretary of State, and other agency heads as appropriate, on international ocean policy.
- assess the implementation status of ocean-related treaties to which the United States is a party and recommend appropriate actions and funding required to fulfill U.S. treaty obligations.
- provide technical assistance to the NOC on international ocean issues.

International Ocean Governance

Numerous global institutions exist to coordinate the development and implementation of international ocean policy. These include the U.N.’s Intergovernmental Oceanographic
Commission, International Maritime Organization, Environment Program, Food and Agricultural Organization, and many others. (For a description of these and other international institutions see Box 29.1.)

Enhanced coordination is needed among international ocean governance institutions to avoid the piecemeal, sectoral, and unstructured development of ocean policy. One possible approach is to develop a mechanism for coordinating all U.N. entities that have jurisdiction over ocean and coastal issues. Recent steps in this direction by the U.N. are encouraging.

A number of nations have recently developed new initiatives for ocean management in their waters. These new approaches have important implications both for the United States and the international community. The results of emerging management regimes elsewhere can provide important lessons for U.S. ocean management. Moreover, policy changes by nations that share borders or marine ecosystems with the United States may have direct impacts on our nation. New ocean management strategies may also impact the evolution of international ocean law, potentially shifting the balance between interests in freedom of navigation and effective ocean resource management. It is important for the United States to monitor, study, and learn from ocean management initiatives undertaken by other nations.

Emerging International Management Challenges

Wise management requires good planning and proactive approaches. New ocean-related problems and opportunities are sure to arise as populations grow, technologies improve, and knowledge increases. Several prominent emerging ocean and coastal management issues, some of which are beginning to be acknowledged at the national level, also have international dimensions.

Among these issues are the impacts of global climate change, such as thinning polar ice due to rising temperatures or coral reef damage caused by elevated carbon dioxide concentrations. Other emerging international management challenges are directly associated with the use of ocean resources. In each case, the challenge is to find appropriate global mechanisms—whether new or existing—to ensure that emerging issues are dealt with in accordance with sound management principles. A clear international regime is vital to provide consistency and certainty to users, maximize the benefits of these resources, and reduce possible negative environmental impacts. The following examples describe just a few emerging issues that will require international attention:

- **Polar regions.** Many studies indicate that by mid-century the Earth will probably have substantially less ice cover in polar regions. This may lead to major changes in commercial and military transportation routes, ecosystem conditions, resource exploitation, and social and economic conditions. It is not too soon to begin discussions about the ramifications and appropriate management of burgeoning activities in polar waters.

- **Carbon sequestration.** Due to concerns about the rising level of carbon dioxide in the atmosphere, experiments have been conducted to transfer some of the excess carbon into the oceans. One method is to inject carbon dioxide directly into deep ocean waters or under the seafloor, where it forms frozen gas hydrates. Another approach is to fertilize the surface of the ocean—typically with iron—thereby accelerating the uptake of carbon dioxide by organisms in surface waters. The long-term effectiveness and potential environmental consequences of either approach remain unknown and urgently require further study. Furthermore, no process is in place to determine whether or not these activities should be allowed to proceed, or what body would make that decision.

- **Marine protected areas.** Numerous international agreements support the establishment of protected areas to improve the management of fragile coastal and marine ecosystems and certain submerged cultural resources. These protected areas may restrict other activities depending on the level of protection necessary to sustain particular resources. (For a discussion of marine protected areas, see Chapter 6.) Difficult international decisions loom over the appropriate balance between environmental protection and high seas freedoms.
Box 29.1 Selected International Bodies with Ocean-related Responsibilities

- **The Food and Agriculture Organization (FAO)** of the United Nations (U.N.) leads international efforts to defeat hunger, raise levels of nutrition and standards of living, improve agricultural productivity, and better the condition of rural populations. The Committee on Fisheries is a subsidiary body of the FAO Council. It provides a forum to examine and make recommendations on major international fisheries and aquaculture issues, negotiate international fishery agreements, and periodically review international fisheries programs and their implementation.

- **The International Maritime Organization (IMO)** is the U.N. agency responsible for improving maritime safety and security and preventing pollution from ships, through adoption and implementation of international standards, guidelines, and agreements. The IMO also has developed a number of conventions creating liability and compensation regimes for damages arising from vessel-related pollution and other vessel incidents.

- **The Intergovernmental Oceanographic Commission (IOC)** is a semi-autonomous body within the U.N. Educational, Scientific and Cultural Organization. It assists governments in addressing ocean and coastal problems through sharing of ocean science information and technology, including oceanographic data and information. As part of this effort, IOC has a fundamental interest in the development of earth observing and global ocean observing systems.

- **The United Nations Development Program (UNDP)** helps countries strengthen their capacity to address challenges related to energy, environment, and sustainable development. The Strategic Initiative for Ocean and Coastal Management is a global initiative to harness the knowledge and skills of UNDP, other U.N. agencies, donors, and other external support agents to enhance the effectiveness of ocean and coastal management projects in promoting sustainable human development in developing countries.

- **The UN Division for Ocean Affairs and Law of the Sea** is the secretariat for the U.N. Convention on the Law of the Sea (LOS Convention). Its mandate is to fulfill the functions associated with the LOS Convention, including assistance to states in implementing it. The Division monitors and reports annually to the U.N. General Assembly regarding both the LOS Convention and general ocean affairs and works to promote better understanding, uniform and consistent application, and effective implementation of the LOS Convention.

- **The United Nations Environment Program (UNEP)** is dedicated to enhancing global understanding of environmental issues and helping nations address those issues. Its work includes assessing global, regional, and national environmental conditions and trends; developing international and national environmental instruments; strengthening institutions for the wise management of the environment; facilitating the transfer of knowledge and technology for sustainable development; and encouraging new partnerships. UNEP oversees a number of activities in marine and coastal areas. A few examples include: the U.N. Atlas of the Oceans, the Global Program of Action for the Protection of the Marine Environment from Land-based Activities, and the Coral Reef Unit, which implements the International Coral Reef Action Network.

- **The World Trade Organization (WTO)** deals with the rules of trade between nations. The WTO’s primary mission is to facilitate global trade while ensuring that such transactions are conducted in a fair and predictable manner. With respect to world trade, the WTO administers agreements, serves as a forum for negotiations, settles disputes, and reviews national policies. The WTO can become involved in environmental policy when an international environmental agreement has an impact on free trade, or when a nation’s environmental policies may be interpreted as discriminatory trade practices.
Seamounts. Worldwide concerns have been expressed about over-fishing around underwater mountains on the high seas. These ocean features, referred to as seamounts, typically attract robust fish populations that are not subject to the jurisdiction of any country. Without binding international agreements, there is a great potential for these areas to be overfished.

Recommendation 29–4
The National Ocean Council should assess emerging international ocean-related management challenges and make recommendations for either incorporating these activities under existing management regimes or developing appropriate new ones. The U.S. Department of State should work with the international community to implement these recommendations.

Scientific Input to U.S. Policy Makers
Successful national and international ocean policies depend on sound scientific information. It is essential, therefore, to ensure that U.S. policy makers benefit from timely advice and guidance from the U.S. marine scientific community. This, in turn, requires regular avenues of communication that allow scientists the opportunity to provide input and policy makers the chance to carefully consider their recommendations.

A 1999 report by the National Research Council introduced the concept of “science for diplomacy”—an approach for improving the ability of the State Department to incorporate scientific expertise into the foreign policy process. The State Department has since taken several significant steps to strengthen its scientific capabilities, including the establishment in 2000 of a Science and Technology Advisor to the Secretary of State. Continued progress is needed to increase knowledge and enhance understanding within the department about the complex scientific basis of many international ocean policy issues.

Recommendation 29–5
The U.S. Department of State should improve its integration of ocean-related scientific expertise in policy and program development and implementation. These improvements can be accomplished by:

- conducting State Department staff training about the relevance of scientific considerations to international ocean policy.
- increasing scientific support throughout the department to address current and emerging ocean-related issues, particularly through the use of borrowed personnel from resource agencies or academic institutions.
- creating mechanisms to facilitate input from the scientific community on complex ocean-related issues.

Enhancing International Ocean Science
The United States has been a leader in ocean science and research since creation of the U.S. Commission on Fish and Fisheries in 1871. Eleven years later, the 234-foot USS Albatross entered service as the first U.S. research vessel built exclusively for fishery and oceanographic research. On land, major centers of activity included the Woods Hole Oceanographic Institution, which has attracted scientists from around the world for more than a century, and the Scripps Institution of Oceanography, an innovator in marine science and technology since 1903. Over the last fifty years, dozens of other top-tier U.S. oceanographic institutions have developed. If the United States is to maintain its leadership status, it must build on this tradition by strengthening international scientific partnerships and expanding the world's understanding of the oceans.
International Ocean Science Programs

International ocean research is conducted and coordinated by a variety of entities including the U.N. Intergovernmental Oceanographic Commission, which has sponsored conferences and meetings on an array of topics in this field. These programs include efforts to understand El Niño, the role of the oceans in the global carbon balance, climate variability, and algal blooms. The Scientific Committee on Oceanic Research (SCOR), an interdisciplinary body of the International Council for Science, focuses on large-scale ocean research projects for long-term, complex activities. SCOR also promotes capacity building in developing countries by encouraging scientists from such countries to participate in its working groups and other activities. Other institutions, including the World Meteorological Organization, the U.N. Environment Program, and the International Hydrographic Organization, are doing valuable work on climate change, coral reefs, and ocean surveys.

The United States participates in and contributes to collaborative international ocean research both to fulfill our global obligations and because it is in our national interest to do so. The more we know, the better we can protect our long-term stake in healthy and productive oceans.

Recommendation 29–6

The United States should continue to participate in and support major international ocean science organizations and programs.

The Global Ocean Observing System

An international effort is underway to gain a better understanding of the current state of the world's oceans, and to revolutionize the ability to predict future ocean conditions. When fully realized, the Global Ocean Observing System will use state-of-the-art technology to integrate data streams from satellites and globally-deployed ocean sensors. These data will then be made available in useable form to resource managers, businesses, and the general public. This initiative is part of a larger international effort to create a system that integrates ocean, atmosphere, and terrestrial observations.

One of the most important functions of the Global Ocean Observing System will be to better understand the ocean's critical role in climate and climate change. The oceans store tremendous amounts of heat, water, and carbon dioxide, transport them around the globe through ocean circulation, and exchange them continually with the atmosphere. A better understanding of the interactions between oceans and climate will assist scientists in analyzing and predicting short- and long-term climate changes. Improved information from the Global Ocean Observing System will also help scientists predict changes in the oceans themselves, such as sea-level rise, elevated carbon dioxide concentrations, and variations in water temperature, and assist in planning for the potential impacts of such changes. Enhanced observations of ocean-atmosphere interactions may also help assess the potential for abrupt climate change, and suggest ways to mitigate its impacts.

The U.S. role in development of the Global Ocean Observing System is closely linked with efforts to improve ocean data collection nationally. The U.S. Integrated Ocean Observing System (discussed in Chapter 26) will be the link between the global system and the regional ocean observing systems in the United States. Improving international coordination on ocean observations, and integrating these observations into the broader suite of atmospheric and terrestrial observations, is a cornerstone of the ongoing effort to strengthen the role of science in international policy making.
U.S. Scientific Activities Abroad

In the past, marine scientific research was protected as a “freedom of the sea” and largely unregulated outside territorial seas. However, under the LOS Convention, coastal nations generally can assert greater legal jurisdiction than before over various types of research conducted in their exclusive economic zones and extended continental shelves. Coastal nations can require researchers to obtain prior approval before conducting research in their waters and to share research data, samples, and results. The extent of the coastal nation’s authority depends on the location and purpose of the research (e.g., scientific, archaeological, historical, or economic) and must be exerted in accordance with provisions of the LOS Convention that promote international cooperation in this field. There is variability in the extent to which coastal nations choose to exercise the authority available to them. For example, for now the United States has chosen not to regulate marine scientific research in the U.S. EEZ. This policy is intended to encourage good international relations, and through reciprocity, to benefit the U.S. marine scientific community by easing access to foreign waters.

The State Department is the primary federal agency charged with facilitating the international programs and activities of U.S. scientists. Since 1972, the department has processed about 6,000 requests to coastal nations around the world seeking permission to conduct U.S. oceanographic research in their waters. However, support for facilitating U.S. science abroad has declined over time. While modest improvements have been made in the last few years, growing interest in marine scientific research will require continued attention to this function.

Strong partnerships between U.S. and foreign scientists facilitate agreements on how international science initiatives should be conducted and how results should be shared. An example of this type of collaborative effort is the Ocean Drilling Program, which is implemented through a memorandum of understanding among the United States and several international partners. Such partnerships can also be used to build scientific capacity in other nations. Collaborations between the United States and Mexico, for example, show the benefits of integrating scientific research with education and training, building and sharing infrastructure, participating mutually in large-scale programs, planning joint events and publications, and developing sources of binational funding.

Recommendation 29–7
The U.S. Department of State should offer strong support for U.S. scientists conducting research programs around the world. Existing international partnerships should be strengthened and new partnerships promoted to facilitate the conduct of international research.

Building International Capacity in Ocean Science and Management

Implementation of international ocean policy and improved management of ocean and coastal resources worldwide are affected by the adequacy of the science and management capacity of every coastal nation. Well-trained scientists and high-quality laboratories and equipment around the world will contribute to our understanding of the oceans. Ecosystem-based management can only succeed if all nations with management responsibility for some component of the ecosystem work together to sustain its health.

There are a variety of U.S. programs designed to assist in international capacity building, including several related to ocean and coastal science and management capacity. The U.S. Agency for International Development, as part of its mission to expand democracy and improve the lives of citizens in the developing world, sponsors programs that promote nat-
ural resource management and that stress sustainability of resources through sound environmental and management practices. Other agencies also have programs that assist developing countries with ocean and coastal science and management efforts (Box 29.2).

This report recommends a number of measures aimed at strengthening U.S. capacity in ocean and coastal science and management. But to maintain progress on a global scale, the United States and other wealthy nations will need to assist coastal nations of more limited means. This assistance can be in the form of funding, human resource development, technology transfer, information sharing, or other advisory and consultative services. To be most effective, assistance should be science-based and developed within the context of an ecosystem-based approach. Efforts should be concentrated on issues that have been identified as particularly critical for the health of an ecosystem or marine species, and have the greatest potential for positive impacts. In most instances, effective capacity-building will require long-term efforts to change detrimental practices and build support for new, sustainable management approaches. These efforts will require long-term funding commitments sufficient to make the changes needed to preserve or rebuild healthy ecosystems.

Many developing nations are particularly dependent on ocean and coastal resources; however poverty and unhealthy conditions still predominate in many of their coastal communities. U.S. assistance will not only benefit ocean and coastal science and management, but also result in meaningful economic gains to the developing nations, thereby creating goodwill and strengthening U.S. international ties.

Recommendation 29–8
The United States should increase its efforts to enhance long-term ocean science and management capacity in other nations through grants, education and training, technical assistance, and sharing best practices, management techniques, and lessons learned.

References

PART IX

MOVING AHEAD: IMPLEMENTING A NEW NATIONAL OCEAN POLICY

CHAPTER 30
Funding Needs and Possible Sources ..458

CHAPTER 31
Summary of Recommendations ...472
CHAPTER 30

FUNDING NEEDS AND POSSIBLE SOURCES

Better coordination at all levels of government...decisions based on excellent science and accurate information...an informed and engaged citizenry...these are important components of the U.S. Commission on Ocean Policy’s vision of our ocean future. To implement that vision, the Commission proposes many specific recommendations aimed at ensuring that the nation’s ocean and coastal resources are healthy and sustainable. Significant change, however, cannot be achieved without commensurate investment. This chapter outlines the costs associated with making improvements to our ocean policy. It also presents a proposal for meeting those costs through the establishment of a new Ocean Policy Trust Fund. Monies for the Trust Fund would be generated through resource rents from certain approved uses in federal waters, including outer Continental Shelf oil and gas revenues that are not currently committed to other purposes. The Trust Fund would help support the new responsibilities placed on federal, state, territorial, tribal, and local governments, and, thus, avoid the imposition of unfunded mandates.

Investing in Change

This report outlines a series of ambitious proposals for improving the use and protection of the nation’s oceans and coasts. But meaningful change requires meaningful investments. In the case of the ocean, such investments are easy to justify. As explained in Chapter 1, more than one trillion dollars, or one-tenth of the nation’s annual gross domestic product is generated each year within communities immediately adjacent to the coast. By including the economic contributions from all coastal watershed counties, that number jumps to around five trillion dollars, or fully one-half of our nation’s economy. Equally important, the oceans and coasts contribute in immeasurable ways to the health and well-being of the nation and the world. Both the direct economic benefits of the sea and its less quantifiable contributions are threatened by continued degradation of ocean and coastal environments and resources.

Government agencies will not be able to take on additional responsibilities in implementing a comprehensive national ocean policy without improved tools and resources. Again and again, recommendations in this report call for actions to improve ocean and
coastal management: “NOAA should strengthen the Coastal Zone Management Program,” “EPA should tighten pollution controls,” “The U.S. Army Corps of Engineers should integrate individual dredging projects into regional ecosystem plans,” and “State and local governments should achieve better regional coordination.” Implicit in each of these recommendations is a requirement for Congress and the Administration to offer the support and resources needed to achieve the stated goals.

Recognizing this reality, the U.S. Commission on Ocean Policy pledged from its inception to be clear about any new costs associated with its recommendations. This chapter fulfills that promise by estimating the additional federal expenses that would arise if all the recommendations in this report were adopted. Mindful of intense budgetary pressures at all levels of government, and sensitive to the hardship associated with unfunded federal mandates, the Commission also set out to identify appropriate sources of revenue to cover the costs of its recommendations through a logical, responsible funding strategy. The sections below summarize the nature and magnitude of the costs associated with the Commission's recommendations. This summary is followed by a discussion of the Commission's proposal for an Ocean Policy Trust Fund to assist governments at all levels in carrying out the recommendations contained in this report.

Acknowledging the Cost of Taking Action

Although there is a considerable level of uncertainty in these estimates, the total additional cost to the federal government of implementing the recommendations found throughout this report is approximately $1.5 billion in the first year, rising to roughly $3.9 billion per year after full implementation. A chapter-by-chapter summary of costs is shown in Table 30.1, with a more detailed itemization of the cost of each recommendation presented in Appendix G.

The cost estimates discussed in this chapter were derived from a number of sources. For some recommendations, such as implementation of the Integrated Ocean Observing System (IOOS, Chapter 26), outside groups have already put considerable effort into planning and budgeting and their estimates have been used, with appropriate adjustments. In other cases, such as creation of the Office of Ocean Policy (Chapter 4) or the Ocean.ED office (Chapter 8), standard formulas were applied to compute approximate staff salaries and related costs. Where the expansion of an existing activity is recommended, such as the Coastal Zone Management Program (Chapter 9), actual appropriations from recent years were adjusted upward in proportion to the level of additional effort needed. For entirely new activities, such as the regional ecosystem assessments recommended in Chapter 5, costs were extrapolated based on comparable activities in other agencies. Finally, there were many cases where some combination of the methods described above was used, in addition to consultation with knowledgeable budget and technical experts, and employment of the Commission’s best professional judgment. The numbers presented in this chapter are by no means definitive or authoritative, but the Commission believes they will be helpful in setting the stage for ongoing discussions.

It is critical to note that all the cost estimates in this chapter are for new or additional funding needs. In most cases, these amounts should be added to existing appropriations. For example, the cost of doubling ocean research funding, as recommended in Chapter 25, is shown as $650 million in Table 30.1. This amount must be added to the $650 million currently being spent in this area, for a total of $1.3 billion.

The cost estimates in Table 30.1 also include many different types of expenses, such as: funding for new or expanded federal programs (to cover personnel, travel, and administrative costs); grant and fellowship funds to be distributed through reviewed proposal-driven processes; and direct grants to coastal states to carry out their ocean and coastal...
Table 30.1 Summary of Costs Associated with Recommendations of the U.S. Commission on Ocean Policy

Listed below are the estimated new costs, in millions of dollars, for implementing the recommendations in each chapter of this report. Subcategories highlight costs in certain thematic areas which may include more than one recommendation. A square in the last column indicates that some relevant costs are not included. Further explanation can be found in the text of this chapter or in Appendix G.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Recognizing Ocean Assets and Challenges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 2: Understanding the Past to Shape a New National Ocean Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 3: Setting the Nation’s Sights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 4: Enhancing Ocean Leadership and Coordination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 1.062</td>
<td>$ 2.124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 12.750</td>
<td>$ 48.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional ocean councils</td>
<td>$ 3.000</td>
<td>$ 12.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional ocean information programs</td>
<td>$ 9.000</td>
<td>$ 36.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional ecosystem assessments</td>
<td>$ 0.750</td>
<td>$ 0.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 5: Advancing a Regional Approach</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 6: Coordinating Management in Federal Waters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 6.900</td>
<td>$ 21.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of an offshore management regime</td>
<td>$ 0.900</td>
<td>$ 1.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and implementation of marine protected areas</td>
<td>$ 6.000</td>
<td>$ 20.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 7: Strengthening the Federal Agency Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ –</td>
<td>$ –</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 8: Promoting Lifelong Ocean Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 25.150</td>
<td>$ 136.370</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Support for K–12 efforts</td>
<td>$ 11.500</td>
<td>$ 16.040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expansion of the COSEE program</td>
<td>$ –</td>
<td>$ 29.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for undergraduate, graduate, and post-doctoral students</td>
<td>$ –</td>
<td>$ 46.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increasing diversity in ocean fields</td>
<td>$ 1.000</td>
<td>$ 3.930</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community education and outreach</td>
<td>$ 1.250</td>
<td>$ 12.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other measures</td>
<td>$ 11.400</td>
<td>$ 28.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 9: Managing Coasts and Their Watersheds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 55.000</td>
<td>$ 155.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strengthening the CZMA program</td>
<td>$ 35.000</td>
<td>$ 95.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support for watershed initiatives</td>
<td>$ 20.000</td>
<td>$ 60.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 10: Guarding People and Property Against Natural Hazards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 2.500</td>
<td>$ 10.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 11: Conserving and Restoring Coastal Habitat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 40.000</td>
<td>$ 75.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 12: Managing Sediment and Shorelines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 12.500</td>
<td>$ 72.500</td>
<td>Ch. 15, 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 13: Supporting Marine Commerce and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$ 1.500</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 30.1 (continued) Summary of Costs Associated with Recommendations of the U.S. Commission on Ocean Policy

<table>
<thead>
<tr>
<th>Chapter 14: Addressing Coastal Water Pollution</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Total</td>
<td>$11,000</td>
<td>$53,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addressing point sources</td>
<td>$2,000</td>
<td>$8,500</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Addressing nonpoint sources</td>
<td>$5,000</td>
<td>$29,800</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Addressing atmospheric deposition</td>
<td>$4,000</td>
<td>$15,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 15: Creating a National Monitoring Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$10,000</td>
<td>$60,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 16: Limiting Vessel Pollution and Improving Vessel Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$40,000</td>
<td>$88,000</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 17: Preventing the Spread of Invasive Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$31,500</td>
<td>$50,000</td>
<td>Ch. 8, 15, 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 18: Reducing Marine Debris</td>
<td>$2,000</td>
<td>$5,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 19: Achieving Sustainable Fisheries</td>
<td>$28,950</td>
<td>$87,850</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$7,650</td>
<td>$16,550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improvements to Fishery Councils, Commissions, and SSCs</td>
<td>$7,650</td>
<td>$16,550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced cooperative research</td>
<td>$3,000</td>
<td>$10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved fisheries enforcement</td>
<td>$6,300</td>
<td>$12,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designation of essential fish habitat</td>
<td>$5,000</td>
<td>$15,000</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Bycatch reduction</td>
<td>$5,000</td>
<td>$30,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other measures</td>
<td>$2,000</td>
<td>$4,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 20: Protecting Marine Mammals and Endangered Marine Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$7,200</td>
<td>$25,200</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 21: Preserving Coral Reefs and Other Coral Communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$7,000</td>
<td>$16,000</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 22: Setting a Course for Sustainable Marine Aquaculture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$3,000</td>
<td>$7,000</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Chapter 23: Connecting the Oceans and Human Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$2,000</td>
<td>$10,000</td>
<td>Ch. 14, 15, 25</td>
<td></td>
</tr>
<tr>
<td>Expand O&HH research initiative</td>
<td>–</td>
<td>–</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Improve seafood safety and coastal water quality</td>
<td>$2,000</td>
<td>$10,000</td>
<td>Ch. 14, 15</td>
<td></td>
</tr>
<tr>
<td>Chapter 24: Managing Offshore Energy and Other Mineral Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$1,900</td>
<td>$8,800</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>Offshore renewable energy</td>
<td>$200,000</td>
<td>$650,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore non-energy mineral resources</td>
<td>$300,000</td>
<td>$110,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 25: Creating a National Strategy for Increasing Scientific Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$280,000</td>
<td>$960,000</td>
<td>Ch. 27</td>
<td></td>
</tr>
<tr>
<td>Doubling of basic and applied ocean research investments</td>
<td>$200,000</td>
<td>$650,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ocean exploration initiative</td>
<td>$30,000</td>
<td>$110,000</td>
<td>Ch. 27</td>
<td></td>
</tr>
<tr>
<td>Comprehensive national coastal and ocean maps and charts</td>
<td>$50,000</td>
<td>$200,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 26: Achieving a Sustained, Integrated Ocean Observing System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Total</td>
<td>$231,000</td>
<td>$753,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some costs not shown

Chapter 27: Enhancing Ocean Infrastructure and Technology Development

<table>
<thead>
<tr>
<th>Description</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Total</td>
<td>$205.900</td>
<td>$191.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science infrastructure</td>
<td>$200.000</td>
<td>$150.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other ocean-related infrastructure</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology development and implementation</td>
<td>$5.900</td>
<td>$41.800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 28: Modernizing Ocean Data and Information Systems

<table>
<thead>
<tr>
<th>Description</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Total</td>
<td>$14.000</td>
<td>$24.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 29: Advancing International Ocean Science and Policy

<table>
<thead>
<tr>
<th>Description</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Department science capacity and support</td>
<td>$1.260</td>
<td>$2.850</td>
<td>Ch. 25</td>
<td></td>
</tr>
<tr>
<td>International capacity building</td>
<td>$2.000</td>
<td>$5.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 30: Funding Needs and Possible Sources

<table>
<thead>
<tr>
<th>Description</th>
<th>First Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Some costs in other chapters</th>
<th>Some costs not shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for additional state, territorial, and tribal responsibilities</td>
<td>$500.000</td>
<td>$1,000.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAND TOTAL: $1,536,072 $3,869,944

responsibilities. (Throughout this chapter we use the term *coastal states* to include states bordering any ocean or the Great Lakes, all U.S. territories, and federally-recognized tribes with coastal resource treaty rights.) The different types of costs are not distinguished in the table. Moreover, costs borne directly by nonfederal entities, including state and local governments, private companies, and individuals, are not included, although in some cases they may be substantial. The importance of state-level action is discussed further below, with a recommendation for additional federal assistance in carrying out these responsibilities.

Some costs in Table 30.1 are associated with recommendations for distinct, high-visibility projects, such as the IOOS, the national monitoring network, or new ships and other infrastructure. Others costs are linked to recommendations for large, exciting new programs, like the Oceans and Human Health Initiative, or a new program of global ocean exploration. It can be tempting for policy makers to focus on these big-ticket items, but doing so exclusively would not serve the cause of improving ocean and coastal vitality. Most of the problems identified throughout this report are linked to human activities and the cumulative impacts of those activities on ocean and coastal resources. As a result, the solutions generally involve improvements to the management of human activities. Overall, the majority of the costs presented in this chapter are not connected with large, visible new projects, but with less tangible—but equally important—everyday improvements in existing programs to manage ocean and coastal resources.

Deferred Costs

The costs for a number of recommendations could not be assessed at this time and they are noted as “TBD” in Appendix G. Often, this is because the Commission’s recommendation calls for the National Ocean Council or certain federal agencies to study an issue and develop more detailed plans and strategies for addressing it. Until such plans are in place, the scope of needed action is not known, although implementation of the proposed plans is likely to have significant costs. For example, the cost of achieving better regional coor-
dination among federal agencies (Recommendation 5–2) will depend on the mechanisms adopted and can only be determined after the National Ocean Council and its member agencies develop a plan for such coordination.

Costs Beyond the Scope of the Commission's Report

There are many other important activities, with significant implications for oceans and coasts, whose costs, even if known, are not included in the totals provided. Examples include:

- Nationwide upgrading of wastewater and drinking water infrastructure.
- Ongoing flagship projects such as restoration of the Florida Everglades, the Chesapeake Bay, coastal Louisiana, or San Francisco Bay.
- Nationwide water monitoring (Table 30.1 includes only monitoring costs within coastal watersheds and coastal waters).
- Planning and implementation of a national system of intermodal freight transportation.
- The National Science Foundation's Ocean Observatories Initiative.
- Reestablishment of a Congressional Office of Technology Assessment.
- Maintenance and improvements to federal offices, laboratories, and other facilities.
- The costs of renewing the U.S. Coast Guard fleet, implementing Maritime Domain Awareness, and other broad ocean safety and enforcement needs.

These are all major projects with national implications and large price tags whose importance extends far beyond the scope of this Commission and whose costs have not been included in our totals and are not expected to be covered by the Ocean Policy Trust Fund. In many cases, plans are already in place to implement, and often to fund, such projects.

Itemizing Major Funding Areas

With over 200 recommendations spanning dozens of issue areas, it is impossible to single out “the most important.” What's more, it is not meaningful or productive to attempt to compare the importance of protecting coral reefs to the value of better education, or the benefits of improved land-use decisions to those of more thorough stream monitoring. Instead, the following sections highlight a few major themes from the report—governance, education, and science—and discuss some of the costs involved in implementing the Commission’s vision in these areas and others.

The National Ocean Policy Framework

The centerpiece of the Commission's recommendations is the National Ocean Policy Framework, described in Chapters 4–7. Chapter 4 calls for the immediate establishment of a National Ocean Council (NOC) in the Executive Office of the President to provide visible leadership, improve coordination of ocean and coastal management, and help move toward an ecosystem-based management approach. The NOC would be chaired by an Assistant to the President, advised by a nonfederal President's Council of Advisors on Ocean Policy, and supported by a small Office of Ocean Policy. Because they are not operational in nature and will not be responsible for implementing new programs, the cost of establishing these entities will be modest, approximately $1 million in the first year, and $2 million per year thereafter.

The recommendations in Chapter 5 concerning the need for regional ocean councils, improved regional coordination of federal agencies, better regional information, and periodic regional ecosystem assessments call for substantial state-level involvement, but will
also require federal support to become a reality. The costs to the federal government are estimated at nearly $13 million in the first year, with eventual ongoing annual costs of approximately $49 million. As the concept of regional ocean councils takes hold across the country, and regional information needs become better articulated, these costs may well increase. The additional funds needed by coastal states to participate in regional activities will be provided in part by the proposed Ocean Policy Trust Fund, as discussed later in this chapter.

The offshore management regime called for in Chapter 6 requires only a modest level of staff support to coordinate the management of existing offshore activities and plan for new uses, totaling under $2 million per year. (Additional costs associated with offshore renewable energy and non-mineral resources, both discussed in Chapter 24, total around $9 million per year.) In addition, once the National Ocean Council, in consultation with state partners and stakeholders, has established a suitable process for the design of marine protected areas, their orderly implementation and ongoing evaluation will require additional federal support of some $20 million per year.

The broad improvements to the federal agency structure called for in Chapter 7 carry no direct costs because it is expected that the savings realized through improved coordination and efficiency will offset any expenses associated with restructuring.

Ocean Education

High quality, lifelong education about the oceans is essential for improving science literacy and instilling a widespread sense of stewardship for the marine environment. A number of concrete steps to achieve these goals are recommended in Chapter 8. Total first year startup costs in the area of ocean education are estimated at approximately $25 million, with investments of around $136 million per year in later years. This includes support for efforts in kindergarten through 12th grade, expansion of the Centers for Ocean Sciences Education Excellence, creation of a national ocean education coordinating office, grants and fellowships for undergraduate and graduate students in ocean-related fields, informal community outreach, and much more. It also includes $4 million per year in new spending to increase diversity in the ocean community, an important investment priority.

Again it is important to note that the costs in Table 30.1 are for additional federal efforts to promote lifelong ocean education. However, state and local decision makers play central roles in providing and improving education and will require funds to support their own efforts in K–12, post-secondary, graduate and post-graduate education, as well as informal education and outreach efforts, to improve society’s understanding and appreciation of the nation’s oceans and coasts. Support for coastal states to improve their ocean education efforts will be covered by funds provided under the proposed Ocean Policy Trust Fund.

Ocean Science and Exploration

Science and exploration are closely related endeavors. Explorers discover the new places, species, and phenomena that other scientists then study and explain. Many experts have pointed out that we now know more about the surface of the moon—and increasingly the surface of Mars—than we do about the bottom of the ocean, despite the huge potential for answering fundamental questions about our planet and discovering new forms of life right here at home. The gradual shrinking of ocean science funding, from 7 percent of the federal research budget in the 1970s to less than 3.5 percent today, must be reversed to address the nation’s need for better coastal and ocean information and to help managers make well-informed decisions. The Commission recommends a doubling of the federal ocean and coastal research budget, from its current level of $650 million per year to $1.3 billion annu-
ally over the next five years. Chapter 25 summarizes the many high-priority research areas that will benefit from this new investment. A healthy balance is needed between funding for basic and applied sciences, and between research in coastal areas and the open ocean.

To keep reaching out further into the ocean’s unknown areas, scientific investments should be complemented with significant new investments in well-planned, technologically sophisticated ocean exploration expeditions. The cost for sparking a new era of ocean discovery—and reaping the tangible human benefits that will come from it—will be about $30 million over current expenditures in the first year, rising to a sustained, but still modest level of $110 million a year.

Science and exploration both depend on improved infrastructure and technology (facilities, sensors, hardware, and technical support) as discussed in Chapter 27, as well as better analysis, distribution, and archiving of the ever-increasing flow of new data, as discussed in Chapter 28. The total costs of improving ocean science-related infrastructure are estimated at $192 million per year, while better data management will require ongoing annual investments of $24 million. Some of the specific items to be included in the renewal of ocean-science related infrastructure are the University-National Oceanographic Laboratory System (UNOLS) fleet, a new ship for the Integrated Ocean Drilling Program, two refurbished Coast Guard icebreakers, two new fisheries research vessels, new deep submergence vehicles, and dedicated ocean exploration platforms.

Monitoring, Observing, and Mapping

The monitoring network called for in Chapter 15 covers much more than traditional water quality measurements. Many chapters recommend better monitoring, for example those addressing sediments (Chapter 12) and invasive species (Chapter 17). A wide range of variables should be measured as part of the national network to improve assessments, and provide accountability for management measures. First year monitoring efforts for coastal watersheds and waters will cost about $10 million, with ongoing annual costs of approximately $60 million.

Another important tool to achieve well-informed, science-based ocean and coastal management with an ecosystem focus is the national IOOS. A fully operating IOOS will provide critical information for: protecting human lives and property from marine hazards; improving ocean health; predicting global climate change; enhancing the nation’s security; and providing for the protection, sustainable use, and enjoyment of ocean resources. Just as the nation and its citizens have come to rely on an extensive system of weather observations, routine ocean and coastal observations and forecasts will soon be viewed as a necessity as their value becomes evident. The direct benefits to industry, property, and human life alone easily justify the initial investment. The first year cost of implementing the IOOS is estimated at $231 million, rising over a period of five years to an ongoing annual cost of $753 million including satellite operations, data systems, and technology development.

Chapter 25 highlights the importance of accurate maps and charts as vital tools for coastal and ocean research, management, and economic activities. There is an immediate need to create a national base map that is seamless across the shoreline and can incorporate new geospatial data of all kinds as they are collected. The cost estimate of $3 billion over the next fifteen years includes mapping the entire U.S. exclusive economic zone (bathymetry and backscatter), completing the backlog of National Oceanic and Atmospheric Administration hydrographic surveys to support navigational safety, and making all mapping and charting activities accessible through a Geographic Information System-based Web site.
Other Ocean and Coastal Management Challenges

In addition to the broad themes described above, the Commission has recommended a variety of specific actions to meet identified challenges. Recommendations include improving management of the nation’s coasts and coastal watersheds through strengthening the Coastal Zone Management Act and enhancing our ability to manage on a watershed scale. Related recommendations are directed at other critical coastal issues, such as protecting people and property from natural hazards, managing the ebb and flow of sediments, and conserving and restoring valuable coastal habitats. To make meaningful improvements to coastal and watershed management, the additional costs are estimated at $112 million in the first year, rising to $313 million in later years.

Another topic addressed at length is the need to improve the quality of ocean and coastal waters. The Commission recommends a number of actions to address the variety of contaminants and foreign substances that are degrading ocean and coastal waters, whether physical, chemical, or biological, and whether from point, nonpoint, or airborne sources. The combined new costs for all recommendations related to improving the quality of ocean and coastal waters is estimated at $85 million in year one and $197 million in ongoing annual costs. This is one area where certain major costs are not included in our totals. An estimated $600 billion in public and private investments will be needed over the next twenty years to maintain and renew the nation’s entire water and sewer infrastructure—a prerequisite for improving water quality, but an activity that goes beyond the scope of this Commission.

The report also devotes considerable attention to improved management of living marine resources, including actions related to fishery management and marine aquaculture, protecting marine mammals and endangered species, and sustaining valuable coral communities. Many improvements can be made at minimal or no cost as they primarily involve better decision making and governance. A number of recommendations call for additional research to understand these intricate ecosystems; such needs are included under the overall doubling of ocean research funding called for in Recommendation 25–1. Remaining recommendations for living marine resource management require new investments of approximately $146 million per year.

In the international arena, most recommendations and associated costs are addressed in the corresponding subject area chapters (for example, international fisheries, aquaculture, or coral reef protection). However, the recommendations for overarching improvements in this nation’s approach to international ocean issues, outlined in Chapter 29, will cost approximately $8 million per year.

Recognizing the Important Roles of Nonfederal Authorities

Due to the nature, composition, and mandate of this Commission, the report’s recommendations focus primarily on changes needed at the federal level. But the role of states, territories, tribes, and local governments is central to every topic in this report. In particular, they have a critically important role to play in the new National Ocean Policy Framework. Governments at these levels exercise authority over land and water use within their borders, including state waters and submerged lands. In addition, Congress has assigned additional responsibilities to many of these entities through a variety of programs that have been created over the years. Because of their critical roles, it is imperative that the federal government work with states, territories, tribes, and local governments as partners in successfully executing a comprehensive national ocean policy.
Under the new ocean policy framework, states and other nonfederal authorities will have particularly important functions to carry out in areas such as the following:

- Coordination through regional ocean councils and regional ocean information programs.
- Ocean-related education.
- Coastal and watershed management, including clean beaches, sustainable growth, recreation and tourism, and economic development.
- Natural hazards planning and mitigation.
- Habitat conservation and restoration.
- Port and waterway management.
- Reductions in invasive species and marine debris.
- Fishery management and aquaculture.
- Protection of endangered species.
- Science, observing, and mapping.

Although the specific costs to states and other nonfederal actors of carrying out their responsibilities in these areas have not been calculated, the Commission recognizes that they are real, large, and growing. The Commission is also well aware that some existing ocean and coastal programs have not been adequately funded and that additional responsibilities will require additional revenues. The states simply cannot take on further unfunded mandates as a result of the implementation of a comprehensive ocean policy. To achieve the best results for the nation, the federal government will need to provide additional financial assistance. The Commission recommends that $1 billion per year in federal funds—in addition to any existing federal financial assistance—be distributed to coastal states for these purposes. These funds will flow from a new Ocean Policy Trust Fund.

Dedicating Revenue from Ocean Uses for Improved Ocean Management

Existing and Emerging Uses

Various parts of this report discuss federal revenues that are, or may be, generated from offshore activities. Chapter 6 introduces the concept of resource rents, the economic value derived from the use or development of a natural resource. It recommends that the use of a publicly-owned resource by the private sector be contingent on providing a reasonable return of some portion of the revenues to taxpayers. For example, the proposal in Chapter 22 for a new marine aquaculture management framework includes a recommendation for a revenue collection process that recognizes the public interest in the ocean areas and resources used for aquaculture operations in federal waters. Chapter 23 recommends a similar process for bioprospecting.

Chapter 24, on nonliving resources in federal waters, discusses the substantial revenues already flowing into land conservation and historic preservation funds and the U.S. Treasury from outer Continental Shelf (OCS) oil and gas development. It then points out the economic inequities between the treatment of onshore and offshore federal land leasing and development. Recommendation 24–1 suggests that a greater share of the revenues received from the extraction of OCS oil and gas resources should be granted to coastal states for the conservation and sustainable development of renewable ocean and coastal resources. OCS oil and gas producing states would receive a larger portion of such revenues to address the impacts in their states from the activity in adjacent federal offshore areas.
Chapter 24 also addresses the potential emergence of offshore renewable energy resources, including the growing interest in offshore wind farms, and wave and ocean thermal gradient energy conversion. As recommended in Chapter 6, these emerging activities will require a comprehensive management regime that ensures a fair return to the public for the use of marine resources.

Revenues for Ocean and Coastal Management: The Ocean Policy Trust Fund

The nexus between activities in federal waters and the programmatic, regulatory, and management responsibilities they engender is clear. The actions recommended in this report are all linked in some way to our use of the ocean. The critical nature of ocean assets, and the challenges faced in managing them, justify the establishment of an Ocean Policy Trust Fund in the U.S. Treasury to assist federal agencies and coastal states in carrying out the comprehensive ocean policy recommended by this Commission.

The Trust Fund would be composed of returns from commercial uses of offshore resources, including OCS oil and gas revenues not currently committed to other programs, and any future revenues from allowed uses of federal waters. The Land and Water Conservation Fund, the National Historic Preservation Fund, and the OCS oil and gas revenues currently allocated to coastal states from the ocean areas that lie 3 nautical miles seaward of state waters would not be affected. Only after the revenues for those programs were provided in accordance with law, would any remaining OCS monies be deposited in the Trust Fund.

As a practical matter, now and for the foreseeable future, all the revenues flowing into the Trust Fund would come from OCS oil and gas revenues, virtually all of which are derived from activities in the central and western Gulf of Mexico. The drilling in the Gulf is an ongoing activity and an important contributor to our domestic supply of energy. The revenues coming from the Gulf that are not allocated to other purposes are currently credited to miscellaneous receipts of the Treasury. They are either used for other governmental activities or are counted against the deficit. The Commission has determined that funds generated from activities in offshore waters are an appropriate and important source of revenues to dedicate to a new and comprehensive national ocean policy.

As discussed in Chapter 24, approximately $5 billion is generated annually from the various forms of OCS oil and gas revenues. Protecting the three programs noted above would remove about $1 billion. Thus, some $4 billion a year of oil and gas money remains available for the Ocean Policy Trust Fund under current projections, enough to fund the full cost of implementing the Commission’s recommendations. While it would be purely speculative to estimate the amount and timing of revenues that might be produced by newer uses in federal waters, such resource revenues should also be deposited in the Trust Fund as they begin to flow.

Recommendation 30–1

Congress should establish an Ocean Policy Trust Fund in the U.S. Treasury, composed of unallocated federal revenues from outer Continental Shelf (OCS) oil and gas activities, plus revenues from any new activities approved in federal waters, to support the nation’s new coordinated and comprehensive national ocean policy. Trust Fund monies should be disbursed to coastal states, other appropriate coastal authorities, and federal agencies to support improved ocean and coastal management, based on an allocation determined by Congress with input from the National Ocean Council. The Trust Fund should be used to supplement—not replace—existing appropriations for ocean and coastal programs.

The Ocean Policy Trust Fund should be distributed as follows:

- $500 million in the first year, increasing to $1.0 billion in the third and subsequent years, among all coastal and Great Lakes states, territories, and federally-recognized tribes with
coastal resource treaty rights. A larger share should go to OCS producing states to address offshore energy impacts. The funds should be used for the conservation and sustainable development of renewable ocean and coastal resources, including any new responsibilities that arise as a result of Commission recommendations and the expansion of programs and activities that are currently underfunded.

- the remainder of the funds to federal agencies to address the new or expanded activities assigned to them as a result of Commission recommendations.

The sole intent of the Trust Fund is to ensure a dedicated source of funding for improved ocean and coastal management, including the sustainability of renewable resources. It is not intended to either promote or discourage offshore uses authorized under existing laws, and the Fund itself would not drive activities in offshore waters. Rather, all proposed actions would be evaluated under established statutes and governance structures, including the NEPA process. Chapter 6 recommends an offshore management regime in which all activities in federal waters are better coordinated and are guided by principles including sustainability, stewardship, good science, ecosystem-based management, and preservation of marine biodiversity. Once an activity is deemed acceptable, the resulting resource rents due to the American taxpayer for the use of a public resource would be deposited into the Trust Fund to be devoted exclusively to ocean and coastal issues, as noted above.

The design and establishment of the Trust Fund are within the jurisdiction of Congress. Thus, Congress will need to determine how the Fund will be set up, the process and criteria for the distribution of the monies, the formula or method for allocating the funds among coastal states, the eligible uses of the funds, and appropriate connections to existing laws and authorities. The National Ocean Council and the nonfederal President's Council of Advisors on Ocean Policy will be in an excellent position to provide input on these questions.

Understanding the Changing Ocean and Coastal Budget

The proliferation of ocean and coastal programs throughout the federal government over the last thirty years reflects a growing awareness of the importance of marine resources and processes to our economy and our lives. However, this growth has not been well-planned or coordinated. In a world of limited resources and increasing demands, it is imperative that ocean programs be coordinated fiscally as well as operationally.

Congress recognized this need in the Oceans Act of 2000, directing the President to “transmit to the Congress biennially a report that includes a detailed listing of all existing Federal programs related to ocean and coastal activities, including a description of each program, the current funding for the program, linkages to other federal programs, and a projection of the funding level for the program for each of the next five fiscal years beginning after the report is submitted.” The first Federal Ocean and Coastal Activities report was released by the Office of Management and Budget (OMB) in March 2003.

The usefulness of OMB’s report was limited because of inconsistent interpretations of the request for data by the various federal agencies, errors in some of the budget information, variations in the level of detail provided, and a questionable classification system for ocean and coastal functional categories. For example, the report did not summarize agency investments in coastal water quality or ocean-related education, making it impossible to track spending in these areas over time. Subsequent reviews of the OMB report by Congress’s General Accounting Office and the Congressional Research Service corroborated these problems and highlighted the inherent difficulties in determining federal spending levels on ocean and coastal issues.¹²
Nevertheless, the need remains for the National Ocean Council, the President, Congress, OMB, and the public to understand what the federal government is spending on ocean and coastal programs and activities. The integration of the budgets of such programs at the highest level of government would greatly facilitate the coordination of on-the-ground research, monitoring, and management activities. Implementation of Recommendation 7–2, which calls for NOAAs budget to be reviewed as part of the OMB Natural Resources Programs directorate, rather than the General Government Programs directorate, is one important step. But improving the format and content of the biennial report called for in the Oceans Act of 2000 will also be crucial to establish the financial baselines necessary to evaluate growth and changes in ocean and coastal programs and activities and to provide crucial information to Congress, the President, and the public.

Recommendation 30–2
The National Ocean Council, in cooperation with the Office of Management and Budget, should coordinate the compilation of a biennial report from the President on ocean funding, as required by the Oceans Act of 2000, including establishment of a consistent reporting format and a more useful classification scheme.

References

The Oceans Act of 2000 charged the U.S. Commission on Ocean Policy with carrying out the first comprehensive review of ocean-related issues and laws in more than thirty years. The Commission took up that charge, presenting over 200 recommendations throughout this report that will move the nation toward a more coordinated and comprehensive ocean policy. This chapter assembles all the recommendations in one place. To assist federal agencies and others in quickly identifying actions most relevant to them, it also provides an index of the recommendations organized by the agency, group, or individual charged with carrying out the proposed action.

Context for the Recommendations

Guiding Principles

As explained in Chapter 3, the Commission’s work was guided by the following set of fundamental principles:

- **Sustainability**: Ocean policy should be designed to meet the needs of the present generation without compromising the ability of future generations to meet their needs.
- **Stewardship**: The principle of stewardship applies both to the government and to every citizen. The U.S. government holds ocean and coastal resources in the public trust—a special responsibility that necessitates balancing different uses of those resources for the continued benefit of all Americans. Just as important, every member of the public should recognize the value of the oceans and coasts, supporting appropriate policies and acting responsibly while minimizing negative environmental impacts.
- **Ocean–Land–Atmosphere Connections**: Ocean policies should be based on the recognition that the oceans, land, and atmosphere are inextricably intertwined and that actions that affect one Earth system component are likely to affect another.
- **Ecosystem-based Management**: U.S. ocean and coastal resources should be managed to reflect the relationships among all ecosystem components, including humans and nonhuman species and the environments in which they live. Applying this principle will require defining relevant geographic management areas based on ecosystem, rather than political, boundaries.
• **Multiple Use Management**: The many potentially beneficial uses of ocean and coastal resources should be acknowledged and managed in a way that balances competing uses while preserving and protecting the overall integrity of the ocean and coastal environments.

• **Preservation of Marine Biodiversity**: Downward trends in marine biodiversity should be reversed where they exist, with a desired end of maintaining or recovering natural levels of biological diversity and ecosystem services.

• **Best Available Science and Information**: Ocean policy decisions should be based on the best available understanding of the natural, social, and economic processes that affect ocean and coastal environments. Decision makers should be able to obtain and understand quality science and information in a way that facilitates successful management of ocean and coastal resources.

• **Adaptive Management**: Ocean management programs should be designed to meet clear goals and provide new information to continually improve the scientific basis for future management. Periodic reevaluation of the goals and effectiveness of management measures, and incorporation of new information in implementing future management, are essential.

• **Understandable Laws and Clear Decisions**: Laws governing uses of ocean and coastal resources should be clear, coordinated, and accessible to the nation's citizens to facilitate compliance. Policy decisions and the reasoning behind them should also be clear and available to all interested parties.

• **Participatory Governance**: Governance of ocean uses should ensure widespread participation by all citizens on issues that affect them.

• **Timeliness**: Ocean governance systems should operate with as much efficiency and predictability as possible.

• **Accountability**: Decision makers and members of the public should be accountable for the actions they take that affect ocean and coastal resources.

• **International Responsibility**: The United States should act cooperatively with other nations in developing and implementing international ocean policy, reflecting the deep connections between U.S. interests and the global ocean.

These principles underlie all the Commission's recommendations, and their full implementation will lead the nation toward a future where the benefits of the oceans and coasts are fully realized and the problems plaguing these areas are minimized.

Creating a Strong Role for States

Based on the charge of the Oceans Act of 2000, the Commission has recommended actions to achieve a coordinated and comprehensive national ocean policy at all levels of government—including federal, state, and local—and has called for enhanced partnerships among federal agencies and state and local stakeholders. The Commission sees a central role for states in ocean and coastal management and identifies many opportunities for them to contribute to an integrated national ocean policy. The President's Council of Advisors on Ocean Policy, a high-level advisory body to be appointed by the President, should serve as one important formal structure for input from nonfederal individuals and organizations, including governors of coastal states, additional state, territorial, tribal, and local government representatives, and others.

Some of the important areas for state involvement, as discussed throughout the report, include:

• formal and informal ocean education at all levels, including outreach to underrepresented and underserved communities.
creation of regional ocean councils to help coordinate federal, state, tribal, and local planning and action, and designation of regional ocean information programs to supply the information needed to support an ecosystem-based approach.

improved management of coastal areas, including incorporation of coastal watersheds, to achieve better pollution control, growth management, hazards mitigation, transportation planning, sediment management, and habitat conservation and restoration.

development of a prioritized, comprehensive plan for upgrading the nation's aging and inadequate wastewater and drinking water infrastructure, including improved stormwater management.

coordination of a national monitoring network and creation of useful products based on monitoring data.

planning for early detection, prompt notification, and rapid response to marine invasive species.

prevention of marine debris, in part through public outreach and education.

management of commercial and recreational fish stocks and sustainable aquaculture operations.

participation in a broad dialogue on the development of a coordinated offshore management regime, including the design and implementation of marine protected areas.

Another area where state input will be essential is the development of ocean observations and science to support policy decisions. States will need to communicate their information needs and priorities as part of the creation of a national strategy for basic and applied ocean science and technology, including the social science and economic research needed to understand the human dimensions and economic value of the oceans and coasts. States should also participate as full partners in the design and implementation of regional observing systems and their integration into the national Integrated Ocean Observing System.

Many of the Commission’s recommendations explicitly call for the executive branch to consult with the nonfederal President’s Council of Advisors on Ocean Policy and for federal entities to work closely with state and local governments. But even where it is left unstated, the importance of state input and action is assumed throughout.

The Need for Congressional Leadership

Substantial legislative action will be required to achieve a comprehensive, coordinated ocean policy. Some of the statutory changes needed include codifying a major portion of the new ocean policy framework, providing for organizational and jurisdictional restructuring within and between federal ocean agencies, and strengthening existing ocean programs and initiatives and enacting new ones. However, Congressional implementation of the cross-cutting initiatives called for by the Commission will be tested and challenged by the current organization of the committee systems in the Senate and House of Representatives. (For additional information on congressional committee jurisdictions over the range of ocean and coastal issues, see Appendix E)

In addition to the recommendations that call for specific legislative changes, Congress will also need to supply additional funding to achieve meaningful improvement. Although a number of administrative and organizational changes can be made at little or no cost, most of the recommendations in this report—whether they call for major new initiatives or for expansion of successful existing programs—can only be implemented with financial support from Congress. Chapter 30 provides an extensive discussion of funding needs, and Appendix G provides a detailed table listing the estimated cost of every recommendation in the report. This should be helpful as a guide in the congressional appropriations process. Chapter 30 also suggests a mechanism, the Ocean Policy Trust Fund, for creating a dedicated, long-term source of support for ocean and coastal science and management.
Index to the Recommendations

The following section provides an index to all the Commission’s recommendations, categorized according to the various organizations and individuals directed to take action. Each entry lists the numbers of all recommendations applicable to that entity. (As a reminder, recommendations are labeled by chapter number. For example, Recommendation 12–5 refers to the 5th recommendation in Chapter 12.) The complete text of all the recommendations, organized by chapter, follows this index.

Although each recommendation is listed below under the primary actor or actors charged with implementing it, other organizations or individuals are often tasked with providing input or helping to accomplish the objective. To see further details about implementation, and to fully understand the background and reasoning behind each recommendation, the reader should carefully examine the corresponding chapter of the report.

Recommendations to Congress

Recommendations:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–1</td>
<td>9–1</td>
</tr>
<tr>
<td>4–6</td>
<td>9–2</td>
</tr>
<tr>
<td>4–7</td>
<td>9–4</td>
</tr>
<tr>
<td>6–2</td>
<td>11–1</td>
</tr>
<tr>
<td>7–1</td>
<td>11–3</td>
</tr>
<tr>
<td>7–4</td>
<td>12–2</td>
</tr>
<tr>
<td>8–1</td>
<td>12–6</td>
</tr>
<tr>
<td>8–2</td>
<td>13–1</td>
</tr>
<tr>
<td>13–2</td>
<td>19–14</td>
</tr>
<tr>
<td>19–15</td>
<td>21–2</td>
</tr>
<tr>
<td>19–16</td>
<td>22–1</td>
</tr>
<tr>
<td>20–1</td>
<td>23–4</td>
</tr>
<tr>
<td>19–1</td>
<td>24–1</td>
</tr>
<tr>
<td>20–2</td>
<td>24–5</td>
</tr>
<tr>
<td>20–5</td>
<td>25–1</td>
</tr>
<tr>
<td>20–6</td>
<td>25–4</td>
</tr>
<tr>
<td>21–1</td>
<td>25–8</td>
</tr>
<tr>
<td>26–3</td>
<td>26–8</td>
</tr>
<tr>
<td>26–11</td>
<td>27–4</td>
</tr>
<tr>
<td>27–5</td>
<td>28–1</td>
</tr>
<tr>
<td>30–1</td>
<td>30–1</td>
</tr>
</tbody>
</table>

Recommendations to the Executive Branch Leadership

The President

Recommendations: 4–1, 4–4, 4–6, 5–2, 5–3, 7–2, 7–5, 28–6

Assistant to the President (*proposed*)

Recommendations: 4–4, 7–3

National Ocean Council (*proposed*)

Recommendations:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–2</td>
<td>8–5</td>
</tr>
<tr>
<td>4–3</td>
<td>9–3</td>
</tr>
<tr>
<td>4–8</td>
<td>9–4</td>
</tr>
<tr>
<td>4–9</td>
<td>10–2</td>
</tr>
<tr>
<td>5–1</td>
<td>10–3</td>
</tr>
<tr>
<td>6–1</td>
<td>10–4</td>
</tr>
<tr>
<td>6–2</td>
<td>11–2</td>
</tr>
<tr>
<td>6–3</td>
<td>11–5</td>
</tr>
<tr>
<td>12–1</td>
<td>17–6</td>
</tr>
<tr>
<td>13–1</td>
<td>17–8</td>
</tr>
<tr>
<td>14–6</td>
<td>18–3</td>
</tr>
<tr>
<td>14–9</td>
<td>19–27</td>
</tr>
<tr>
<td>16–12</td>
<td>20–1</td>
</tr>
<tr>
<td>16–12</td>
<td>20–7</td>
</tr>
<tr>
<td>17–3</td>
<td>24–4</td>
</tr>
<tr>
<td>17–4</td>
<td>25–2</td>
</tr>
<tr>
<td>25–3</td>
<td>26–12</td>
</tr>
<tr>
<td>25–5</td>
<td>26–1</td>
</tr>
<tr>
<td>26–3</td>
<td>26–13</td>
</tr>
<tr>
<td>29–2</td>
<td>29–12</td>
</tr>
<tr>
<td>29–3</td>
<td>29–1</td>
</tr>
<tr>
<td>29–4</td>
<td>29–1</td>
</tr>
<tr>
<td>30–2</td>
<td>30–1</td>
</tr>
<tr>
<td>28–1</td>
<td>28–1</td>
</tr>
<tr>
<td>28–4</td>
<td>28–1</td>
</tr>
</tbody>
</table>

NOC Committee on Ocean Science, Education, Technology, and Operations (*currently the National Ocean Research Leadership Council*)

Recommendations: 4–7, 26–3, 27–1, 28–1, 28–4

Office on Ocean Education (Ocean.ED) (*proposed*)

Recommendations: 8–1, 8–4, 8–7, 8–8, 8–9, 8–11, 8–12, 8–16, 8–17
Office on Ocean Observing (Ocean.US)
Recommendations: 24–3, 26–2, 26–3, 26–4, 26–5, 26–7, 26–10

Office on Ocean Information (Ocean.IT) (proposed)
Recommendations: 28–1, 28–3

NOC Committee on Ocean Resource Management (proposed)
Recommendations: 4–8, 10–2, 13–2, 18–3, 20–7, 21–2

NOC International Committee (proposed)
Recommendations: 19–27, 29–3

President’s Council of Advisors on Ocean Policy (proposed)
Recommendation: 4–5

Council on Environmental Quality
Recommendation: 5–6

Office of Management and Budget
Recommendation: 7–2

Recommendations to Federal Government Agencies

Department of Agriculture
Recommendations: 5–2, 11–3, 14–3, 14–7, 17–3

Department of Commerce
Recommendation: 17–3

National Oceanic and Atmospheric Administration
Recommendations:

<table>
<thead>
<tr>
<th>5–2</th>
<th>15–1</th>
<th>19–16</th>
<th>22–3</th>
<th>26–8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–5</td>
<td>15–2</td>
<td>19–26</td>
<td>23–1</td>
<td>26–9</td>
</tr>
<tr>
<td>8–2</td>
<td>15–3</td>
<td>20–4</td>
<td>23–2</td>
<td>26–10</td>
</tr>
<tr>
<td>8–3</td>
<td>16–13</td>
<td>20–7</td>
<td>23–3</td>
<td>26–11</td>
</tr>
<tr>
<td>8–10</td>
<td>18–1</td>
<td>20–8</td>
<td>23–5</td>
<td>27–2</td>
</tr>
<tr>
<td>8–12</td>
<td>18–2</td>
<td>20–9</td>
<td>24–3</td>
<td>27–6</td>
</tr>
<tr>
<td>8–13</td>
<td>18–4</td>
<td>21–3</td>
<td>25–6</td>
<td>28–2</td>
</tr>
<tr>
<td>8–16</td>
<td>18–5</td>
<td>21–4</td>
<td>26–2</td>
<td></td>
</tr>
<tr>
<td>11–3</td>
<td>19–9</td>
<td>22–1</td>
<td>26–6</td>
<td></td>
</tr>
<tr>
<td>14–11</td>
<td>19–11</td>
<td>22–2</td>
<td>26–7</td>
<td></td>
</tr>
</tbody>
</table>

National Marine Fisheries Service
Recommendations:

<table>
<thead>
<tr>
<th>19–4</th>
<th>19–7</th>
<th>19–17</th>
<th>19–21</th>
<th>20–3</th>
</tr>
</thead>
<tbody>
<tr>
<td>19–5</td>
<td>19–8</td>
<td>19–18</td>
<td>19–22</td>
<td></td>
</tr>
<tr>
<td>19–6</td>
<td>19–14</td>
<td>19–19</td>
<td>19–23</td>
<td></td>
</tr>
</tbody>
</table>

National Sea Grant College Program
Recommendation: 8–6
CHAPTER 31: SUMMARY OF RECOMMENDATIONS

Department of Defense

Army Corps of Engineers
Recommendations: 5–2, 10–1, 11–3, 12–3, 12–5

Navy
Recommendations: 28–2, 28–5

Office of Naval Research
Recommendations: 8–3, 8–10, 8–15, 8–16, 26–6

Department of Health and Human Services

Food and Drug Administration
Recommendations: 23–5

National Institute of Environmental Health Sciences
Recommendations: 23–1, 23–2, 23–3

Department of Homeland Security
Recommendation: 17–3

Coast Guard

Federal Emergency Management Agency
Recommendation: 10–4

Department of the Interior
Recommendations: 5–2, 11–3, 17–3, 20–8, 24–2

Fish and Wildlife Service
Recommendations: 11–4, 16–7, 20–3, 20–4

Minerals Management Service
Recommendations: 16–10, 20–9, 24–3, 24–6

U.S. Geological Survey
Recommendations: 15–1, 15–3, 20–9

Department of Labor
Recommendation: 8–12

Department of State

Department of Transportation
Recommendations: 13–1, 13–3, 13–4, 13–5, 13–6, 16–10
Environmental Protection Agency

Recommendations:

<table>
<thead>
<tr>
<th>5–2</th>
<th>14–2</th>
<th>14–6</th>
<th>15–1</th>
<th>16–8</th>
<th>18–2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–5</td>
<td>14–3</td>
<td>14–11</td>
<td>15–3</td>
<td>16–9</td>
<td>23–5</td>
</tr>
<tr>
<td>12–7</td>
<td>14–4</td>
<td>14–12</td>
<td>16–6</td>
<td>16–10</td>
<td></td>
</tr>
<tr>
<td>14–1</td>
<td>14–5</td>
<td>14–13</td>
<td>16–7</td>
<td>16–13</td>
<td></td>
</tr>
</tbody>
</table>

National Aeronautics and Space Administration

Recommendations: 8–3, 8–16, 26–6, 26–7, 26–8

National Science Foundation

Recommendations: 8–3, 8–10, 8–14, 8–16, 20–9, 23–1, 23–2, 23–3, 25–6, 26–6

Interagency groups

- **Aquatic Nuisance Species Task Force and National Invasive Species Council**
 Recommendation: 17–5

- **Coral Reef Task Force**
 Recommendations: 21–2, 21–5

- **Federal Geographic Data Committee**
 Recommendation: 25–7

- **Interagency Committee for the Marine Transportation System**
 Recommendation: 13–2

- **National Dredging Team**
 Recommendation: 12–4

- **Task Force on the Collection and Use of Hazards-related Data (proposed)**
 Recommendation: 10–2
Recommendations to Regional Bodies

Regional Ocean Councils (proposed)
Recommendations: 6–2, 6–4, 9–4, 11–2

Regional Fishery Management Councils

Scientific and Statistical Committees
Recommendations: 19–2, 19–7

Interstate Fishery Commissions
Recommendations: 19–15, 19–22

Regional Dredging Teams
Recommendations: 12–4

Recommendations to States

As noted in the introduction to this chapter, the Commission sees a strong role for state, territorial, tribal, and local governments in implementing ocean policy. The list shown below includes only those recommendations that call for specific actions to be led by state-level actors. Many other recommendations and discussions throughout the report also emphasize the importance of state and local involvement.

Recommendations Related to International Ocean Science, Policy, and Management

Recommendations:
14–14 18–4 19–27 26–7 29–4
16–3 18–6 20–10 26–13 29–5
16–4 19–23 21–1 29–1 29–6
16–8 19–24 21–4 29–2 29–7
Complete List of Recommendations in order of Appearance in the Report

Chapter 1: Recognizing Ocean Assets and Challenges

No recommendations.

Chapter 2: Understanding the Past to Shape a New National Ocean Policy

No recommendations.

Chapter 3: Setting the Nation’s Sights

No recommendations.

Chapter 4: Enhancing Ocean Leadership and Coordination

Recommendation 4–1
Congress should establish a National Ocean Council (NOC) within the Executive Office of the President, and a nonfederal President’s Council of Advisors on Ocean Policy to provide enhanced federal leadership and coordination for the ocean and coasts. While Congress works to establish these components in law, the President should begin immediately to implement an integrated national ocean policy by establishing the NOC and President’s Council of Advisors on Ocean Policy through an executive order, and by designating an Assistant to the President to chair the NOC.

Recommendation 4–2
The National Ocean Council (NOC) should provide high-level attention to ocean and coastal issues, develop appropriate national policies, and coordinate their implementation by the many federal departments and agencies with ocean and coastal responsibilities.

The NOC should be:
- chaired by an Assistant to the President.
- composed of cabinet secretaries of departments and directors of independent agencies with appropriate ocean- and coastal-related responsibilities. Heads of other relevant executive departments, agencies, commissions, quasi-official agencies and senior White House officials should be invited to attend meetings of the NOC when appropriate.

The NOC should carry out the following functions:
- develop broad principles (based on those outlined in Chapter 3) and national goals for governance of the nation’s oceans and coasts, and periodically review and revise these goals.
- make recommendations to the President on developing and carrying out national ocean policy, including domestic implementation of international ocean agreements.
- coordinate and integrate activities of ocean-related federal agencies and provide incentives for meeting national goals.
- identify statutory and regulatory redundancies or omissions and develop strategies to resolve conflicts, fill gaps, and address new and emerging ocean issues for national and regional benefits.
- guide the effective use of science in ocean policy and ensure the availability of data and information for decision making at national and regional levels.
- develop and support partnerships among government agencies and nongovernmental organizations, the private sector, academia, and the public.
• expand education and outreach efforts by federal ocean and coastal agencies.
• work with a broad range of nonfederal stakeholders, governmental and nongovernmental, to develop a broad, flexible, and voluntary process for the establishment of regional ocean councils to help advance regional approaches.
• periodically assess the state of the nation's oceans and coasts to measure the achievement of national ocean goals.

Recommendation 4–3
The National Ocean Council (NOC) should adopt the principle of ecosystem-based management and assist federal agencies in moving toward an ecosystem-based management approach.
As part of this effort, the NOC should:
• coordinate the development of procedures for the practical application of the precautionary approach and adaptive management.
• encourage agencies to incorporate preservation of marine biodiversity in their management programs and support further study of biodiversity.

Recommendation 4–4
The President should designate an Assistant to the President to provide leadership and support for national ocean and coastal policy.
The Assistant to the President should have the following responsibilities:
• chair the NOC.
• co-chair the President's Council of Advisors on Ocean Policy.
• lead NOC efforts to coordinate federal agency actions related to oceans and coasts.
• make recommendations for federal agency reorganization as needed to improve ocean and coastal management.
• resolve interagency policy disputes on ocean and coastal issues.
• reach out to state, territorial, tribal, and local stakeholders and promote regional approaches to ocean and coastal management.
• consult with the Office of Management and Budget (OMB) director and NOC members to identify programs that contribute significantly to the national policy for oceans and coasts, advise OMB and the agencies on appropriate funding levels for ocean- and coastal-related activities, and prepare the biennial reports mandated by section 5 of the Oceans Act of 2000.

Recommendation 4–5
The President's Council of Advisors on Ocean Policy, a formal structure for input from nonfederal individuals and organizations, should advise the President on ocean and coastal policy matters.
The President's Council of Advisors on Ocean Policy should be:
• composed of a representative selection of individuals appointed by the President, including governors of coastal states and other appropriate state, territorial, tribal and local government representatives, plus individuals from the private sector, research and education communities, nongovernmental organizations, watershed organizations, and other nonfederal bodies with ocean interests.
• comprised of members knowledgeable about and experienced in ocean and coastal issues.
• co-chaired by the chair of the National Ocean Council and a nonfederal member.
Recommendation 4–6
Congress should establish an Office of Ocean Policy to support the Assistant to the President, the National Ocean Council (NOC), and the President’s Council of Advisors on Ocean Policy. To provide staff support immediately, the President should establish an Office of Ocean Policy through the executive order creating the NOC and the President’s Council of Advisors on Ocean Policy.

The Office of Ocean Policy should be:
- composed of a small staff that reports to the Assistant to the President.
- managed by an executive director responsible for daily staff activities.

Recommendation 4–7
Congress, working with the National Ocean Council (NOC), should amend the National Oceanographic Partnership Act to integrate ocean observing, operations, and education into its marine research mission. A strengthened and enhanced National Ocean Research Leadership Council (NORLC) should be redesignated as the Committee on Ocean Science, Education, Technology, and Operations (COSETO), under the oversight of the NOC.

In particular, amendments to the National Oceanographic Partnership Act should specify that the newly-named COSETO:
- reports to the NOC.
- is chaired by the director of the Office of Science and Technology Policy to ensure appropriate links to government-wide science and technology policy and equity among participating federal agencies.
- includes in its mandate coordination and planning of federal marine facilities and operations, federal oversight of the Integrated Ocean Observing System, and coordination of ocean-related education efforts, in addition to its existing research responsibilities.
- includes existing NORLC members plus the director of the National Institute of Environmental Health Sciences at the National Institutes of Health, the assistant secretary for Natural Resources and Environment at the Department of Agriculture, and the undersecretary for science at the Smithsonian Institution.
- subsumes the current tasks of the National Science and Technology Council’s Joint Subcommittee on Oceans.
- is supported by the Office of Ocean Policy.

Recommendation 4–8
The National Ocean Council (NOC) should establish a Committee on Ocean Resource Management to better integrate the resource management activities of ocean-related agencies. This committee should oversee and coordinate the work of existing ocean and coastal interagency groups and less formal efforts, recommend the creation of new topical task forces as needed, and coordinate with government-wide environmental and natural resource efforts that have important ocean components.

The Committee on Ocean Resource Management should:
- be chaired by the chair of the Council on Environmental Quality to ensure appropriate links to government-wide environmental policy and equity among participating federal agencies.
- include undersecretaries and assistant secretaries of departments and agencies that are members of the NOC.
- report to the NOC.
- be supported by the Office of Ocean Policy.

Recommendation 4–9
The National Ocean Council (NOC) should review all existing ocean-related councils and commissions and make recommendations about their ongoing utility, reporting structure, and connections to the NOC.
Chapter 5: Advancing a Regional Approach

Recommendation 5–1
The National Ocean Council should work with Congress, the President’s Council of Advisors on Ocean Policy, and state, territorial, tribal, and local leaders, including representatives from the private sector, nongovernmental organizations, and academia, to develop a flexible and voluntary process for the creation of regional ocean councils. States, working with relevant stakeholders, should use this process to establish regional ocean councils, with support from the National Ocean Council.

Recommendation 5–2
The President, through an executive order, should direct all federal agencies with ocean- and coastal-related functions to immediately improve their regional coordination and increase their outreach efforts to regional stakeholders.
To initiate this process, NOAA, EPA, USACE, DOI, and USDA should:
- collaborate with regional, state, territorial, tribal, and local governments, and non-governmental parties to identify regional priorities and information needs.
- identify inconsistencies in agency mandates, policies, regulations, practices, or funding that prevent regional issues from being effectively addressed and communicate these to the National Ocean Council.
- improve coordination and communication among agencies, including the possible development of interagency protocols to guide regional decision making.
- coordinate funding and grants in a manner consistent with regional priorities.

Recommendation 5–3
The President should form a task force of federal resource management agencies to develop a proposal for adoption and implementation of common federal regional boundaries. The task force should solicit input from state, territorial, tribal, and local representatives.

Recommendation 5–4
Pending the creation of a regional ocean council, the governors in each region should select a suitable entity to operate a regional ocean information program that carries out research, data collection, information product development, and outreach based on the needs and priorities of ocean and coastal decision makers.
The entity assigned to carry out the regional ocean information program should:
- include representation from federal agencies, state, territorial, tribal, and local decision makers, scientists, as well as experts in information exchange and outreach.
- communicate regional research and information priorities to federal agencies and others with ocean and coastal responsibilities to help guide their programs.
- maintain strong links with the regional ocean observing systems to help them fulfill regional data collection requirements while adhering to national Integrated Ocean Observing System requirements.

Recommendation 5–5
The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (EPA), working with other appropriate federal and regional entities, should coordinate the development of regional ecosystem assessments, to be updated periodically.
As part of this process, NOAA and EPA should:
- incorporate data and information developed at the state and local levels, including resource assessments developed by state coastal management programs.
- coordinate with the organization responsible for improving regional ocean information collection and dissemination activities to make optimum use of regional information.
- collaborate closely with regional ocean councils.
Recommendation 5–6
The Council on Environmental Quality should revise its National Environmental Policy Act guidelines to state that environmental impact statements for proposed ocean- and coastal-related activities should incorporate the regional ecosystem assessments called for in Recommendation 5–5.

Chapter 6: Coordinating Management in Federal Waters

Recommendation 6–1
The National Ocean Council should ensure that each current and emerging activity in federal waters is administered by a lead federal agency and make recommendations for Congressional action where needed. The lead agency should coordinate with other applicable authorities and should ensure full consideration of the public interest.

Recommendation 6–2
Congress, working with the National Ocean Council (NOC) and regional ocean councils, should establish a balanced, ecosystem-based offshore management regime that sets forth guiding principles for the coordination of offshore activities, including a policy that requires a reasonable portion of the resource rent derived from such activities to be returned to the public. In developing an offshore management regime, Congress, the NOC, and regional ocean councils should:

- adopt as guiding principles those set forth by the Commission.
- recognize the need, where appropriate, for comprehensive, single-purpose ocean governance structures, which would be based on the guiding principles of the new regime and integrated with other uses.
- include a process for addressing new and emerging activities.

Recommendation 6–3
The National Ocean Council should develop national goals and guidelines leading to a uniform process for the effective design, implementation, and evaluation of marine protected areas. The process should include the following:

- marine protected area designations that are based on the best available science to ensure that an area is appropriate for its intended purpose.
- periodic assessment, monitoring, and modification to ensure continuing ecological and socioeconomic effectiveness of marine protected areas.
- design and implementation that consider issues of national importance, such as freedom of navigation, and are conducted in the context of an ecosystem-based comprehensive offshore management regime.

Recommendation 6–4
To create effective and enforceable marine protected areas, regional ocean councils and appropriate federal, regional, state, and local entities should work together on marine protected area design, implementation, and evaluation. Planners should follow the process developed by the National Ocean Council, actively soliciting stakeholder input and participation.
Chapter 7: Strengthening the Federal Agency Structure

Recommendation 7–1
Congress should establish an organic act for the National Oceanic and Atmospheric Administration (NOAA) that codifies its existence and mission. The act should ensure that NOAA's structure is consistent with the principles of ecosystem-based management and with its three primary functions of: assessment, prediction, and operations; management; and research and education.

Specifically, NOAA's structure should support its role in:
- assessment, prediction, and operations for ocean, coastal, and atmospheric environments, including mapping and charting, satellite-based and in situ data collection, implementation of the Integrated Ocean Observing System, broadly based data information systems, and weather services and products.
- management of ocean and coastal areas and living and nonliving marine resources, including fisheries, ocean and coastal areas, vulnerable species and habitats, and protection from pollution and invasive species.
- research and education on all aspects of marine resources, including a focus on the importance of research and development, the use of scientifically valid technical data throughout the agency and with external partners, and promotion of educational activities across the agency and with the public.

Recommendation 7–2
The Office of Management and Budget (OMB), at the instruction of the President, should review the National Oceanic and Atmospheric Administration budget within OMB's Natural Resources Programs, along with the budgets of the U.S. Departments of Agriculture, Energy, and the Interior, the U.S. Environmental Protection Agency, the National Science Foundation, the National Aeronautics and Space Administration, and the U.S. Army Corps of Engineers' Directorate of Civil Works.

Recommendation 7–3
The Assistant to the President, with advice from the National Ocean Council and the President's Council of Advisors on Ocean Policy, should review federal ocean, coastal, and atmospheric programs, and recommend opportunities for consolidation of similar functions.

Recommendation 7–4
Congress should authorize the President to propose structural reorganization of federal departments and agencies, subject to Congressional approval.

In particular, such legislation should:
- preclude Congress from amending the President's proposal.
- require Congress to vote on the President's proposal within a specified time period after submission of the plan by the President.

Recommendation 7–5
Following establishment of the National Ocean Council and the President's Council of Advisors on Ocean Policy, strengthening of the National Oceanic and Atmospheric Administration, and consolidation of similar federal ocean and coastal programs, the President should propose to Congress a reorganization of the federal government that recognizes the links among all the resources of the sea, land, and air, and establishes a structure for more unified, ecosystem-based management of natural resources.
Chapter 8: Promoting Lifelong Ocean Education

Recommendation 8–1
Congress should amend the National Oceanographic Partnership Act to add a national ocean education office (Ocean.ED) with responsibility for strengthening ocean-related education and coordinating federal education efforts. In particular, Ocean.ED should:

- develop a national strategy for enhancing educational achievement in natural and social sciences and increasing ocean awareness, including promotion of programs that transcend the traditional mission boundaries of individual agencies.
- develop a medium-term (five-year) national plan for ocean-related K–12 and informal education, working with federal, state, and nongovernmental education entities.
- coordinate and integrate all federal ocean-related education activities and investments.
- establish links among federal efforts, state and local education authorities, informal education facilities and programs, institutions of higher learning, and private-sector education initiatives, and strengthen existing partnerships.
- report to the National Ocean Council’s Committee on Ocean Science, Education, Technology, and Operations.

Recommendation 8–2
Congress should provide funding for Ocean.ED operations and program implementation as a line item in the National Oceanic and Atmospheric Administration (NOAA) budget, to be spent at the direction of the National Ocean Council (NOC). NOAA should develop a streamlined process for distributing Ocean.ED funds to other federal and nonfederal entities based on the NOC-approved plan.

Recommendation 8–3
The National Oceanic and Atmospheric Administration, National Science Foundation, Office of Naval Research, and National Aeronautics and Space Administration should strengthen their support of both formal and informal ocean-related education, including appropriate evaluations of these efforts. In particular, these agencies should:

- develop, with assistance from Ocean.ED, a cooperative system of dedicated, sustained, multi-agency funding for formal and informal ocean education. This funding should be explicitly linked to the national ocean education plan.
- provide support for development and implementation of ocean-related education materials and activities with a requirement that evaluation mechanisms be included as a component of every program.

Recommendation 8–4
Ocean.ED should develop a framework for evaluating the effectiveness of ocean-related education programs, ocean-based K–12 professional development programs, best practices for incorporating ocean-based examples into K–12 education, and public education programs.

Recommendation 8–5
The National Ocean Council (NOC), working with the National Science Foundation, should place the Centers for Ocean Sciences Education Excellence (COSEE) within the NOC structure as a program to be organized and overseen through Ocean.ED. The NOC should also work to expand the COSEE program. Expansion of COSEE should include:

- tripling the number of regional centers to twenty-one, with each center receiving at least $1.5 million a year for an initial five year period.
• expanding the reach of each center beyond its immediate participants.
• identifying models for successful partnerships between scientists and K–12 teachers.
• devising strategies to incorporate the expertise of university science education specialists.
• implementing professional development programs for K–12 teachers and university research professors.

Recommendation 8–6
The National Sea Grant College Program should increase the proportion of its resources dedicated to ocean and coastal education.

Recommendation 8–7
Ocean.ED, working with state and local education authorities and the research community, should coordinate the development and adoption of ocean-related materials and examples that meet existing education standards. Specifically, Ocean.ED should:
• assess existing ocean-based curricula offerings, highlighting exemplary materials that are aligned with national standards.
• promote the creation of companion materials to the National Science Education Standards that are based on ocean data and research findings (including social and economic fields).
• disseminate ocean-based examples and assessment questions that link to the concept standards in physical and life sciences, geography, history, and other topics and that demonstrate the value of oceans in teaching fundamental concepts.
• promote the development of case studies that stress the interconnected nature of the ocean, land, and atmosphere.

Recommendation 8–8
Ocean.ED, working with academic institutions and local school districts, should help establish more effective relationships between the research and education communities to expand professional development opportunities for teachers and teacher educators. Specifically, Ocean.ED should:
• provide supplemental grants and other rewards to scientists who partner with teachers and teacher educators to include educational components in their research projects.
• establish a grants program for development and implementation of an enhanced core curriculum in science content that incorporates ocean concepts for pre-service teachers. Applicants should be required to demonstrate collaborations and partnerships among education, science, mathematics, and engineering faculty.

Recommendation 8–9
Ocean.ED should promote partnerships among government agencies, school districts, institutions of higher learning, aquariums, science centers, museums, and private marine laboratories to develop more opportunities for students to explore the marine environment, both through virtual means and hands-on field, laboratory, and at-sea experiences. Ocean.ED should ensure that programs for students:
• include a broad range of options, from in-school modules, to accessible after-school activities, daylong field trips, and summer programs.
• acknowledge cultural differences and other aspects of human diversity to expose students and teachers from all cultures and backgrounds to ocean issues.
Recommendation 8–10
The National Oceanic and Atmospheric Administration, National Science Foundation, and Office of Naval Research should support colleges and universities in promoting introductory ocean and coastal science and engineering courses to expose a wider cross-section of students, including non-science majors, to these subjects. These agencies should support this effort by:

- providing small grants to assist in course development, equipment purchases, faculty support, and field experiences.
- fostering collaborations between institutions with graduate ocean programs and others with a primarily undergraduate population.

Recommendation 8–11
Ocean.ED should guide and promote the development of the nation’s ocean-related workforce. In particular, Ocean.ED should:

- promote student support, diversified educational opportunities, and investment in innovative approaches to graduate education that prepare students for a broad range of careers.
- encourage, with targeted federal support, graduate departments of ocean sciences and engineering to experiment with new or redesigned programs that emphasize cross-disciplinary courses of study.
- set targets for federal stipends for ocean-related education to be competitive with other disciplines.

Recommendation 8–12
The National Oceanic and Atmospheric Administration and the U.S. Department of Labor should establish a national ocean workforce database and compile an annual report for the National Ocean Council on trends in ocean-related human resource development and needs. This effort should include an information clearinghouse to facilitate career decisions, provide access to career guidance, and enable employers, guidance counselors, and others to develop effective strategies to attract students to ocean-related careers. Ocean.ED should organize an ocean workforce summit every five years to address the alignment of ocean education with workforce needs.

Recommendation 8–13
The National Oceanic and Atmospheric Administration (NOAA) should establish a national ocean education and training program, patterned after the National Institutes of Health model, within its Office of Education and Sustainable Development to provide diverse and innovative ocean-related education opportunities at the undergraduate, graduate, and postdoctoral levels.

Specifically, NOAA should:

- offer students at the undergraduate level experiential learning opportunities in a range of marine fields through summer internships or similar mechanisms.
- support fellowships and traineeships at the graduate and postdoctoral levels that emphasize interdisciplinary approaches and real-world experiences outside the university setting, especially in areas critical to the agency’s mission.
- support professorships in fields of particular interest to NOAA.

Recommendation 8–14
The National Science Foundation’s Directorates for Geosciences, Biological Sciences, and Education and Human Resources should develop cooperative programs to provide diverse, multidisciplinary educational opportunities at the undergraduate, graduate, and postdoctoral levels in a range of ocean-related fields.
Recommendation 8–15
The Office of Naval Research (ONR) should reinvigorate its support of graduate education in ocean sciences and engineering. This could be accomplished, in part, by increasing the number of ocean-related awards made under ONR’s National Defense Science and Engineering Graduate Fellowship Program.

Recommendation 8–16
The National Oceanic and Atmospheric Administration, National Science Foundation, Office of Naval Research, and National Aeronautics and Space Administration should encourage increased participation of traditionally underrepresented and underserved groups in the ocean-related workforce. Ocean.ED should coordinate among these agencies and institutions of higher learning. Specifically, Ocean.ED should:
- ensure that the appropriate mix of programs and opportunities exists to provide underrepresented and underserved groups ample access to and support for pursuing ocean-related graduate education, including opportunities at Minority Serving Institutions and other universities and oceanographic institutions.
- ensure that programs are established through a competitive process and evaluated for performance on an annual basis.

Recommendation 8–17
Ocean.ED, working with other appropriate entities, should promote existing mechanisms and establish new approaches for developing and delivering relevant, accessible information and outreach programs that enhance community education.
In particular, Ocean.ED should:
- work with ocean-related informal education initiatives to better engage underrepresented and underserved populations and communities by using mechanisms, materials, and language familiar to and accepted by them.
- work with informal education facilities to develop the capacity to quickly prepare and deliver new science-based materials and programs to the public and the media to capture immediate interest in noteworthy advances in ocean science.
- engage industry, the commercial sector, and the media in community education and stewardship programs.

Chapter 9: Managing Coasts and their Watersheds

Recommendation 9–1
Congress should reauthorize the Coastal Zone Management Act (CZMA) to strengthen the planning and coordination capabilities of coastal states and enable them to incorporate a coastal watershed focus and more effectively manage growth. Amendments should include requirements for resource assessments, the development of measurable goals and performance measures, improved program evaluations, incentives for good performance and disincentives for inaction, and expanded boundaries that include coastal watersheds.
Specifically, CZMA amendments should address the following issues:
- resource assessments—State coastal management programs should provide for comprehensive periodic assessments of the state’s natural, cultural, and economic coastal resources. These assessments will be critical in the development of broader regional ecosystem assessments, as recommended in Chapter 5.
- goals—State coastal management programs should develop measurable goals based on coastal resource assessments that are consistent with national and regional goals. State coastal programs should work with local governments, watershed groups, nongovernmental organizations, and other regional entities, including regional ocean councils, to develop these goals.
• **performance measures**—State coastal management programs should develop performance measures to monitor their progress toward achieving national, regional, and state goals.

• **evaluations**—State coastal management programs should continue to undergo periodic performance evaluations by the National Oceanic and Atmospheric Administration. In addition to the existing evaluation criteria, the performance measures developed by state programs should also be reviewed. The public, representatives of watershed groups, and applicable federal program representatives should participate in these program evaluations.

• **incentives**—Existing incentives for state participation—federal funding and federal consistency authority—should remain, but a substantial portion of the federal funding received by each state should be based on performance. Incentives should be offered to reward exceptional accomplishments, and disincentives should be applied to state coastal management programs that are not making satisfactory progress in achieving program goals.

• **boundaries**—Coastal states should extend the landward side of their coastal zone boundaries to encompass coastal watersheds. Mechanisms should also be established for coordinating with watershed management groups outside of a state’s designated coastal zone boundary.

Recommendation 9–2
Congress should consolidate area-based coastal management programs in a strengthened National Oceanic and Atmospheric Administration (NOAA), capitalizing on the strengths of each program. At a minimum, this should include bringing together the Coastal Zone Management and National Marine Sanctuary programs and the National Estuarine Research Reserve System, currently administered by NOAA, and additional coastal programs administered by other agencies, including the National Estuary Program, the John H. Chafee Coastal Barrier Resources System, and the U.S. Fish and Wildlife Service Coastal Program.

Recommendation 9–3
The National Ocean Council should recommend changes to federal funding and infrastructure programs to discourage inappropriate growth in fragile or hazard-prone coastal areas and ensure consistency with national, regional, and state goals aimed at achieving economically and environmentally sustainable development.

Recommendation 9–4
Congress should amend the Coastal Zone Management Act, Clean Water Act, and other federal laws, where appropriate, to provide better financial, technical, and institutional support for watershed management initiatives. The National Ocean Council and regional ocean councils should enhance support for coastal watershed initiatives by coordinating agency programs, technical assistance, and funding and by overseeing development of an accessible clearinghouse of information on watershed best management practices.

Chapter 10: Guarding People and Property against Natural Hazards

Recommendation 10–1
The U.S. Army Corps of Engineers’ Civil Works Program, with guidance from the National Ocean Council, should ensure valid, peer-reviewed cost-benefit analyses of coastal projects, provide greater transparency to the public, enforce requirements for mitigating the impacts of coastal projects, and coordinate such projects with broader coastal planning efforts.
Recommendation 10–2
The National Ocean Council should establish a task force of appropriate federal agencies and state and local governments, with the Federal Emergency Management Agency in the lead, to improve the collection and use of hazards-related data. Under the oversight of the NOC’s Committee on Ocean Resource Management, the hazards-related data task force should develop a coordinated effort that includes the following functions:

- systematic collection, storage, analysis, and dissemination of data on post-disaster losses and the cost of mitigation efforts.
- development and transmittal to communities of the information and tools they need to understand the risks of hazards to their residents and their social, physical, economic, and environmental infrastructures.
- cooperation with the Federal Geographic Data Committee and state and local governments to achieve comprehensive, digitized, georeferenced mapping and identification of all natural hazards.
- development of adequate funding proposals for the National Flood Insurance Program map modernization initiative, including a high-priority effort to update maps for high-risk coastal communities.

Recommendation 10–3
The National Ocean Council should recommend changes in the National Flood Insurance Program (NFIP) to reduce incentives for development in high-hazard areas. Specifically, NFIP changes should:

- establish clear disincentives to building or rebuilding in coastal high-hazard zones by requiring property owners at risk of erosion to pay actuarially sound rates for insurance.
- enforce measures that reduce vulnerability to natural hazards, including assistance in retrofitting older structures and buyout programs for susceptible structures with repetitive-loss histories.
- create enforceable mechanisms to direct development away from undeveloped floodplains and erosion zones.

Recommendation 10–4
The Federal Emergency Management Agency (FEMA) should enhance technical assistance to state and local governments for developing or improving their hazard mitigation plans. The National Ocean Council should identify opportunities for conditioning federal hazards-related financial and infrastructure support on completion of FEMA-approved state and local hazards mitigation plans.

Chapter 11: Conserving and Restoring Coastal Habitat

Recommendation 11–1
Congress should amend the Coastal Zone Management Act to create a dedicated funding program for coastal and estuarine land conservation. In addition, a larger share of U.S. Department of Agriculture and other federal agency conservation programs should be directed to coastal and estuarine lands. To guide these programs, each state should identify priority coastal habitats and develop a plan for establishing partnerships among willing landowners for conservation purposes, with participation from federal agency, local government, nongovernmental, and private-sector partners.
Recommendation 11–2
The regional ocean councils, working with state coastal management programs and other governmental and nongovernmental entities, should assess regional needs and set goals and priorities for ocean and coastal habitat conservation and restoration efforts that are consistent with state and local goals. The National Ocean Council should develop national goals that are consistent with regional, state, and local goals, and should ensure coordination among all related federal activities.

Recommendation 11–3
The U.S. Department of the Interior, National Oceanic and Atmospheric Administration, U.S. Department of Agriculture, and U.S. Army Corps of Engineers should enhance their restoration science, monitoring, and assessment activities. Congress should amend relevant legislation to allow greater discretion in using a portion of federal habitat conservation and restoration funds for related research, monitoring, and assessments.

Recommendation 11–4
The U.S. Fish and Wildlife Service should complete, digitize, and periodically update the National Wetlands Inventory.

Recommendation 11–5
The National Ocean Council should coordinate development of a comprehensive wetlands protection framework that is linked to coastal habitat and watershed management efforts, and should make specific recommendations for the integration of the Clean Water Act Section 404 wetlands permitting process into that broader management approach.

Chapter 12: Managing Sediment and Shorelines

Recommendation 12–1
The National Ocean Council should develop a national strategy for managing sediment on a regional basis. The strategy should incorporate ecosystem-based principles, balancing ecological and economic considerations.

In addition, the strategy should:

- acknowledge adverse impacts on marine environments due to urban development, agriculture, dams, dredging, pollutant discharges, and other activities that affect sediment flows or quality.
- ensure involvement of port managers, coastal planners, land use planners, and other stakeholders in watershed planning.
- emphasize watershed management as a tool to address upstream land uses that affect sediment input to rivers and coastal waters.

Recommendation 12–2
Congress should direct the U.S. Army Corps of Engineers (USACE) to adopt regional and ecosystem-based management approaches in carrying out all of its sediment-related civil works missions and should modify USACE authorities and processes as necessary to achieve this goal.

Recommendation 12–3
The U.S. Army Corps of Engineers should ensure that its selection of the least-cost disposal option for dredging projects reflects a more accurate accounting of the full range of economic, environmental, and other relevant costs and benefits for options that reuse dredged material, as well as for other disposal methods.
Recommendation 12–4
The National Dredging Team should ensure vigorous and sustained implementation of the recommendations contained in its *Dredged Material Management: Action Agenda for the Next Decade*, moving toward more ecosystem-based approaches. Regional dredging teams, working with regional ocean councils, should establish sediment management programs that expand beyond single watersheds to larger regional ecosystems.

Recommendation 12–5
The U.S. Army Corps of Engineers, working with U.S. Department of the Interior agencies, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency, in consultation with state and local governments, should develop and implement a strategy for improved assessments, monitoring, research, and technology development to enhance sediment management.

Recommendation 12–6
Congress should modify its current authorization and funding processes to require the U.S. Army Corps of Engineers (USACE), or an appropriate third party, to monitor outcomes from past USACE projects and assess the cumulative, regional impacts of USACE activities within coastal watersheds and ecosystems. Such assessments should be peer-reviewed consistent with recommendations from the National Research Council.

Recommendation 12–7
The U.S. Environmental Protection Agency, working with other appropriate entities, including state and local governments, should build upon EPA's 2002 draft contaminated sediments science plan to develop and conduct coordinated strategies for assessment, monitoring, and research to better understand how contaminated sediment is created and transported. The strategies should also develop technologies for better prevention, safer dredging or onsite treatment, and more effective post-recovery treatment of contaminated dredged material.

Chapter 13: Supporting Marine Commerce and Transportation

Recommendation 13–1
Congress should designate the U.S. Department of Transportation (DOT) as the lead federal agency for planning and oversight of the marine transportation system and DOT should submit regular reports to Congress on the condition and future needs of the system. The National Ocean Council should identify overlapping functions in other federal agencies and make recommendations concerning the advisability of transferring those functions to DOT.

Recommendation 13–2
Congress should codify the Interagency Committee for the Marine Transportation System and place it under the oversight of the National Ocean Council (NOC). Under the oversight of the NOC's Committee on Ocean Resource Management, the Interagency Committee for the Marine Transportation System should:
- be chaired by the U.S. Department of Transportation.
- improve coordination among all participants in the U.S. marine transportation system.
- promote the integration of marine transportation with other modes of transportation and with other ocean and coastal uses and activities.
- recommend strategies and plans for: better informing the public of the importance of marine commerce and transportation; devising alternate funding scenarios to meet short- and long-term demands on the marine transportation system; matching federal revenues derived from marine transportation with funding needs to maintain and improve the system; and delineating short- and long-term priorities.
Recommendation 13–3
The U.S. Department of Transportation should draft a new national freight transportation strategy to support continued growth of the nation’s economy and international and domestic trade. This strategy should improve the links between the marine transportation system and other components of the transportation infrastructure, including highways, railways, and airports. Based on the new strategy, investments of national transportation funds should be directed toward planning and implementation of intermodal projects of national significance.

Recommendation 13–4
The U.S. Department of Transportation should conduct a thorough analysis and assessment of the potential societal and economic benefits of increased short sea shipping.

Recommendation 13–5
The U.S. Department of Transportation (DOT), working with other appropriate entities, should establish a national data collection, research, and analysis program to provide a comprehensive picture of freight flows in the United States and to enhance the performance of the nation’s intermodal transportation system. DOT should periodically assess and prioritize the nation’s future needs for ports and intermodal transportation capacity to fulfill the needs of the nation’s expected future growth in marine commerce.

The freight information collection program should include:
- economic models that project trade and traffic growth and determine the impacts of growth on U.S. ports and waterways and the inland infrastructures connected to them.
- models and guides to identify bottlenecks and capacity shortfalls.
- consistent, nationally accepted definitions and protocols for measuring capacity.
- innovative trade and transportation data collection technology and research to fill critical data gaps.
- assessment of the social and economic ramifications of marine transportation investments as compared to other transportation investments.

Recommendation 13–6
The U.S. Department of Transportation (DOT) should incorporate emergency preparedness requirements in developing a national freight transportation strategy. Because this will require input from many agencies and stakeholders, DOT should work closely with the U.S. Department of Homeland Security, Federal Emergency Management Agency, National Oceanic and Atmospheric Administration, U.S. Environmental Protection Agency, ports, and marine industries.

Emergency preparedness planning should focus on:
- prevention of threats to national security and port operations.
- response and recovery practices, including assessments of available resources such as salvage and harbor clearance capacity and alternative port capacity.
- technological requirements for security screening, cargo movement and tracking, and traffic management.
- research and development needs related to innovative technologies that can minimize interruptions and security risks to port operations.
- identification of resources needed to implement prevention, response and recovery strategies for the nation’s ports.
Chapter 14: Addressing Coastal Water Pollution

Recommendation 14–1
The U.S. Environmental Protection Agency (EPA), working with states, should require advanced nutrient removal for wastewater treatment plant discharges that contribute to degradation of nutrient-impaired waters as needed to attain water quality standards. EPA should also determine the extent of the impact of chemicals in wastewater from residential and industrial sources, including pharmaceuticals.
In particular, EPA should:
- support research and demonstration projects for biological nutrient removal and other innovative advanced treatment processes to eliminate nitrogen and phosphorus from wastewater discharges.
- ensure that information about innovative advanced treatment processes and technologies is widely disseminated.
- support development of technologies to reduce concentrations of pharmaceuticals, personal care product ingredients, and other biologically active contaminants in wastewater treatment plant discharges.

Recommendation 14–2
The U.S. Environmental Protection Agency (EPA), working with states, should increase technical and financial assistance to help communities improve the permitting, design, installation, operation, and maintenance of septic systems and other on-site treatment facilities. State and local governments, with assistance from EPA, should adopt and enforce more effective building codes and zoning ordinances for septic systems and should improve public education about the benefits of regular maintenance.

Recommendation 14–3
The U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture (USDA) should support research on the removal of nutrients from animal wastes that may pollute water bodies and on the impact of pharmaceuticals and other contaminants on water quality. EPA and USDA should also develop improved best management practices that retain nutrients and pathogens from animal waste on agricultural lands. Where necessary to meet water quality standards, states should issue regulatory controls on concentrated animal feeding operations in addition to those required by EPA.

Recommendation 14–4
The U.S. Environmental Protection Agency (EPA), working with state and local governments and other stakeholders, should develop and periodically review a comprehensive long-term plan to maintain and upgrade the nation’s aging and inadequate wastewater and drinking water infrastructure, anticipating demands for increased capacity to serve growing populations, correction of sewer overflows, and more stringent treatment in the coming decades. To implement this plan, Congress should significantly increase the Clean Water and Drinking Water State Revolving Funds.

Recommendation 14–5
The U.S. Environmental Protection Agency, working with states, should experiment with tradable credits for nutrients and sediment as a water pollution management tool and evaluate the ongoing effectiveness of such programs in reducing water pollution.

Recommendation 14–6
The U.S. Environmental Protection Agency, working with states, should modernize the National Pollutant Discharge Elimination System’s monitoring and information management system and strengthen the program’s enforcement to achieve greater compliance with permits.
Recommendation 14–7
The U.S. Department of Agriculture (USDA) should align its conservation programs and funding with other programs aimed at reducing nonpoint source pollution, such as those of the U.S. Environmental Protection Agency and the National Oceanic and Atmospheric Administration. In particular, USDA’s Natural Resources Conservation Service should:

- require that its state conservationists coordinate with representatives of federal and state water quality agencies and state coastal management agencies, and participate in watershed and coastal management planning processes, to ensure that funding for agricultural conservation programs complements and advances other federal and state management programs.
- provide enhanced technical assistance in the field to better support growing agricultural conservation programs.

Recommendation 14–8
The National Ocean Council (NOC), working with states, should establish reduction of nonpoint source pollution in coastal watersheds as a national goal, with a particular focus on impaired watersheds. The NOC should then set specific, measurable objectives to meet human health- and ecosystem-based water quality standards. The NOC should ensure that all federal nonpoint source pollution programs are coordinated to attain those objectives.

Recommendation 14–9
The National Ocean Council should strengthen efforts to address nonpoint source pollution by evaluating the nonpoint source pollution control programs established under Section 6217 of the Coastal Zone Act Reauthorization Amendments and under Section 319 of the Clean Water Act and making recommendations to Congress for improvements to these programs, including their possible consolidation. Improvements to the programs should:

- require enforceable best management practices and other management measures throughout the United States, with increased federal support for states to develop and implement those practices and measures.
- eliminate counterproductive financial disincentives.
- enhance cooperation and coordination between federal and state water quality and coastal management agencies.

Recommendation 14–10
To ensure protection of coastal resources nationwide, Congress should provide authority under the Clean Water Act and other applicable laws for federal agencies to establish enforceable management measures for nonpoint sources of pollution and impose financial disincentives related to programs that result in water quality degradation if a state persistently fails to make meaningful progress toward meeting water quality standards on its own.

Recommendation 14–11
The U.S. Environmental Protection Agency, the National Oceanic and Atmospheric Administration, and other appropriate entities should increase assistance and outreach to provide decision makers with the knowledge and tools needed to make sound land use decisions that protect coastal water quality. State and local governments should adopt or revise existing codes and ordinances to require land use planning and decision making to carefully consider the individual and cumulative impacts of development on water quality, including effects on stormwater runoff.
Recommendation 14–12
The U.S. Environmental Protection Agency (EPA), working with state and local governments, should strengthen implementation of the National Pollutant Discharge Elimination System Phase I and II stormwater programs.

Improvements should include:
- local codes or ordinances that are designed to achieve the management goals for a particular watershed and require use of EPA-approved best management practices.
- monitoring to determine whether goals and state water quality standards are being met and to identify ongoing problems.
- an adaptive management approach to ensure that efforts are effective and that best management practices are modified as needed.
- improved public education.
- increased enforcement of legal requirements and personnel sufficient to implement stormwater management programs.

Recommendation 14–13
The U.S. Environmental Protection Agency, working with states, should develop and implement national and regional strategies to reduce the sources and impacts of atmospheric deposition to water bodies, building upon plans such as the EPA Air-Water Interface Work Plan.

Recommendation 14–14
The United States should work with other nations to develop and implement international solutions to better address the sources and impacts of transboundary atmospheric deposition, and to initiate needed research programs.

Chapter 15: Creating a National Monitoring Network

Recommendation 15–1
The National Oceanic and Atmospheric Administration, U.S. Geological Survey, and U.S. Environmental Protection Agency, working with states and other appropriate entities, should develop a national monitoring network that coordinates and expands existing efforts, including monitoring of atmospheric deposition. The network should be built on a federally funded backbone of critical stations and measurements to assess long-term trends and conditions, with additional stations or measurements as needed to address regional characteristics or problems.

Recommendation 15–2
The National Oceanic and Atmospheric Administration should ensure that the national monitoring network includes adequate coverage in both coastal areas and the upland areas that affect them, and that the network is linked to the Integrated Ocean Observing System, to be incorporated eventually into a comprehensive Earth observing system.

Recommendation 15–3
The National Oceanic and Atmospheric Administration, U.S. Geological Survey, and U.S. Environmental Protection Agency, working with states and other appropriate entities, should ensure that the national monitoring network has clear goals, specifies core variables and an appropriate sampling framework, and is periodically reviewed and updated. These agencies should also work with the regional ocean information programs to determine regional and local information needs.

Specifically, the national monitoring network should include the following elements:
- clearly defined goals that fulfill user needs and provide measures of management success.
- a core set of variables to be measured at all sites, with regional flexibility to measure additional variables where needed.
• an overall system design that determines where, how, and when to monitor and includes a mix of time and space scales, probabilistic and fixed stations, and stressor- and effects-oriented measurements.
• technical coordination that establishes standard procedures and techniques.
• periodic review of the monitoring network, with modifications as necessary to ensure that useful goals are being met in a cost-effective way.

Chapter 16: Limiting Vessel Pollution and Improving Vessel Safety

Recommendation 16–1
The U.S. Coast Guard should encourage industry partners engaged in vessel management to develop stronger voluntary measures, particularly those that reward crew member contributions, as part of a continuing, long-term effort to build a culture of safety, security, and environmental compliance in routine vessel operations.

Recommendation 16–2
The U.S. Coast Guard should carry out sustained and strengthened performance-based inspections as a key component of vigorous enforcement of marine safety and environmental protection laws. Coast Guard activities in these areas should be coordinated with new demands for vessel security inspections and other security requirements.

Recommendation 16–3
The United States should work with other nations to accelerate efforts at the International Maritime Organization to enhance flag state oversight and enforcement. These efforts should include implementation of:
• a code outlining flag state responsibilities and obligations.
• a voluntary audit regime, to be followed by adoption of a mandatory external audit regime for evaluating flag state performance.
• measures to ensure that responsible organizations, acting on behalf of flag states, meet established performance standards.
• increased technical assistance, where appropriate, for flag states that participate in self-assessments and audits.

Recommendation 16–4
The U.S. Coast Guard, working with other nations, should establish a permanent mechanism to strengthen and harmonize port state control programs under the auspices of the International Maritime Organization. To assist port states, the Coast Guard should also support efforts to enhance an international vessel information database.

Recommendation 16–5
Congress should establish a new statutory regime for managing wastewater discharges from large passenger vessels that applies throughout the United States. This regime should include:
• uniform discharge standards and waste management procedures.
• thorough recordkeeping requirements to track the waste management process.
• required sampling, testing, and monitoring by vessel operators using uniform protocols.
• flexibility and incentives to encourage industry investment in innovative treatment technologies.
Recommendation 16–6
The U.S. Environmental Protection Agency should revise the Clean Water Act marine sanitation device (MSD) regulations to require that new MSDs meet significantly more stringent pathogen standards. Manufacturers should be required to warranty that new MSDs will meet these standards for a specific time period.

Recommendation 16–7
The U.S. Environmental Protection Agency (EPA) should conduct a thorough assessment, including field inspections, to verify the availability and accessibility of functioning pumpout facilities in existing no-discharge zones and prior to the approval of any new no-discharge zones. The U.S. Fish and Wildlife Service and EPA, working with states, should coordinate their efforts to increase the availability of adequate, accessible, and operational pumpout facilities, particularly in no discharge zones.

Recommendation 16–8
The United States should ratify MARPOL Annex VI and work for International Maritime Organization (IMO) adoption of even stricter air emission standards that reflect advances in marine engine technology, availability of cleaner fuels, and improved operational practices. The U.S. Environmental Protection Agency, working with other appropriate entities, should use Annex VI criteria and guidelines to evaluate U.S. ocean and coastal areas with impaired air quality, and seek IMO designation of appropriate areas as Sulfur Oxide Emission Control Areas.

Recommendation 16–9
The U.S. Environmental Protection Agency, working with other appropriate entities, should investigate and implement incentive-based measures that could lead to measurable voluntary reductions in vessel air emissions.

Recommendation 16–10
The U.S. Department of Transportation, U.S. Coast Guard, U.S. Environmental Protection Agency, and Minerals Management Service, in consultation with states, should conduct a risk-based analysis of all oil transportation systems that identifies and prioritizes sources of greatest risk. Based on that analysis, the agencies should develop a comprehensive, long-term plan for action to reduce overall spill risks and the threat of significant spills.

Recommendation 16–11
The U.S. Coast Guard, working with the spill response and marine salvage communities, should develop comprehensive policy guidance and contingency plans for places of refuge in the United States. The plans should clearly delineate decision-making authorities and responsibilities and provide for coordinated and timely assessments and responses to vessels seeking a place of refuge.

Recommendation 16–12
The National Ocean Council should coordinate federal agency efforts to reduce the release of air and oil pollutants from small vessel operations through a combination of outreach and education, development of incentives to encourage early replacement of older two-stroke engines, and support for innovative pilot programs at the federal, state, and local levels.

Recommendation 16–13
The U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, U.S. Coast Guard, and other appropriate entities should support a vigorous, coordinated research program on the fates and impacts of vessel pollution. Research results should be used to guide management priorities, develop new control technologies, determine best management practices, and create more effective regulatory regimes as needed.
Recommendation 16–14
In developing and implementing maritime domain awareness initiatives, the U.S. Coast Guard should work with the National Ocean Council to ensure that, in addition to their other intended purposes, these initiatives provide effective support for ocean and coastal management needs.

Chapter 17: Preventing the Spread of Invasive Species

Recommendation 17–1
The U.S. Coast Guard’s national ballast water management program should include a number of important elements: uniform, mandatory national standards which incorporate sound science in the development of biologically meaningful and enforceable ballast water treatment; a process for revising the standard to incorporate new technologies; full consultation with the U.S. Environmental Protection Agency, both during and after the program’s development; and an interagency review, through the National Ocean Council, of the policy for ships that declare they have no ballast on board.

Recommendation 17–2
The National Ocean Council should commission a credible, independent, scientific review of existing U.S. ballast water management research and demonstration programs and make recommendations for improvements.

The review should consider the following issues:
- how federally funded research and demonstration programs can best promote technology development, support on-board ship testing, and move technologies from research to commercial use.
- what the best role is for industry and how industry can be engaged in onboard testing of experimental ballast water management technologies.
- what kind of peer review process is needed for scientific oversight of technology development, selection of demonstration projects, and testing of experimental treatment systems.
- what is an adequate funding level for a successful ballast water research and demonstration program.

Recommendation 17–3
The U.S. Departments of Agriculture, Commerce, the Interior, and Homeland Security should more actively employ existing legal authorities to prohibit imports of known or potentially invasive species. The National Ocean Council should recommend any changes to such legal authorities that might result in more effective prevention efforts.

Recommendation 17–4
The National Ocean Council, working with the Aquatic Nuisance Species Task Force and the National Invasive Species Council, should coordinate public education and outreach efforts on aquatic invasive species, with the aim of increasing public awareness about the importance of prevention.

The education and outreach effort should be pursued on several fronts:
- connect local, regional, and national outreach and education efforts, including recommendations from the U.S. Invasive Species Management Plan and programs initiated by industries that deal with non-native species.
- provide the public, importers and sellers, pet store and restaurant owners, divers, and others with information about the harm caused by invasive species and safer methods of shipping, owning, and disposing of non-native species.
- require the aquaculture, horticulture, pet, and aquarium industries to clearly inform customers of the potential hazards of releasing non-native species.
Recommendation 17–5
The National Invasive Species Council and the Aquatic Nuisance Species Task Force, working with other appropriate entities, should establish and implement a national plan for early detection of invasive species and a well-publicized system for prompt notification and rapid response.
The plan should:
- provide risk assessments for potentially invasive species, including possible pathways of introduction.
- conduct a comprehensive national biological survey and monitoring program for early detection, building upon recent progress in this area by academia, the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, and the U.S. Environmental Protection Agency.
- determine the threshold needed to trigger a rapid response and develop environmentally sound rapid-response, eradication, and control actions.
- designate resources for implementing surveys and eradication programs.
- develop partnerships among government and industry to fund and implement response actions.

Recommendation 17–6
The National Ocean Council (NOC) should review and streamline the current proliferation of programs for managing aquatic invasive species in marine environments, and should coordinate federal, regional, and state efforts. Consolidated plans should be implemented to develop risk assessment and management approaches for intentional and unintentional species introductions that minimize the potential of invasions at the lowest cost.
Specifically, the NOC should:
- review the effectiveness of existing programs and legal authorities and clarify the lines of responsibility and enforcement authority, including responsibility for intentional introductions of non-native species.
- develop long-term goals and measures for evaluating effective performance.
- estimate funding needs to prevent the introduction of invasive species, including support for regional and state programs.
- determine whether, in the long term, a single agency should be charged with preventing the entry of, monitoring, and containing invasive species in coastal and marine waters.

Recommendation 17–7
The United States should take a leading role in the global effort to control the spread of aquatic invasive species by working internationally to develop treaties, agreements, and policies to minimize the introduction and establishment of such species.

Recommendation 17–8
The National Ocean Council should coordinate the development and implementation of an interagency plan for research and monitoring to understand and prevent the spread of aquatic invasive species. The results should be used to improve management decisions and avoid future economic losses.
New research and monitoring efforts should focus on:
- gathering baseline taxonomic information and strengthening taxonomic skills; performing quantitative assessments of ecosystems; identifying invasive pathogens and vectors of introduction; and determining how invasive species disrupt ecosystem functions.
- understanding the human dimensions behind species introductions, including human behavior, decision making, and economics.
- developing new options for minimizing invasions, including innovative technologies, and translating these findings into practical policy options for decision makers.
Chapter 18: Reducing Marine Debris

Recommendation 18–1
The National Oceanic and Atmospheric Administration should establish a marine debris management program that expands on and complements the U.S. Environmental Protection Agency’s program in this area. The NOAA program should be closely coordinated with EPA’s activities, as well as with the significant efforts conducted by private citizens, state, local, and nongovernmental organizations.

Recommendation 18–2
The National Oceanic and Atmospheric Administration and U.S. Environmental Protection Agency should coordinate and implement expanded marine debris control efforts, including: enforcement of existing laws; public outreach and education; partnerships with local governments, community groups, and industry; monitoring and identification; and research.

Recommendation 18–3
The National Ocean Council (NOC) should re-establish an interagency marine debris committee, co-chaired by the National Oceanic and Atmospheric Administration and U.S. Environmental Protection Agency, and placed under the oversight of the NOC’s Committee on Ocean Resource Management.

Recommendation 18–4
The U.S. Department of State and National Oceanic and Atmospheric Administration, working with the United Nations Food and Agriculture Organization and other appropriate entities, should develop a detailed plan of action to address derelict fishing gear around the world, to be implemented within large multi-national regions.

Recommendation 18–5
The National Oceanic and Atmospheric Administration should work with all interested parties, governmental and private, to implement incentives or other effective programs for prevention, removal, and safe disposal of derelict fishing gear.

Recommendation 18–6
The U.S. Department of State should increase efforts internationally to ensure that there are adequate port reception facilities available for disposal of garbage from ships, particularly in Special Areas designated under Annex V of the International Convention for the Prevention of Pollution from Ships.

Chapter 19: Achieving Sustainable Fisheries

Recommendation 19–1
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act (MSFCMA) and related statutes to require Regional Fishery Management Councils (RFMCs) and interstate fisheries commissions to rely on their Scientific and Statistical Committees (SSCs), incorporating SSC findings and advice into the decision-making process. In keeping with this stronger role, SSC members should meet more stringent scientific and conflict of interest requirements, and receive compensation.

To ensure a strengthened SSC, MSFCMA amendments should require the following:
- Each RFMC should nominate candidates for service on its SSC. Nominees should be scientists with strong technical credentials and experience, selected from federal, state, or tribal governments or academia. Private sector scientists who are technically qualified may also be nominated if they meet the conflict of interest requirements, although the SSC should not be constituted as a representational body.

- the National Oceanic and Atmospheric Administration (NOAA) should evaluate the qualifications and potential conflicts of interest of SSC nominees through an independent review process designed by a credible, scientific organization. Ultimately, SSC appointments should be approved by the NOAA Administrator.
- SSC members should serve for fixed terms to allow for rotation and addition of new members over time.
- like RFMC members, participants in the SSC (or their home institutions) should be compensated for time spent on RFMC business.

Recommendation 19–2

Scientific and Statistical Committees (SSCs) should supply Regional Fishery Management Councils with the scientific advice necessary to make fishery management decisions. Such information could include reports on stock status and health, socioeconomic impacts of management measures, sustainability of fishing practices, and habitat status. In particular, the SSCs should determine allowable biological catch based on the best scientific information available.

Recommendation 19–3

Each Regional Fishery Management Council (RFMC) should set harvest limits at or below the allowable biological catch determined by its Scientific and Statistical Committee. The RFMCs should begin immediately to follow this practice, which should be codified by Congress in amendments to the Magnuson–Stevens Fishery Conservation and Management Act.

Recommendation 19–4

The National Marine Fisheries Service, working with the Regional Fishery Management Councils and the interstate fisheries commissions, should develop a process for independent review of the scientific information relied on by Scientific and Statistical Committees. The process should include three distinct procedures:

- a standard annual review by regional scientists to certify that the correct data and models are being used.
- an enhanced review to evaluate the models and assessment procedures. To ensure that these reviews are independent, a significant proportion of the reviewers should come from outside the region and be selected by a group such as the Center for Independent Experts. These types of reviews should be conducted on a three- to five-year cycle, or as needed, to help ensure that the latest methods and approaches are being used.
- an expedited review to be used when results are extremely controversial or when the normal review process would be too slow. In these cases, all reviewers should be selected by a group such as the Center for Independent Experts.

Recommendation 19–5

Each Regional Fishery Management Council should set a deadline for its Scientific and Statistical Committee (SSC) to determine allowable biological catch. If the SSC does not meet that deadline, the National Marine Fisheries Service Regional Science Director should set the allowable biological catch for that fishery.

Recommendation 19–6

Once allowable biological catch is determined, whether by the Scientific and Statistical Committee or the National Marine Fisheries Service (NMFS) Regional Science Director, the Regional Fishery Management Council should propose a fishery management plan in time for adequate review and approval by NMFS. If the plan is not in place in a timely fashion, NMFS should suspend all fishing on that stock until it is able to review the adequacy of the management plan.
Recommendation 19–7
The Regional Fishery Management Councils and their Scientific and Statistical Committees should develop an annual, prioritized list of management information needs and provide it to the National Marine Fisheries Service (NMFS). NMFS should incorporate these needs to the maximum extent possible in designing its research, analysis, and data collection programs.

Recommendation 19–8
The National Marine Fisheries Service (NMFS), working with states and interstate fisheries commissions, should require that all saltwater anglers obtain licenses to improve in-season data collection on recreational fishing. NMFS should review existing saltwater angler licensing programs to determine which approaches best facilitate the collection of data. Based on this review, existing programs should be modified as needed and used wherever possible, developing new programs only if necessary. Priority should be given to fisheries in which recreational fishing is responsible for a large part of the catch, or in which recreational fishermen regularly exceed their allocated quota.

Recommendation 19–9
The National Oceanic and Atmospheric Administration (NOAA) should create an expanded, regionally-based cooperative research program that coordinates and funds collaborative projects between scientists and commercial, tribal, and recreational fishermen. NOAA should develop a process for external evaluation and ranking of all cooperative research proposals to ensure the most worthwhile projects are funded, the most capable performers are undertaking the research, and the information produced is both scientifically credible and useful to managers.

Recommendation 19–10
Congress should develop new statutory authority, similar to the Atlantic Coastal Fisheries Cooperative Management Act, to support and empower the Gulf States and Pacific States Fisheries Management Commissions. All interstate management plans should adhere to the national standards in the Magnuson–Stevens Fishery Conservation and Management Act, and the federal guidelines implementing these standards. States should participate in the development of the guidelines to ensure they are applicable to interstate plans.

Recommendation 19–11
Where a fish stock crosses administrative boundaries, the National Oceanic and Atmospheric Administration should ensure that a single state, Regional Fishery Management Council (RFMC), interstate marine fisheries commission, or NOAA itself is designated as the lead authority. In general:

- for interjurisdictional fisheries that occur primarily in state waters, the state (if only one state is involved), or the relevant interstate fisheries commission, should take the lead within both state and federal waters.
- for fisheries that involve two or more RFMCs, NOAA should designate the lead.
- for fisheries that have substantial activities in both state and federal waters, the relevant authorities should determine a lead; if they are unable to agree within a reasonable time period (not more than six months), NOAA should designate the lead.
- jurisdiction for highly migratory species should remain in its current configuration.
- any other disputes regarding jurisdiction should be resolved by NOAA.
Recommendation 19–12
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to require governors to submit a broad slate of candidates for each vacancy of an appointed Regional Fishery Management Council seat. The slate should include at least two representatives each from the commercial fishing industry, the recreational fishing sector, and the general public.

Recommendation 19–13
Congress should give the Administrator of the National Oceanic and Atmospheric Administration responsibility for appointing Regional Fishery Management Council (RFMC) members, with the goal of creating RFMCs that are knowledgeable, fair, and reflect a broad range of interests.

Recommendation 19–14
Congress should amend the Magnuson-Stevens Fishery Conservation and Management Act to require that all newly appointed Regional Fishery Management Council (RFMC) members complete a training course within six months of their appointment. The National Marine Fisheries Service should contract with an external organization to develop and implement this training course. After six months, a new member who has not completed the training should continue to participate in RFMC meetings, but should not be allowed to vote.

The training course should:

- be open to current RFMC members and other participants in the process as space permits.
- cover a variety of topics including: fishery science and basic stock assessment methods; social science and fishery economics; tribal treaty rights; the legal requirements of the Magnuson–Stevens Fishery Conservation and Management Act, the National Environmental Policy Act, the Administrative Procedures Act, and other relevant laws or regulations; conflict of interest policies for RFMC members; and the public process involved in developing fishery management plans.

Recommendation 19–15
Congress should amend the Magnuson–Stevens Fishery Conservation and Management Act to affirm that fishery managers are authorized to institute dedicated access privileges. Congress should direct the National Marine Fisheries Service to issue national guidelines for dedicated access privileges that allow for regional flexibility in implementation. Every federal, interstate, and state fishery management entity should consider the potential benefits of adopting such programs.

At a minimum, the national guidelines should require dedicated access programs to:

- specify the biological, social, and economic goals of the plan; recipient groups designated for the initial quota shares; and data collection protocols.
- provide for periodic reviews of the plan to determine progress in meeting goals.
- assign quota shares for a limited period of time to reduce confusion concerning public ownership of living marine resources, allow managers flexibility to manage fisheries adaptively, and provide stability to fishermen for investment decisions.
- mandate fees for exclusive access based on a percentage of quota shares held. These user fees should be used to support ecosystem-based management. Fee waivers, reductions, or phase-in schedules should be allowed until a fishery is declared recovered or fishermen’s profits increase.
- include measures, such as community-based quota shares or quota share ownership caps, to lessen the potential harm to fishing communities during the transition to dedicated access privileges.
- be adopted only after adequate public discussion and close consultation with all affected stakeholders, to ensure community acceptance of a dedicated access plan prior to final Regional Fishery Management Council approval.
Recommendation 19–16
Congress should repeal all programs that encourage overcapitalization of fishing fleets, including the Fisheries Finance Program (formerly the Fishing Vessel Obligation Guarantee Program) and those sections of the Capital Construction Fund that apply to fisheries. The National Oceanic and Atmospheric Administration (NOAA) should take appropriate steps to permanently reduce fishing capacity to sustainable levels.
The following actions will assist in reducing overcapitalization in fisheries:
- to the maximum extent practicable, capacity reduction programs should be funded by those who profit from them—the fishermen remaining in the fishery.
- federal contributions to capacity reduction programs should only be made where additional effort is prohibited from entering the fishery. The highest priority for public funding of capacity reduction should be given to fisheries that grant dedicated access privileges to participants.
- NOAA should monitor capacity reduction programs to determine whether they are meeting their objectives and to ensure that vessels removed from U.S. fisheries do not contribute to overcapitalization in other nations.
- fishermen should be allowed to transfer existing Capital Construction Fund accounts into Individual Retirement Accounts or other appropriate financial instruments that do not promote overcapitalization.

Recommendation 19–17
The National Marine Fisheries Service should expand its use of Joint Enforcement Agreements to implement cooperative fisheries enforcement programs with state agencies. The U.S. Coast Guard should also be included as an important participant in such agreements.

Recommendation 19–18
The National Marine Fisheries Service and the U.S. Coast Guard should strengthen cooperative enforcement efforts at the national level by developing a unified strategic plan for fishery enforcement that includes significantly increased joint training, and at the regional and local levels, by developing a stronger and more consistent process for sharing information and coordinating enforcement.

Recommendation 19–19
The National Marine Fisheries Service (NMFS), working with the Regional Fishery Management Councils (RFMCs), the U.S. Coast Guard, and other appropriate entities, should maximize the use of the Vessel Monitoring System (VMS) for fishery-related activities. VMS with two-way communication capability and other features that assist personnel in monitoring and responding to potential violations should be required over time for all commercial fishing vessels receiving permits under federal fishery plans, including party and charter boats that carry recreational fishermen. NMFS and RFMCs, working with state representatives, should also identify state fisheries that could significantly benefit from VMS implementation.

Recommendation 19–20
The U.S. Coast Guard should manage the integration of a fishery Vessel Monitoring System (VMS) database into the larger maritime operations database and should work with the National Marine Fisheries Service to ensure effective use of VMS data for monitoring and enforcement.
Recommendation 19–21
The National Marine Fisheries Service (NMFS) should change the designation of essential fish habitat from a species-by-species to a multispecies approach and, ultimately, to an ecosystem-based approach. The approach should draw upon existing efforts to identify important habitats and locate optimum-sized areas to protect vulnerable life-history stages of commercially and recreationally important species. NMFS should work with other management entities to protect essential fish habitat when such areas fall outside their jurisdiction.
This effort should include:
• well-documented, science-based analytical methods.
• consideration of ecologically valuable species that are not necessarily commercially important.
• an extensive research and development program to refine existing analytical methods and develop additional means to identify habitats critical to sustainability and biodiversity goals.

Recommendation 19–22
The National Marine Fisheries Service (NMFS), Regional Fishery Management Councils, states, and interstate fisheries commissions, should develop regional bycatch reduction plans that address the broad ecosystem impacts of bycatch for areas under their jurisdiction. Implementation of these plans will require NMFS to collect data on bycatch of all species captured by commercial and recreational fishermen, not only of commercially important species. The selective use of observers should remain an important component of these efforts.

Recommendation 19–23
The National Marine Fisheries Service (NMFS) should expand its program in conservation engineering to help reduce the impacts of fishing on ecosystems. The program should give high priority to finding ways to reduce bycatch in fisheries that interact with endangered species. As gear and fishing methods are shown to be effective, NMFS should promote their rapid implementation in U.S. fisheries and work with the U.S. Department of State to promote their international adoption.

Recommendation 19–24
The U.S. Department of State, working with other appropriate entities, should encourage all countries to ratify the Fish Stocks Agreement and the United Nations Food and Agriculture Organization’s Compliance Agreement. In particular, the United States should condition other nations’ access to fishing resources within the U.S. exclusive economic zone on their ratification of these agreements. The United States and other signatory nations should also develop additional incentives to encourage all nations to ratify and enforce these agreements.

Recommendation 19–25
The U.S. Department of State, working with the National Oceanic and Atmospheric Administration, should review and update regional and bilateral fishery agreements to which the United States is a party, to ensure full incorporation of the latest science and harmonize those agreements with the Fish Stocks Agreement. The United States should fulfill existing international fishery management obligations, including full funding of U.S. commitments.

Recommendation 19–26
The National Oceanic and Atmospheric Administration, working with the U.S. Fish and Wildlife Service and U.S. Department of State, should design a national plan of action for the United States that implements, and is consistent with, the International Plans of Action adopted by the United Nations Food and Agriculture Organization and its 1995 Code of Conduct for Responsible Fisheries. This national plan should stress the importance of reducing bycatch of endangered species and marine mammals.
Recommendation 19–27
The National Ocean Council (NOC) should initiate a discussion on effective international implementation of the United Nations Food and Agriculture Organization’s Code of Conduct for Responsible Fisheries and other Plans of Action.
In particular, the NOC’s international committee should suggest methods to encourage nations to:
• join relevant regional fishery management organizations.
• implement and enforce regional agreements to which they are bound.
• collect and report the data necessary to manage fish stocks sustainably and to reduce fishery impacts on habitats and protected species.
• reduce or eliminate illegal, unreported, and unregulated fishing by ships flying their flag.
• reduce fishing fleet capacity, particularly on the high seas.
• reduce bycatch of non-targeted species, in particular endangered populations such as sea turtles and marine mammals, via the use of innovative gear and management methods such as onboard observer programs.

Chapter 20: Protecting Marine Mammals and Endangered Marine Species

Recommendation 20–1
Congress should amend the Marine Mammal Protection Act to require the Marine Mammal Commission to coordinate with all the relevant federal agencies through the National Ocean Council (NOC), while remaining independent. The NOC should determine whether there is a need for similar oversight bodies for other marine animals whose populations are at risk, such as sea turtles.

Recommendation 20–2
Congress should amend the Marine Mammal Protection Act to place the protection of all marine mammals within the jurisdiction of the National Oceanic and Atmospheric Administration.

Recommendation 20–3
The National Marine Fisheries Service and U.S. Fish and Wildlife Service, with guidance from the National Ocean Council, should significantly improve their coordination with respect to the implementation of the Endangered Species Act, particularly for anadromous species and sea turtles, and in circumstances where land-based activities have significant impacts on marine species.

Recommendation 20–4
The U.S. Fish and Wildlife Service and National Oceanic and Atmospheric Administration should expand their cooperative agreements with states under Section 6 of the ESA, including enhanced research, management, monitoring, and public information.

Recommendation 20–5
Congress should amend the Marine Mammal Protection Act to require the National Oceanic and Atmospheric Administration to more clearly specify categories of activities that are allowed without authorization, those that require authorization, and those that are prohibited.

Recommendation 20–6
Congress should amend the Marine Mammal Protection Act to revise the definition of harassment to cover only activities that meaningfully disrupt behaviors that are significant to the survival and reproduction of marine mammals.
Recommendation 20–7
The National Oceanic and Atmospheric Administration (NOAA) should implement programmatic permitting for activities that affect marine mammals, wherever possible. Case-by-case permitting, which is more resource intensive, should be used for activities that do not fit within any programmatic category or when circumstances indicate a greater likelihood of harm to marine animals. The National Ocean Council (NOC) should create an interagency team to recommend activities appropriate for programmatic permitting, those that are inappropriate, and those that are potentially appropriate pending additional scientific information.

To carry this out:

- the interagency team, under the oversight of the NOC’s Committee on Ocean Resource Management, should include representatives from NOAA, the National Science Foundation, U.S. Army Corps of Engineers, Minerals Management Service, and U.S. Navy, with input from the Marine Mammal Commission.
- programmatic permits should be subject to periodic review, and remain valid for a limited time to ensure that the best available science can be incorporated into permit requirements.
- enforcement efforts should be strengthened and the adequacy of penalties reviewed.

Recommendation 20–8
The National Oceanic and Atmospheric Administration and U.S. Department of the Interior agencies should develop an expanded program, coordinated through the National Ocean Council, to examine and mitigate the effects of human activities on marine mammals and endangered species.

The program should focus on two areas:

- research, monitoring, and assessment to better understand the basic biology, physiology, life history, and population dynamics of marine mammals, sea turtles, and other endangered or vulnerable marine species and to understand how disease, contaminants, harmful algal blooms, human activities, and other stressors may impact these animals. An important goal will be to enhance the capability to respond quickly to strandings and unusual mortality events of marine mammals and sea turtles.
- technology and engineering to eliminate or mitigate human impacts on marine mammals, sea turtles, and other endangered species.

Recommendation 20–9
The National Science Foundation, National Oceanic and Atmospheric Administration, U.S. Geological Survey, and Minerals Management Service should expand research on ocean acoustics and the potential impacts of noise on marine mammals. These additional sources of support are important to decrease the reliance on U.S. Navy research in this area. The research programs should be complementary and well coordinated, examining a range of issues relating to noise generated by scientific, commercial, and operational activities.

Recommendation 20–10
The U.S. Department of State, working with the National Oceanic and Atmospheric Administration and the U.S. Department of the Interior, should continue to actively pursue efforts to reduce the impacts of human activities on marine species at risk in foreign and international waters.
Chapter 21: Preserving Coral Reefs and Other Coral Communities

Recommendation 21–1
Congress should establish a Coral Protection and Management Act that enhances research, protection, management, and restoration of coral ecosystems. The new legislation should include the following elements:

- mapping, monitoring, assessment, and research programs to fill critical information gaps, to be carried out primarily through the National Oceanic and Atmospheric Administration and the U.S. Coral Reef Task Force in partnership with the academic research community.
- increased protections for vulnerable coral reefs, including the use of marine protected areas.
- liability provisions for damages to coral reefs, similar to those in the National Marine Sanctuaries Act, but with greater flexibility to use funds in a manner that provides maximum short- and long-term benefits to the reef.
- support for state-level coral reef management.
- outreach activities to educate the public about coral conservation and reduce human impacts.
- support for U.S. involvement, particularly through the sharing of scientific and management expertise, in bilateral, regional, and international coral reef management programs.

Recommendation 21–2
As part of the new Coral Protection and Management Act, Congress should codify and strengthen the U.S. Coral Reef Task Force and place it under the oversight of the National Ocean Council (NOC).
The Coral Reef Task Force should be strengthened in the following ways:

- it should report to the NOC’s Committee on Ocean Resource Management.
- its membership should be expanded to include the U.S. Department of Energy and specify participation by the U.S. Army Corps of Engineers within the U.S. Department of Defense.
- in collaboration with the states and territories, it should coordinate the development and implementation of regional ecosystem-based plans to address the impacts of nonpoint source pollution, fishing, and other activities on coral reef resources.

Recommendation 21–3
The National Oceanic and Atmospheric Administration (NOAA) should serve as the lead agency for management of deep-water coral communities. In this role, NOAA should work with states, academic institutions, and others to enhance national capabilities related to deep-water corals, including expanded surveys of their distribution and abundance and research on the major threats to their continued existence. After an appropriate review, NOAA should make recommendations to the National Ocean Council on the advisability of expanding the Coral Reef Task Force’s charter and membership to oversee deep-water corals or creating a similar task force on deep-water corals.

Recommendation 21–4
The National Oceanic and Atmospheric Administration should develop national standards—and promote adoption of international standards—to ensure that coral reef resources are harvested in a sustainable manner. The U.S. Department of State should implement incentive programs to encourage international compliance with these standards.

Recommendation 21–5
The U.S. Coral Reef Task Force, in coordination with the regional ocean information programs, should develop regional, ecosystem-based research plans to help protect coral reef ecosystems. These plans should guide agency research funding and be incorporated into the design and implementation of the national monitoring network and the Integrated Ocean Observing System.
Chapter 22: Setting a Course for Sustainable Aquaculture

Recommendation 22–1
Congress should amend the National Aquaculture Act to designate the National Oceanic and Atmospheric Administration (NOAA) as the lead federal agency for marine aquaculture, create an Office of Sustainable Marine Aquaculture in NOAA, and designate the Secretary of Commerce as a permanent co-chair, along with the Secretary of Agriculture, of the Joint Subcommittee on Aquaculture. NOAA should use this authority to design and implement national policies for environmentally and economically sustainable marine aquaculture.

Recommendation 22–2
The National Oceanic and Atmospheric Administration’s new Office of Sustainable Marine Aquaculture should be responsible for developing a comprehensive, environmentally-sound permitting, leasing, and regulatory program for marine aquaculture. The permitting and leasing system and implementing regulations should:

- reflect a balance between economic and environmental objectives consistent with national and regional goals.
- be coordinated with guidelines and regulations developed at the state level.
- include a system for the assessment and collection of a reasonable portion of the resource rent generated from marine aquaculture projects that rely on ocean resources held in the public trust.
- include the development of a single, multi-agency permit application for proposed marine aquaculture operations.
- include a permit review process that includes public notice and an opportunity for state, local, and public comment.
- require applicants to post a bond or other financial guarantee to ensure that any later performance problems can be remedied and that abandoned facilities can be safely removed at no additional cost to taxpayers.
- require the development, dissemination, and adoption of best management practices, with periodic updates to reflect advances in research and technology.
- be well coordinated with other activities in federal waters.

Recommendation 22–3
The National Oceanic and Atmospheric Administration’s new Office of Sustainable Marine Aquaculture should expand marine aquaculture research, development, training, extension, and technology transfer, including a socioeconomic component. The Office should set priorities for research and technology, in close collaboration with the National Sea Grant College Program, states, tribes, academia, industry, and other stakeholders.

Recommendation 22–4
The United States should work with the United Nations Food and Agriculture Organization to encourage and facilitate worldwide adherence to the aquaculture provisions of the Code of Conduct for Responsible Fisheries.
Chapter 23: Connecting the Oceans and Human Health

Recommendation 23–1
The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities should support expanded research and development efforts to encourage multidisciplinary studies of the evolution, ecology, chemistry, and molecular biology of marine species, discover potential marine bioproducts, and develop practical compounds.

These efforts should include:
- a strong focus on discovering new marine microorganisms, visiting poorly sampled areas of the marine environment, and studying species that inhabit harsh environments.
- encouragement for private-sector investments and partnerships in marine biotechnology research and development to speed the creation of commercially available marine bioproducts.

Recommendation 23–2
The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities, should support expanded research efforts in marine microbiology and virology.

These efforts should include:
- the discovery, documentation, and description of new marine bacteria, algae, and viruses and the determination of their potential negative effects on the health of humans and marine organisms.
- the elucidation of the complex inter-relations, pathways, and causal effects of marine pollution, harmful algal blooms, ecosystem degradation and alteration, emerging marine diseases, and climate change in disease events.

Recommendation 23–3
The National Oceanic and Atmospheric Administration, National Science Foundation, National Institute of Environmental Health Sciences, and other appropriate entities should support the development of improved methods for monitoring and identifying pathogens and chemical toxins in ocean and coastal waters and organisms.

This effort should include:
- developing accurate and cost-effective methods for detecting pathogens, contaminants, and toxins in seafood for use by both state and federal inspectors.
- developing in situ and space-based methods to monitor and assess pollution inputs, ecosystem health, and human health impacts.
- developing new tools for measuring human and environmental health indicators in the marine environment.
- developing models and strategies for predicting and mitigating pollutant loadings, harmful algal blooms, and infectious disease potential in the marine environment.

Recommendation 23–4
Congress should establish a national, multi-agency Oceans and Human Health Initiative to coordinate and sponsor exploration, research, and new technologies related to examining the connections among the oceans, ecosystem health, and human health. The National Oceanic and Atmospheric Administration’s Oceans and Human Health Initiative and the National Institute of Environmental Health Sciences–National Science Foundation Centers for Oceans and Human Health should be expanded and coordinated as the basis for this initiative.

The new Oceans and Human Health Initiative should:
- be implemented through both competitively awarded grants and support of federally-designated centers with federal, state, academic, and private-sector investigators eligible to compete for funding.
• work with the National Ocean Council to review other relevant agency programs and suggest areas where coordination could be improved.

• transfer new technologies into management programs that protect human health and the health of ocean and coastal ecosystems.

Recommendation 23–5
The National Oceanic and Atmospheric Administration, Environmental Protection Agency, and Food and Drug Administration, working with state and local managers, should fully implement all existing programs to protect human health from contaminated seafood and coastal waters.

Particularly, the federal agencies should:

• incorporate new findings and technologies, especially those developed within the Oceans and Human Health Initiative, into monitoring and prevention programs.

• coordinate and increase interagency public education and outreach efforts in this area.

Chapter 24: Managing Offshore Energy and Other Mineral Resources

Recommendation 24–1
Congress should use a portion of the revenues the federal government receives from the leasing and extraction of outer Continental Shelf (OCS) oil and gas to provide grants to all coastal states that can be invested in the conservation and sustainable development of renewable ocean and coastal resources. States off whose coasts OCS oil and gas is produced should receive a larger share of such revenue to compensate them for the costs of addressing the environmental and socioeconomic impacts of energy activity in adjacent federal waters. None of the programs that currently receive revenues from OCS oil and gas activities should be adversely affected by this new allocation.

Recommendation 24–2
The U.S. Department of the Interior should expand the Minerals Management Service’s Environmental Studies Program.

Priorities for the enhanced Environmental Studies Program should include:

• conducting long-term environmental research and monitoring at appropriate outer Continental Shelf (OCS) sites to better understand cumulative, low-level, and chronic impacts of OCS oil and gas activities on the natural and human environments.

• working with state environmental agencies and industry to evaluate the risks to the marine environment posed by aging offshore and onshore pipelines, particularly in the Gulf of Mexico.

Recommendation 24–3
Ocean.US, working with the National Oceanic and Atmospheric Administration (NOAA) and Minerals Management Service (MMS), should include the offshore oil and gas industry as an integral partner in the design, implementation, and operation of the Integrated Ocean Observing System (IOOS), especially in areas where offshore oil and gas activities occur. Specifically, Ocean.US, NOAA, and MMS should work with the oil and gas industry to:

• employ industry resources, such as pipelines, platforms, and vessels as part of the IOOS.

• incorporate nonproprietary data into IOOS informational products and larger environmental databases, while protecting the security of proprietary data and meeting other safety, environmental, and economic concerns.
Recommendation 24–4
The National Ocean Council (NOC), working with the U.S. Department of Energy and other appropriate entities, should review the status of gas hydrates research and development to determine whether methane hydrates can contribute significantly to meeting the nation’s long-term energy needs. If such contribution looks promising, the NOC should recommend an appropriate level of investment in methane hydrates research and development, and determine whether a comprehensive management regime for industry access to hydrate resource deposits is needed.

Recommendation 24–5
Congress, with input from the National Ocean Council, should enact legislation providing for the comprehensive management of offshore renewable energy development as part of a coordinated offshore management regime. Specifically, this legislation should:

- be based on the premise that the oceans are a public resource.
- streamline the process for licensing, leasing, and permitting renewable energy facilities in U.S. waters.
- subsume existing statutes, such as the Ocean Thermal Energy Conversion Act.
- ensure that the public receives a fair return from the use of the resource and that development rights are allocated through an open, transparent process that considers state, local, and public concerns.

Recommendation 24–6
The Minerals Management Service should systematically identify the nation’s offshore non-energy mineral resources and conduct the necessary cost-benefit, long-term security, and environmental studies to create a national program that ensures the best uses of those resources.

Chapter 25: Creating a National Strategy for Increasing Scientific Knowledge

Recommendation 25–1
Congress should double the federal ocean and coastal research budget over the next five years. The new funds should be used to support a balance of basic and applied research.

Recommendation 25–2
The National Ocean Council should develop a national ocean and coastal research strategy that reflects a long-term vision and promotes advances in basic and applied ocean science and technology. The strategy should recognize the different ocean science sectors (government, academic, commercial, and nongovernmental), acknowledge their different roles, and maximize the use of partnerships.

The National Ocean Council (NOC) research strategy should include a national program for social science and economic research to examine the human dimensions and economic value of the nation’s oceans and coasts. The NOC should direct relevant agencies to include socioeconomic research as an integral part of their efforts. The national program should include:

- an operational socioeconomic research and assessment function within the National Oceanic and Atmospheric Administration (NOAA).
• an interagency steering group, chaired by NOAA and including the Bureau of Labor Statistics (BLS), Bureau of the Census, Bureau of Economic Analysis (BEA), U.S. Department of Agriculture, U.S. Environmental Protection Agency, and National Science Foundation to coordinate ocean-related socioeconomic research.

• biennial reports by BLS and BEA on the employment, wages, and output associated with U.S. coasts and oceans.

• biennial reports by the Bureau of Transportation Statistics on intermodal access to U.S. ports and maritime facilities and assessments of relevant maritime system performance and economic data.

• periodic reports on such topics as coastal demographics, geographic patterns and trends of ocean and coastal use, economic contributions, attitudes and perceptions, functioning of governance arrangements, and public-private partnerships.

• establishment of partnerships to take maximum advantage of the expertise resident within government agencies, academic institutions, and the private sector.

• increased interactions with regional, state, and local stakeholders through regional ocean councils and regional ocean information programs so their information needs can be met and socioeconomic changes at these levels can be documented and analyzed.

Recommendation 25–4
Congress should significantly expand the National Sea Grant College Program as part of doubling ocean and coastal research funding.

Recommendation 25–5
The National Ocean Council (NOC) should direct ocean-related agencies to develop ten-year science plans and budgets consistent with the national strategy. The NOC should provide additional guidance concerning granting mechanisms. The NOC guidance should:

• require agencies to provide multi-year (greater than five-year) funding opportunities in addition to traditional grant mechanisms.

• reiterate the importance of balancing basic and applied research projects and promote the transition of basic research results to applied uses.

• require a system of independent review for all grant applications, including those from federal laboratories.

• incorporate the science needs and priorities of local, state, regional, and national managers, working with the regional ocean information programs.

Recommendation 25–6
The National Oceanic and Atmospheric Administration and the National Science Foundation should lead an expanded national ocean exploration program, with additional involvement from the U.S. Geological Survey and the U.S. Navy’s Office of Naval Research. Public outreach and education should be integral components of the program.

Recommendation 25–7
The Federal Geographic Data Committee (FGDC) should coordinate federal ocean and coastal mapping and charting activities with the goal of creating standardized, easily accessible national maps. These maps should be able to incorporate living and nonliving marine resource data along with bathymetry, topography, and other natural features, and should provide seamless data across the shoreline, coastal zone, nearshore areas, and open ocean waters.

To accomplish these goals, the FGDC should:

• coordinate an interagency budget strategy to accelerate the completion of mapping priorities throughout coastal areas, the exclusive economic zone, and continental shelf.

• establish and maintain a Web-accessible registry that allows federal agencies to coordinate mapping and charting missions.
establish and maintain a single Web-based source to provide easy access to geospatial data and integrated national maps.

ensure that federal mapping and charting activities take full advantage of resources available in the academic and private sectors.

ensure that federal mapping activities take advantage of state resources and address state information needs.

Recommendation 25–8

Congress should re-establish an Office of Technology Assessment to provide it with objective and authoritative analyses of complex scientific and technical issues.

Chapter 26: Achieving a Sustained, Integrated Ocean Observing System

Recommendation 26–1

The National Ocean Council should make development and implementation of a sustained, national Integrated Ocean Observing System (IOOS) a key element of its leadership and coordination role. As an essential component of IOOS development, the NOC should promote strong partnerships among federal, state, territorial, tribal, and local governments, nongovernmental organizations, industry, and academia, drawing upon the strengths and capabilities of each sector in the design, development, and operation of the IOOS.

Recommendation 26–2

Ocean.US should be responsible for planning the national Integrated Ocean Observing System (IOOS). The National Oceanic and Atmospheric Administration should serve as the lead federal agency for implementing and operating the IOOS, with extensive interagency coordination and subject to approval of all plans and budgets by the National Ocean Council.

Recommendation 26–3

Congress should amend the National Oceanographic Partnership Act to formally establish Ocean.US under the National Ocean Council (NOC).

Ocean.US should:

- report to the NOC’s Committee on Ocean Science, Education, Technology, and Operations.
- be provided with funding as a line item within the National Oceanic and Atmospheric Administration’s budget, to be spent subject to NOC approval.
- have authority to bring in outside experts on rotational appointments when needed.

Recommendation 26–4

Ocean.US should proactively seek input from coastal and ocean stakeholder communities to build cross-sector support for the national Integrated Ocean Observing System (IOOS) and develop a consensus on operational requirements.

Specifically, Ocean.US should seek input on its plans from:

- agencies with homeland security responsibilities, including ideas for future research and development to improve and enhance the system.
- state, local, territorial, and tribal agencies, industry, academia, nongovernmental organizations, and the public in the design and implementation of regional observing systems and their integration into the national IOOS.

Recommendation 26–5

Ocean.US should develop a set of core variables to be collected by all components of the national Integrated Ocean Observing System. This set of core variables should include appropriate biological, chemical, geological, and physical variables and be based on input from the National Federation of Regional Associations.
Recommendation 26–6
The National Oceanic and Atmospheric Administration, the National Science Foundation (NSF), the Office of Naval Research, and the National Aeronautics and Space Administration should require investigators who receive federal funding related to ocean observatories, including the NSF Ocean Observatories Initiative, to plan for the transfer of successful technologies to an operational mode in the Integrated Ocean Observing System.

Recommendation 26–7
Ocean.US should recommend priorities for space-based missions as an essential component of the national Integrated Ocean Observing System (IOOS). The National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration (NASA) should work together on the development, budgeting, and scheduling of IOOS satellite missions, based on Ocean.US plans.

Ocean.US, NOAA, and NASA should:
- work closely with the user community and the space industry to identify the most important space-based ocean observation needs.
- work with the international community to ensure that requirements for the Global Ocean Observing System are coordinated with U.S. plans for satellite remote sensing.
- implement phased satellite missions and equipment replacement to maintain unbroken, consistent data streams based on Ocean.US plans.

Recommendation 26–8
Congress should transfer ongoing operation of the National Aeronautics and Space Administration (NASA) Earth environmental observing satellites to the National Oceanic and Atmospheric Administration (NOAA) to achieve continuous collection of critical space-based Earth environmental measurements. NOAA and NASA should work together to identify research satellite missions that have operational applications and to ensure the smooth transition of each Earth environmental observing satellite after its launch and testing.

Recommendation 26–9
The National Oceanic and Atmospheric Administration (NOAA) should improve its capacity to calibrate, collect, and disseminate satellite data and to integrate satellite-derived information with traditional ocean and coastal databases. NOAA should ensure that a suitable archive exists to preserve historical satellite data, particularly those related to long-term trends such as climate.

Recommendation 26–10
Ocean.US and the National Oceanic and Atmospheric Administration (NOAA) should work with state and local governments, the Regional Associations, educators, nongovernmental organizations, and the private sector, to ensure that information products generated from the Integrated Ocean Observing System (IOOS) are useful to a broad user community. In particular, Ocean.US and NOAA should:
- work with the U.S. Navy, the Regional Associations, Ocean.IT, and the private sector to create new models and forecasting methods to meet user information needs.
- work with the Regional Associations to provide the training and tools necessary for users to work with, and benefit from, IOOS information products.

Recommendation 26–11
Congress should fund the Integrated Ocean Observing System (IOOS) as a line item in the National Oceanic and Atmospheric Administration (NOAA) budget, to be spent subject to National Ocean Council (NOC) direction and approval. IOOS funds should be appropriated without fiscal year limitation. NOAA should develop a streamlined process for distributing IOOS funds to other federal and nonfederal partners based on the NOC plan.
Recommendation 26–12
The National Ocean Council should oversee coordination of the Integrated Ocean Observing System with other existing and planned terrestrial, watershed, atmospheric, and biological observation and information collection systems, with the ultimate goal of developing a national Earth Observing System.

Recommendation 26–13
The National Ocean Council (NOC) should promote international coordination and capacity building in the field of global ocean observations. Specifically, the NOC should:
• lead the interagency implementation of the 2003 Declaration on Earth Observing.
• encourage and support developing nations’ participation in the Global Ocean Observing System.
• continue to advocate full, open, and meaningful data access policies and contribute technological expertise to ensure access by all participants.

Chapter 27: Enhancing Ocean Infrastructure and Technology Development

Recommendation 27–1
The National Ocean Council (NOC) should develop a national ocean and coastal infrastructure and technology strategy, including detailed plans for funding and implementation, to support science, resource management, assessments, enforcement, and education. The strategy should guide agency plans for facility construction, upgrading, or consolidation and for new technology development.
In particular, the national strategy should:
• be developed through the NOC’s Committee on Ocean Science, Education, Technology, and Operations.
• set specific priorities for acquiring and upgrading ocean and coastal infrastructure, including vessels, facilities, instrumentation, and equipment.
• build on the existing capabilities of federal, state, academic, and private entities.
• identify emerging technologies that should be incorporated into agency operations.
• promote international partnerships to deploy and share major oceanographic assets.

Recommendation 27–2
The National Oceanic and Atmospheric Administration should establish an Office of Technology Transfer with responsibility for expediting the transition of proven ocean-related technologies into operational applications. This office should work closely with the National Science Foundation, the U.S. Navy, the National Aeronautics and Space Administration, academic institutions, regional organizations, and private industry to achieve its mission.

Recommendation 27–3
The National Ocean Council should undertake an assessment of U.S. ocean and coastal infrastructure and technology every five years. These assessments should account for all federal, state, academic, and private assets and should be used to create and update a national facilities database.
The assessments should build on this Commission’s efforts (Appendix 5), including information on:
• the location, ownership, availability, remaining service life, and replacement cost for a wide range of ocean infrastructure assets.
• maintenance and operational costs associated with these assets.
• associated human resource needs.
• the outcomes of past federal investments in ocean technology and infrastructure, with recommendations for improvements.
Recommendation 27–4
Congress should create a mechanism to ensure a dedicated funding stream for critical ocean science infrastructure and technology needs. Spending priorities should be based on the National Ocean Council’s ocean and coastal infrastructure and technology strategy.

High-priority areas for funding include the following:
- the renewal of the University-National Oceanographic Laboratory System fleet and other essential air fleets and deep-submergence vehicles.
- the completion of the third and fourth dedicated fishery research vessels.
- the acquisition of vessels and infrastructure needed for an expanded national ocean exploration program.
- the Integrated Ocean Drilling Program non-riser drilling vessel.
- the refurbishment or replacement of two U.S. Coast Guard polar ice breakers.
- the ongoing modernization of existing assets, including telecommunications assets, laboratories, and other facilities.

Recommendation 27–5
Congress should support the infrastructure and technology requirements related to ocean and coastal management, operations, and enforcement. Priorities should be based on the National Ocean Council’s ocean and coastal infrastructure and technology strategy.

High-priority areas for funding include the following:
- recapitalization of the Coast Guard fleet based on an accelerated modernization plan.
- modernization of other federal fleets as needed.
- ongoing maintenance and upgrades of land-based operational and enforcement facilities.
- maintenance and upgrading of monitoring buoys, gages, and stations.
- coordinated satellite observing deployment.

Recommendation 27–6
The National Oceanic and Atmospheric Administration should establish four to six national virtual marine technology centers at existing institutions to provide coordinated access, through electronic means, to cutting-edge, large-scale research technologies.

Chapter 28: Modernizing Ocean Data and Information Systems

Recommendation 28–1
Congress should amend the National Oceanographic Partnership Act to establish Ocean.IT as the lead federal interagency planning organization for ocean and coastal data and information management. Ocean.IT should consist of representatives from all federal agencies involved in ocean data and information management.

Ocean.IT should:
- report to the National Ocean Council’s Committee on Ocean Science, Education, Technology, and Operations.
- create an interagency plan to improve coordination between the existing data centers and to integrate ocean and coastal data from different agencies and from the academic and private sectors.
- set priorities for archiving historical and nondigital data.
- coordinate shared resources and the acquisition of new hardware for use by the ocean sciences community.
- work with existing supercomputer centers to negotiate adequate time for ocean science needs.
- assess federal agency software needs and initiate interagency programs to create high-priority applications, such as new modeling programs.
• coordinate federal agency efforts to attract information technology expertise into the ocean sciences community.
• communicate with regional, state, and local organizations, including the regional ocean information programs, to determine user needs and feed this information back to relevant agencies.

Recommendation 28–2
The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Navy should establish an ocean and coastal information management and communications partnership to generate information products relevant to national, regional, state, and local operational needs.
The NOAA-Navy partnership should:
• prioritize products and forecasts based on input from regional ocean information programs, Ocean.IT, Ocean.US, the Regional Associations of the IOOS, and other federal, regional, state, and local users.
• base products and forecasts on all available data sources.
• support the generation of new models and forecasts in collaboration with Ocean.IT, academia, and the private sector.

Recommendation 28–3
Ocean.IT should work with developers of the National Virtual Ocean Data System and other innovative data management systems to implement a federally-supported system for accessing ocean and coastal data both within and outside the national data centers.

Recommendation 28–4
The National Ocean Council (NOC) should establish and enforce common requirements and deadlines for investigators to submit data acquired during federally funded ocean research projects.
In establishing these requirements, the NOC’s Committee on Ocean Science, Education, Technology, and Operations should:
• develop incentives to ensure more timely submission of investigator data to the national centers.
• require that a certification of data deposit be supplied to investigators who comply with the new regulations and that this certificate be presented before subsequent federal funding is provided.

Recommendation 28–5
The U.S. Navy should periodically review and declassify appropriate naval oceanographic data for access by the civilian science community.

Recommendation 28–6
The President should convene an interagency task force to plan for modernizing the national environmental data archiving, assimilation, modeling, and distribution system with the goal of creating an integrated Earth environmental data and information system.
The task force should:
• be comprised of all federal agencies with environmental data collection responsibilities.
• propose a plan for the national environmental data system that includes specific cost estimates and phasing requirements to ensure timely implementation.
Chapter 29: Advancing International Ocean Science and Policy

Recommendation 29–1

Recommendation 29–2
The National Ocean Council should coordinate an expedited review and analysis of the ocean-related components of the United Nations Convention on Biological Diversity and recommend to the U.S. Department of State whether, from an ocean perspective, ratification of this treaty would be beneficial to U.S. interests.

Recommendation 29–3
The National Ocean Council (NOC) should establish and oversee an interagency committee to support the development and implementation of ocean-related international policy. The international committee of the NOC should:
- be chaired by the U.S. Department of State.
- make recommendations to the Assistant to the President, the Secretary of State, and other agency heads as appropriate, on international ocean policy.
- assess the implementation status of ocean-related treaties to which the United States is a party and recommend appropriate actions and funding required to fulfill U.S. treaty obligations.
- provide technical assistance to the NOC on international ocean issues.

Recommendation 29–4
The National Ocean Council should assess emerging international ocean-related management challenges and make recommendations for either incorporating these activities under existing management regimes or developing appropriate new ones. The U.S. Department of State should work with the international community to implement these recommendations.

Recommendation 29–5
The U.S. Department of State should improve its integration of ocean-related scientific expertise in policy and program development and implementation. These improvements can be accomplished by:
- conducting State Department staff training about the relevance of scientific considerations to international ocean policy.
- increasing scientific support throughout the department to address current and emerging ocean-related issues, particularly through the use of borrowed personnel from resource agencies or academic institutions.
- creating mechanisms to facilitate input from the scientific community on complex ocean-related issues.

Recommendation 29–6
The United States should continue to participate in and support major international ocean science organizations and programs.

Recommendation 29–7
The U.S. Department of State should offer strong support for U.S. scientists conducting research programs around the world. Existing international partnerships should be strengthened and new partnerships promoted to facilitate the conduct of international research.
Recommendation 29–8
The United States should increase its efforts to enhance long-term ocean science and management capacity in other nations through grants, education and training, technical assistance, and sharing best practices, management techniques, and lessons learned.

Chapter 30: Funding Needs and Possible Sources

Recommendation 30–1
Congress should establish an Ocean Policy Trust Fund in the U.S. Treasury, composed of unallocated federal revenues from outer Continental Shelf (OCS) oil and gas activities, plus revenues from any new activities approved in federal waters, to support the nation’s new coordinated and comprehensive national ocean policy. Trust Fund monies should be disbursed to coastal states, other appropriate coastal authorities, and federal agencies to support improved ocean and coastal management, based on an allocation determined by Congress with input from the National Ocean Council. The Trust Fund should be used to supplement—not replace—existing appropriations for ocean and coastal programs.

The Ocean Policy Trust Fund should be distributed as follows:

- $500 million in the first year, increasing to $1.0 billion in the third and subsequent years, among all coastal and Great Lakes states, territories, and federally-recognized tribes with coastal resource treaty rights. A larger share should go to OCS producing states to address offshore energy impacts. The funds should be used for the conservation and sustainable development of renewable ocean and coastal resources, including any new responsibilities that arise as a result of Commission recommendations and the expansion of programs and activities that are currently underfunded.

- the remainder of the funds to federal agencies to address the new or expanded activities assigned to them as a result of Commission recommendations.

Recommendation 30–2
The National Ocean Council, in cooperation with the Office of Management and Budget, should coordinate the compilation of a biennial report from the President on ocean funding, as required by the Oceans Act of 2000, including establishment of a consistent reporting format and a more useful classification scheme.
PART X

APPENDICES

APPENDIX A
OCEANS ACT OF 2000 .. A 1

APPENDIX B
ACRONYMS APPEARING IN THE REPORT B 1

APPENDIX C
LIVING NEAR...AND MAKING A LIVING FROM...
the Nation’s Coasts and Oceans, by CHARLES S. COLGAN C 1

APPENDIX D
GLOSSARY OF FEDERAL OCEAN AND COASTAL-RELATED
COMMISSIONS, COMMITTEES, COUNCILS, LAWS, AND PROGRAMS........ D 1

APPENDIX E
PROPOSED STRUCTURE FOR COORDINATION OF
FEDERAL OCEAN ACTIVITIES ... E 1

APPENDIX F
CONGRESSIONAL COMMITTEES AND SUBCOMMITTEES
WITH JURISDICTION OVER OCEAN AND COASTAL ISSUES F 1

APPENDIX G
DETAILED COSTS ASSOCIATED WITH RECOMMENDATIONS
OF THE U.S. COMMISSION ON OCEAN POLICY G 1
APPENDIX A

OCEANS ACT OF 2000
One Hundred Sixth Congress
Of the
United States of America
AT THE SECOND SESSION
AN ACT

To establish a Commission on Ocean Policy, and for other purposes.

Be it enacted by the Senate and House of Representatives of the
United States of America in Congress assembled,

Section 1. Short Title
This Act may be cited as the “Oceans Act of 2000.”

Section 2. Purpose and Objectives
The purpose of this Act is to establish a commission to make recommendations for coordinated and comprehensive national ocean policy that will promote—

(1) the protection of life and property against natural and manmade hazards;
(2) responsible stewardship, including use, of fishery resources and other ocean and coastal resources;
(3) the protection of the marine environment and prevention of marine pollution;
(4) the enhancement of marine-related commerce and transportation, the resolution of conflicts among users of the marine environment, and the engagement of the private sector in innovative approaches for sustainable use of living marine resources and responsible use of nonliving marine resources;
(5) the expansion of human knowledge of the marine environment including the role of the oceans in climate and global environmental change and the advancement of education and training in fields related to ocean and coastal activities;
(6) the continued investment in and development and improvement of the capabilities, performance, use, and efficiency of technologies for use in ocean and coastal activities, including investments and technologies designed to promote national energy and food security;
(7) close cooperation among all government agencies and departments and the private sector to ensure—

(A) coherent and consistent regulation and management of ocean and coastal activities;
(B) availability and appropriate allocation of Federal funding, personnel, facilities, and equipment for such activities;
(C) cost-effective and efficient operation of Federal departments, agencies, and programs involved in ocean and coastal activities; and
(D) enhancement of partnerships with State and local governments with respect to ocean and coastal activities, including the management of ocean and coastal resources and identification of appropriate opportunities for policy-making and decision-making at the State and local level; and
(8) the preservation of the role of the United States as a leader in ocean and coastal activities, and, when it is in the national interest, the cooperation by the United States with other nations and international organizations in ocean and coastal activities.
Section 3. Commission on Ocean Policy

(a) ESTABLISHMENT—There is hereby established the Commission on Ocean Policy. The Federal Advisory Committee Act (5 U.S.C. App.), except for sections 3, 7, and 12, does not apply to the Commission.

(b) MEMBERSHIP—

(1) APPOINTMENT—The Commission shall be composed of 16 members appointed by the President from among individuals described in paragraph (2) who are knowledgeable in ocean and coastal activities, including individuals representing State and local governments, ocean-related industries, academic and technical institutions, and public interest organizations involved with scientific, regulatory, economic, and environmental ocean and coastal activities. The membership of the Commission shall be balanced by area of expertise and balanced geographically to the extent consistent with maintaining the highest level of expertise on the Commission.

(2) NOMINATIONS—The President shall appoint the members of the Commission, within 90 days after the effective date of this Act, including individuals nominated as follows:

(A) 4 members shall be appointed from a list of 8 individuals who shall be nominated by the Majority Leader of the Senate in consultation with the Chairman of the Senate Committee on Commerce, Science, and Transportation.

(B) 4 members shall be appointed from a list of 8 individuals who shall be nominated by the Speaker of the House of Representatives in consultation with the Chairmen of the House Committees on Resources, Transportation and Infrastructure, and Science.

(C) 2 members shall be appointed from a list of 4 individuals who shall be nominated by the Minority Leader of the Senate in consultation with the Ranking Member of the Senate Committee on Commerce, Science, and Transportation.

(D) 2 members shall be appointed from a list of 4 individuals who shall be nominated by the Minority Leader of the House in consultation with the Ranking Members of the House Committees on Resources, Transportation and Infrastructure, and Science.

(3) CHAIRMAN—The Commission shall select a Chairman from among its members. The Chairman of the Commission shall be responsible for—

(A) the assignment of duties and responsibilities among staff personnel and their continuing supervision; and

(B) the use and expenditure of funds available to the Commission.

(4) VACANCIES—Any vacancy on the Commission shall be filled in the same manner as the original incumbent was appointed.

(c) RESOURCES—In carrying out its functions under this chapter, the Commission—

(1) is authorized to secure directly from any Federal agency or department any information it deems necessary to carry out its functions under this Act, and each such agency or department is authorized to cooperate with the Commission and, to the extent permitted by law, to furnish such information (other than information described in section 552(b)(1)(A) of title 5, United States Code) to the Commission, upon the request of the Commission;

(2) may enter into contracts, subject to the availability of appropriations for contracting, and employ such staff experts and consultants as may be necessary to carry out the duties of the Commission, as provided by section 3109 of title 5, United States Code; and

(3) in consultation with the Ocean Studies Board of the National Research Council of the National Academy of Sciences, shall establish a multidisciplinary science advisory panel of experts in the sciences of living and nonliving marine resources to assist the Commission in preparing its report, including ensuring that the scientific information considered by the Commission is based on the best scientific information available.

(d) STAFFING—The Chairman of the Commission may, without regard to the civil service laws and regulations, appoint and terminate an Executive Director and such other additional personnel as may be necessary for the Commission to perform its duties. The Executive Director shall be compensated at a rate not to exceed the rate payable for Level V of the Executive Schedule under section 5136 of title 5, United States Code. The employment and termination of an Executive Director shall be subject to confirmation by a majority of the members of the Commission.
(e) MEETINGS—

(1) ADMINISTRATION—All meetings of the Commission shall be open to the public, except that a meeting or any portion of it may be closed to the public if it concerns matters or information described in section 552b(c) of title 5, United States Code. Interested persons shall be permitted to appear at open meetings and present oral or written statements on the subject matter of the meeting. The Commission may administer oaths or affirmations to any person appearing before it.

(2) NOTICE; MINUTES; PUBLIC AVAILABILITY OF DOCUMENTS—

(A) All open meetings of the Commission shall be preceded by timely public notice in the Federal Register of the time, place, and subject of the meeting.

(B) Minutes of each meeting shall be kept and shall contain a record of the people present, a description of the discussion that occurred, and copies of all statements filed. Subject to section 552 of title 5, United States Code, the minutes and records of all meetings and other documents that were made available to or prepared for the Commission shall be available for public inspection and copying at a single location in the offices of the Commission.

(3) INITIAL MEETING—The Commission shall hold its first meeting within 30 days after all 16 members have been appointed.

(4) REQUIRED PUBLIC MEETINGS—The Commission shall hold at least one public meeting in Alaska and each of the following regions of the United States:

(A) The Northeast (including the Great Lakes).

(B) The Southeast (including the Caribbean).

(C) The Southwest (including Hawaii and the Pacific Territories).

(D) The Northwest.

(E) The Gulf of Mexico.

(f) REPORT—

(1) IN GENERAL—By June 20, 2003, the Commission shall submit to Congress and the President a final report of its findings and recommendations regarding United States ocean policy.

(2) REQUIRED MATTER—The final report of the Commission shall include the following assessment, reviews, and recommendations:

(A) An assessment of existing and planned facilities associated with ocean and coastal activities including human resources, vessels, computers, satellites, and other appropriate platforms and technologies.

(B) A review of existing and planned ocean and coastal activities of Federal entities, recommendations for changes in such activities necessary to improve efficiency and effectiveness and to reduce duplication of Federal efforts.

(C) A review of the cumulative effect of Federal laws and regulations on United States ocean and coastal activities and resources and an examination of those laws and regulations for inconsistencies and contradictions that might adversely affect those ocean and coastal activities and resources, and recommendations for resolving such inconsistencies to the extent practicable. Such review shall also consider conflicts with State ocean and coastal management regimes.

(D) A review of the known and anticipated supply of, and demand for, ocean and coastal resources of the United States.

(E) A review of and recommendations concerning the relationship between Federal, State, and local governments and the private sector in planning and carrying out ocean and coastal activities.

(F) A review of opportunities for the development of or investment in new products, technologies, or markets related to ocean and coastal activities.

(G) A review of previous and ongoing State and Federal efforts to enhance the effectiveness and integration of ocean and coastal activities.

1 Public Law 107–372 (section 306)
2 Public Law 107–206 (section 206)
(H) Recommendations for any modifications to United States laws, regulations, and the administrative structure of Executive agencies, necessary to improve the understanding, management, conservation, and use of, and access to, ocean and coastal resources.

(I) A review of the effectiveness and adequacy of existing Federal interagency ocean policy coordination mechanisms, and recommendations for changing or improving the effectiveness of such mechanisms necessary to respond to or implement the recommendations of the Commission.

(3) CONSIDERATION OF FACTORS—In making its assessment and reviews and developing its recommendations, the Commission shall give equal consideration to environmental, technical feasibility, economic, and scientific factors.

(4) LIMITATIONS—The recommendations of the Commission shall not be specific to the lands and waters within a single State.

(g) PUBLIC AND COASTAL STATE REVIEW—

(1) NOTICE—Before submitting the final report to the Congress, the Commission shall—

(A) publish in the Federal Register a notice that a draft report is available for public review; and

(B) provide a copy of the draft report to the Governor of each coastal State, the Committees on Resources, Transportation and Infrastructure, and Science of the House of Representatives, and the Committee on Commerce, Science, and Transportation of the Senate.

(2) INCLUSION OF GOVERNORS’ COMMENTS—The Commission shall include in the final report comments received from the Governor of a coastal State regarding recommendations in the draft report.

(h) ADMINISTRATIVE PROCEDURE FOR REPORT AND REVIEW—Chapter 5 and chapter 7 of title 5, United States Code, do not apply to the preparation, review, or submission of the report required by subsection (e) or the review of that report under subsection (f).

(i) TERMINATION—The Commission shall cease to exist 90 days after the date on which it submits its final report.

(j) AUTHORIZATION OF APPROPRIATIONS—There are authorized to be appropriated to carry out this chapter a total of $8,500,000 for the 3-fiscal-year period beginning with fiscal year 2001, such sums to remain available until expended.

Section 4. National Ocean Policy

(a) NATIONAL OCEAN POLICY—Within 90 days after receiving and considering the report and recommendations of the Commission under section 3, the President shall submit to Congress a statement of proposals to implement or respond to the Commission’s recommendations for a coordinated, comprehensive, and long-range national policy for the responsible use and stewardship of ocean and coastal resources for the benefit of the United States. Nothing in this Act authorizes the President to take any administrative or regulatory action regarding ocean or coastal policy, or to implement a reorganization plan, not otherwise authorized by law in effect at the time of such action.

(b) COOPERATION AND CONSULTATION—In the process of developing proposals for submission under subsection (a), the President shall consult with State and local governments and non-Federal organizations and individuals involved in ocean and coastal activities.

3 Public Law 107–372 (section 306)
4 Public Law 107–372 (section 306)
5 Public Law 107–372 (section 306)
Section 5. Biennial Report

Beginning in September, 2001, the President shall transmit to the Congress biennially a report that includes a detailed listing of all existing Federal programs related to ocean and coastal activities, including a description of each program, the current funding for the program, linkages to other Federal programs, and a projection of the funding level for the program for each of the next 5 fiscal years beginning after the report is submitted.

Section 6. Definitions

In this Act:

(1) MARINE ENVIRONMENT—The term “marine environment” includes—
 (A) the oceans, including coastal and offshore waters;
 (B) the continental shelf; and
 (C) the Great Lakes.

(2) OCEAN AND COASTAL RESOURCE—The term “ocean and coastal resource” means any living or non-living natural, historic, or cultural resource found in the marine environment.

(3) COMMISSION—The term “Commission” means the Commission on Ocean Policy established by section 3.

Section 7. Effective Date

This Act shall become effective on January 20, 2001.

The Oceans Act of 2000 (Public Law 106–256) was signed into law on August 7, 2000.
Acronyms Appearing in the Report

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>American Association for the Advancement of Science</td>
</tr>
<tr>
<td>APD</td>
<td>Application for Permit to Drill</td>
</tr>
<tr>
<td>APHIS</td>
<td>Animal and Plant Health Inspection Service</td>
</tr>
<tr>
<td>APPS</td>
<td>Act to Prevent Pollution from Ships</td>
</tr>
<tr>
<td>ARS</td>
<td>Agriculture Research Service</td>
</tr>
<tr>
<td>ASMFC</td>
<td>Atlantic States Marine Fisheries Commission</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>BEA</td>
<td>Bureau of Economic Analysis</td>
</tr>
<tr>
<td>BEACH Act</td>
<td>Beaches Environmental Assessment and Coastal Health Act of 2000</td>
</tr>
<tr>
<td>BLM</td>
<td>Bureau of Land Management</td>
</tr>
<tr>
<td>BLS</td>
<td>Bureau of Labor Statistics</td>
</tr>
<tr>
<td>BOR</td>
<td>Bureau of Reclamation</td>
</tr>
<tr>
<td>BTS</td>
<td>Bureau of Transportation Statistics</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act Amendments</td>
</tr>
<tr>
<td>CAFO</td>
<td>Concentrated Animal Feeding Operation</td>
</tr>
<tr>
<td>CALFED</td>
<td>California Bay-Delta Program</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBRA</td>
<td>Coastal Barrier Resources Act</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDIAC</td>
<td>Carbon Dioxide Information Analysis Center</td>
</tr>
<tr>
<td>CEIP</td>
<td>Coastal Energy Impact Plan</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation and Liability Act</td>
</tr>
<tr>
<td>CIAP</td>
<td>Coastal Impact Assistance Program</td>
</tr>
<tr>
<td>CIESIN</td>
<td>Center for International Earth Science Information Network</td>
</tr>
<tr>
<td>CITES</td>
<td>Convention on International Trade in Endangered Species of Wild Fauna and Flora</td>
</tr>
<tr>
<td>COOL</td>
<td>Coastal Ocean Observation Laboratory</td>
</tr>
<tr>
<td>CORE</td>
<td>Coastal and Ocean Resource Economics</td>
</tr>
<tr>
<td>CORM</td>
<td>Committee on Ocean Resource Management</td>
</tr>
<tr>
<td>COSETO</td>
<td>Committee on Ocean Science, Education, Technology, and Operations</td>
</tr>
<tr>
<td>COSEE</td>
<td>Centers for Ocean Science Education Excellence</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>CWPPRA</td>
<td>Coastal Wetland Planning, Protection, and Restoration Act</td>
</tr>
<tr>
<td>CWSRF</td>
<td>Clean Water State Revolving Fund</td>
</tr>
<tr>
<td>CZARA</td>
<td>Coastal Zone Act Reauthorization Amendments</td>
</tr>
<tr>
<td>CZMA</td>
<td>Coastal Zone Management Act</td>
</tr>
<tr>
<td>DAACs</td>
<td>Distributed Active Archive Centers</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DOC</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOI</td>
<td>Department of the Interior</td>
</tr>
<tr>
<td>DOJ</td>
<td>Department of Justice</td>
</tr>
<tr>
<td>DOS</td>
<td>Department of State</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>DPA</td>
<td>Deepwater Port Act</td>
</tr>
<tr>
<td>ECOHAB</td>
<td>Ecological Oceanography of Harmful Algal Blooms</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>EFH</td>
<td>Essential Fish Habit</td>
</tr>
<tr>
<td>EHRC</td>
<td>Estuary Habitat Restoration Council</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EOP</td>
<td>Executive Office of the President</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EROS</td>
<td>Earth Resources Observation Systems</td>
</tr>
<tr>
<td>EROSDC</td>
<td>Earth Resources Observation Systems Data Centers</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>ESP</td>
<td>Environmental Studies Program</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FGDC</td>
<td>Federal Geographic Data Committee</td>
</tr>
<tr>
<td>FMC</td>
<td>Federal Maritime Commission</td>
</tr>
<tr>
<td>FPA</td>
<td>Federal Power Act</td>
</tr>
<tr>
<td>GAO</td>
<td>General Accounting Office</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GLFC</td>
<td>Great Lakes Fishery Commission</td>
</tr>
<tr>
<td>GOES</td>
<td>Geostationary Operational Environmental Satellites</td>
</tr>
<tr>
<td>GOOS</td>
<td>Global Ocean Observing System</td>
</tr>
<tr>
<td>GPA</td>
<td>Global Program of Action for the Protection of the Marine Environment from Land-Based Sources</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GSMFC</td>
<td>Gulf States Marine Fisheries Commission</td>
</tr>
<tr>
<td>HAB</td>
<td>Harmful Algal Bloom</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard Analysis and Critical Control Point</td>
</tr>
<tr>
<td>H2O</td>
<td>Hilltops-To-Oceans</td>
</tr>
<tr>
<td>ICR</td>
<td>International Coral Reef Initiative</td>
</tr>
<tr>
<td>IDOE</td>
<td>International Decade of Ocean Exploration</td>
</tr>
<tr>
<td>IFQs</td>
<td>Individual Fishing Quotas</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organization</td>
</tr>
<tr>
<td>IMPROVE</td>
<td>Interagency Monitoring of Protected Visual Environments Program</td>
</tr>
<tr>
<td>IOC</td>
<td>U.N. Intergovernmental Oceanographic Commission</td>
</tr>
<tr>
<td>IOOS</td>
<td>Integrated Ocean Observing System</td>
</tr>
<tr>
<td>ITQs</td>
<td>Individual Transferable Quotas</td>
</tr>
<tr>
<td>JEA</td>
<td>Joint Enforcement Agreement</td>
</tr>
<tr>
<td>JSA</td>
<td>Joint Subcommittee on Aquaculture</td>
</tr>
<tr>
<td>LaRC</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>LME</td>
<td>Large Marine Ecosystem</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>LWCF</td>
<td>Land and Water Conservation Fund</td>
</tr>
<tr>
<td>MACT</td>
<td>Maximum Achievable Control Technology</td>
</tr>
<tr>
<td>MARAD</td>
<td>Maritime Administration</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MARPOL</td>
<td>International Convention for the Prevention of Pollution from Ships</td>
</tr>
<tr>
<td>MEDEA</td>
<td>Measurement of Earth Data for Environmental Analysis</td>
</tr>
<tr>
<td>MERHAB</td>
<td>Monitoring and Event Response for Harmful Algal Blooms</td>
</tr>
<tr>
<td>MERP</td>
<td>Marine Entanglement Research Program</td>
</tr>
<tr>
<td>MLA</td>
<td>Mineral Leasing Act</td>
</tr>
<tr>
<td>MMC</td>
<td>Marine Mammal Commission</td>
</tr>
<tr>
<td>MMMPA</td>
<td>Marine Mammal Protection Act</td>
</tr>
<tr>
<td>MMS</td>
<td>Minerals Management Service</td>
</tr>
<tr>
<td>MOA</td>
<td>Memorandum of Agreement</td>
</tr>
<tr>
<td>MPPRCA</td>
<td>Marine Plastic Pollution Research and Control Act</td>
</tr>
<tr>
<td>MPRSA</td>
<td>Marine Protection, Research, and Sanctuaries Act</td>
</tr>
<tr>
<td>M-S Act</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>MSDs</td>
<td>Marine Sanitation Devices</td>
</tr>
<tr>
<td>MSIs</td>
<td>Minority Serving Institutions</td>
</tr>
<tr>
<td>MTBE</td>
<td>Methyl Tertiary Butyl Ether</td>
</tr>
<tr>
<td>MTSA</td>
<td>Maritime Transportation Security Act</td>
</tr>
<tr>
<td>NACOA</td>
<td>National Advisory Committee on Oceans and Atmosphere</td>
</tr>
<tr>
<td>NANPCA</td>
<td>Nonindigenous Aquatic Nuisance Prevention and Control Act</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NDSF</td>
<td>National Deep Submergence Facility</td>
</tr>
<tr>
<td>NEIC</td>
<td>National Earthquake Information Center</td>
</tr>
<tr>
<td>NEMO</td>
<td>Nonpoint Education for Municipal Officials</td>
</tr>
<tr>
<td>NEP</td>
<td>National Estuary Program</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NERRS</td>
<td>National Estuarine Research Reserve System</td>
</tr>
<tr>
<td>NFIP</td>
<td>National Flood Insurance Program</td>
</tr>
<tr>
<td>NGDC</td>
<td>National Geophysical Data Center</td>
</tr>
<tr>
<td>NIH</td>
<td>Institute of Environmental Health Sciences</td>
</tr>
<tr>
<td>NIMI</td>
<td>National Imagery and Mapping Authority</td>
</tr>
<tr>
<td>NMAA</td>
<td>National Marine Educators Association</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NMOC</td>
<td>Naval Meteorological and Oceanography Command</td>
</tr>
<tr>
<td>NMSA</td>
<td>National Marine Sanctuaries Act</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NCC</td>
<td>National Ocean Council</td>
</tr>
<tr>
<td>NODC</td>
<td>National Oceanographic Data Center</td>
</tr>
<tr>
<td>NPOA</td>
<td>National Oceanographic Partnership Act</td>
</tr>
<tr>
<td>NOPP</td>
<td>National Oceanographic Partnership Program</td>
</tr>
<tr>
<td>NOPS</td>
<td>National Ocean Policy Study</td>
</tr>
<tr>
<td>NORLC</td>
<td>National Ocean Research Leadership Council</td>
</tr>
<tr>
<td>NOx</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NRCS</td>
<td>National Resource Conservation Service</td>
</tr>
<tr>
<td>NRS</td>
<td>National Response System</td>
</tr>
<tr>
<td>NSB</td>
<td>National Science Board</td>
</tr>
<tr>
<td>NSC</td>
<td>National Security Council</td>
</tr>
<tr>
<td>NSES</td>
<td>National Science Education Standards</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSIDC</td>
<td>National Snow and Ice Data Center</td>
</tr>
<tr>
<td>NSSDC</td>
<td>National Space Science Data Center</td>
</tr>
<tr>
<td>NSTC</td>
<td>National Science and Technology Council</td>
</tr>
<tr>
<td>NWI</td>
<td>National Wetlands Inventory</td>
</tr>
<tr>
<td>NWS</td>
<td>National Weather Service</td>
</tr>
<tr>
<td>OCS</td>
<td>Outer Continental Shelf</td>
</tr>
<tr>
<td>OCML</td>
<td>Outer Continental Shelf Lands Act</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>ONR</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>OOI</td>
<td>Ocean Observatories Initiative</td>
</tr>
<tr>
<td>OPA</td>
<td>Oil Pollution Act</td>
</tr>
<tr>
<td>ORAP</td>
<td>Ocean Research Advisory Panel</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>OSTP</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>OTEC</td>
<td>Ocean Thermal Energy Conversion</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorinated biphenyls</td>
</tr>
<tr>
<td>PODAAC</td>
<td>Physical Oceanography Distributed Active Archive Centers</td>
</tr>
<tr>
<td>POES</td>
<td>Polar-orbiting Environmental Satellite</td>
</tr>
<tr>
<td>PSMFC</td>
<td>Pacific States Marine Fisheries Commission</td>
</tr>
<tr>
<td>RFMC</td>
<td>Regional Fishery Management Council</td>
</tr>
<tr>
<td>ROV</td>
<td>Remotely Operated Vehicle</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SCOR</td>
<td>Scientific Committee on Oceanic Research</td>
</tr>
<tr>
<td>SEDAC</td>
<td>Socioeconomic Data and Applications Center</td>
</tr>
<tr>
<td>SLA</td>
<td>Submerged Lands Act</td>
</tr>
<tr>
<td>SSC</td>
<td>Scientific and Statistical Committee</td>
</tr>
<tr>
<td>TAO</td>
<td>Tropical Atmosphere Ocean array</td>
</tr>
<tr>
<td>TEU</td>
<td>20-foot Equivalent Units</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TOGA</td>
<td>Tropical Global Ocean Atmosphere</td>
</tr>
<tr>
<td>TSA</td>
<td>Transportation Security Agency</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Program</td>
</tr>
<tr>
<td>UNOLS</td>
<td>University-National Oceanographic Laboratory System</td>
</tr>
<tr>
<td>USAE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USAID</td>
<td>U.S. Agency for International Development</td>
</tr>
<tr>
<td>USCG</td>
<td>U.S. Coast Guard</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USEIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>USTR</td>
<td>Office of the U.S. Trade Representative</td>
</tr>
<tr>
<td>VMS</td>
<td>Vessel Monitoring Service</td>
</tr>
<tr>
<td>WRDA</td>
<td>Water Resources Development Act</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
</tr>
</tbody>
</table>
Executive Summary ..C 2
1. Introduction ..C 4
2. Defining the Coast ..C 5
3. Trends in Population and Housing ...C 6
 National Trends ..C 6
 Regional Trends in Population Growth ...C 6
 Trends in Housing Growth ...C 7
 Summary of Population and Housing Trends ...C 8
4. The Coastal and Ocean Economy of the United States ..C 9
5. The Coastal and Ocean Economy Beyond the Marketplace ..C 15
6. Implications ..C 17
7. The Future of Understanding the Coastal and Ocean Economy ..C 19
Tables ...C 21
References ..C 25
About the Author and Acknowledgments ...C 26
Notes ...C 27
EXECUTIVE SUMMARY

More than thirty years ago, the Stratton Commission identified growing population pressures on the coasts as a major reason for increased federal government attention to managing the resources of the coasts, oceans and Great Lakes. Socio-economic changes have continued to affect the nation's oceans and coasts over the three decades since the Stratton Commission report, but in much more complex ways than simple population growth alone. More people live on and near the coasts, but it is population growth away from the coast that may be the greatest cause for concern. Population growth near the coast is being outstripped by even faster employment growth, and in industries which appear clean but whose cumulative effects on the environment are significant.

The ocean has always been an important part of the economic life of the nation, but this too is undergoing dramatic change. Economic activity associated with the ocean contributed more than $200 billion to the U.S. economy in 2000, but employment in such traditional marine industries as fishing and marine transportation is declining, while employment in tourism and recreation industries is exploding. Some industries, such as ocean minerals and maritime transportation are producing more with fewer employees, while others such as commercial fishing are declining in both output and employment.

Changes in the socio-economic environment affecting the nation's oceans and coasts are essential to any consideration of public policy. This is so for three reasons:

1. Changes in how people use the ocean and coasts have profound effects on the natural resources.
2. The changes in the resources feed back to changes in the demographic and economic uses altering our uses and perceptions of the coasts and oceans.
3. To manage a resource you must manage the people who use it. Whatever form it takes, policy affects people's behavior, and so how people interact with the environment is the key to the future of the oceans.

This report explores key changes in the socio-economic environment of the nation's oceans and coasts using the latest data from the Census and a special study of the coastal and ocean economies of the United States prepared for the Commission by the National Ocean Economics Project, an independent investigation of the national ocean economy funded by NOAA and EPA. Major conclusions from this analysis include:

1. The term “coast” requires precise definition for measurement. The socio-economic definition of the coast includes at least three tiers, ranging from the near shore, the areas covered by state coastal management programs, and the counties that include coastal watersheds.
2. Population growth since 1970 in coastal watershed counties exceeded 37.5 million people, but this reflected the same rate of growth as the nation as a whole. This means that the coasts are not the destination of disproportionately large growth, but the sheer increase in the population on the same relative small land base still produces major effects.
3. Population and housing growth is shifting inland away from the shoreline. Expensive real estate and past growth have resulted in slow growth near the oceans and Great Lakes, while upland areas have absorbed more of the growth over the past decade and will likely continue to do so.
4. The largest population growth has been along the Atlantic and Pacific coasts, but the fastest population growth by far has been along the coasts of the Gulf of Mexico. The Great Lakes have seen a slight decline in population, but housing growth has continued.
5. Rural areas of the coast have seen much faster growth than urban areas. The farther from cities, the faster the population growth has been. Both year round and seasonal population and housing growth in rural counties have been substantial.
6. The coastal economy is different from the ocean economy. The coastal economy is the sum of all economic activity taking place in the coastal area, while the ocean economy is the economic activity using the ocean as an input.
7. While coastal populations have been growing consistent with national trends, the coastal economy has been growing faster. And while population has been growing more slowly near the shore than in the nation, the economy has been
growing much faster. The region nearest the shore also accounts for 11% of the U.S. economy, while comprising just 4% of its land area.

8. The ocean economy, comprised of the living resources, minerals, construction, transportation, and tourism & recreation sectors, also grew slightly faster than the national economy over the last decade. But tourism and recreation was the only ocean economy sector to show employment growth; all other sectors saw declines in employment in the last decade.

9. The ocean economy is overwhelmingly urban in location, with over 90% of the jobs in the ocean economy located in metro areas. But the ocean economy is proportionately twice as important in rural counties as a proportion of the economy.

In addition to the importance of the ocean and coasts to the national economy, recent research on the value of ocean and coastal resources has also begun to reveal the huge economic values that lie beyond what is reflected in measures such as employment and industrial output. While no single number can encapsulate these values, these studies show additional evidence of the importance of the oceans and coasts for recreation, and has begun to make clear how important resources such as coral reefs and estuaries are to the economic life of the nation.

There are numerous implications of these trends for the management of the nation’s coastal and ocean resources. Policy responses to the impacts of “sprawl” development must address different types of sprawl in different parts of the coast. Population growth trends indicate continued large increases in population density on the coast, but at different rates in different parts of the coast. Population and housing impacts in recent years are focused more on the upland areas of the coastal watersheds and less on the near shore areas. But exactly the opposite trend is occurring in commercial and overall employment growth, where the near shore areas growing more rapidly—and more intensely—than upland areas.

Attempts to improve the “land-side” aspects of coastal and resource management must therefore focus on a number of issues about which there has been relatively little discussion. Economic growth in the near shore area has tended to focus in the trade and service industries (like the rest of the economy), which uses more land per unit of output than other types of activity. Managing the impacts of such commercial growth is very important, particularly because a high proportion is directly related to tourism and recreation uses of the coast. The coasts, particularly the near shore areas, are also the location for very high short-term population growth—from commuters, seasonal vacationers, day-use recreationists, and others. The population pressures on the near shore area are many times those implied by the year-round populations measured by the Census and reported here.

The changes in the ocean economy will also require thinking about how we use the ocean in some new ways. Clearly rebuilding the fish stocks to sustainable levels is a vital part of improving both the natural and economic health of the oceans. Other economic uses of the ocean, such as offshore oil and gas and maritime transportation, will play important even growing roles in the national economy, but will likely do so with stable or even shrinking employment levels. And tourism and recreation, which has come to dominate much of the ocean economy, will only grow further in economic importance—and impacts on coastal and ocean resources, as society gains in wealth and leisure and moves towards a huge increase in retirees over the next two decades.

The insights offered by the data analyzed in this report are useful but still incomplete. Our understanding of the economic values of coasts and oceans economies is weak. In contrast to areas like agriculture where the federal government spends over $100 million a year on economic research, the federal government makes no sustained or significant effort to monitor and expand our understanding of the economic values associated with the coasts and oceans. A sustained effort of $8–10 million a year is needed to catalyze a cooperative effort among NOAA, the federal statistical agencies, related federal agencies (NSF and EPA), and the university and private research community to develop data and analysis to improve our understanding in this area.
1. Introduction

A constant theme in discussions of the nation’s coasts and oceans, including the Great Lakes, is what the Stratton Commission called the “intensifying use of coastal area” (Commission on Marine Science Engineering and Resources 1969). One particular concern has been a large and steadily increasing population. A frequently cited figure is that the coast contains over half of the population of the U.S., but just over 11% of the area. ((Rappaport, J. and Sachs, J. D. 2001); (Bookman, C. A. et al. 1998)) Another concern has been the level of economic activity taking place in coastal areas and its effects on resources. There is no doubt that the pressure of population and economic activity on the limited resources of the coasts and oceans is large and growing. The U.S. Ocean Policy Commission received substantial input to this effect. But the socio-economic forces at work are at once more subtle and dramatic than are usually cited.

Reshaping America’s policies towards the oceans in the future must rest on an understanding of those forces. This report examines major trends over the past one to three decades in the socio-economic forces affecting America’s coasts and oceans. The report uses primary Census and economic data from federal and state sources to explore how population, housing, employment and earnings, and production in the coastal regions are changing. The data in this report includes standard Census data as well as special analyses of economic data prepared for the Commission by the National Ocean Economics Project, an independent research effort funded by NOAA and EPA. This data on the coastal and ocean economy has not been previously available.

The report begins by examining the term “coast” to provide some definitional clarity to a term that has been used with so many different meanings that it is almost impossible to compare one study to another. Next, it explores population and housing trends, both over the thirty years since the Stratton Commission report as well over the most recent decade. It then explores the coastal and ocean economy, making a distinction between the myriad of economic activities that take place in coastal regions and those that are directly tied to the oceans and Great Lakes. This analysis focuses on the measurement of economic activity involving market transactions and measured by widely-used statistical series. Beyond these measures, researchers are uncovering important evidence that the size of the economic values associated with the coasts and oceans are much larger than conventional measures capture.

The report then examines the implications of these trends for coastal and ocean resource management policy, and concludes with a discussion of the need for future commitments to maintain and improve our understanding of the socio-economic environment of the oceans.
What is meant by the “coast”? The figures cited above that more than 50% of the U.S. population is “on the coast” includes the population in all counties within 50 miles (80 km) of the shoreline. The 50 mile boundary reflects both the resident population of the coast and those who live “within a day’s drive” and thus are likely to be frequent visitors to the shore. This definition of the coast encompasses a substantial amount of inland geography that would not be immediately recognized as coastal by either residents or visitors. To get a better picture of the population trends affecting the coast requires three different perspectives on the idea of “coast”:

- **Near shore.** The population in the region closest to the shore area and thus the population with the greatest effect on the fragile shoreline. In this report, the near shore population is measured by the population living in zip codes adjacent to the shore as defined by the Census Zip Code Tabulation Areas. (Bureau of the Census 2003) Employment, wages, and output of the near shore area is defined by the zip code of reporting establishments in the Bureau of Labor Statistics employment data.

- **Coastal Zone Counties.** This is the population living in the counties which are included in whole or in part in the coastal zone as defined by the states for purposes of the Coastal Zone Management Act. The coastal zone defined by the states varies significantly from state to state. In four states, the coastal zone includes the entire state. In other states the coastal zone is defined by political jurisdictions such as towns and counties and while still others define it by natural features. This wide variation makes the “coastal zone” a difficult basis for comparison, but as the Coastal Zone Management Program is one of the most significant accomplishments stemming from the Stratton Commission, it requires examination.

- **Coastal Watershed Counties.** The boundaries of the near shore and coastal zone are largely determined for political and administrative purposes, and thus intersect natural regions only by chance or in those states that explicitly define their coastal zone to match natural boundaries. Another important perspective is to look at counties that include the watersheds of coastal areas, since the effects of population growth in upland areas sooner or later flow to the sea down coastal rivers and streams. Coastal watershed counties have been defined by NOAA as a means of more closely aligning political and natural boundaries. (National Oceanic and Atmospheric Administration 2001)
National Trends

Population growth pressures are probably the most frequently cited socioeconomic force affecting the coast. Analysis of Census data from 1970 to 2000 shows that population growth in coastal areas has indeed been substantial, but as the coast is more complicated than a single term can encompass, so have been the population and housing dynamics. Table C.1 (all tables may be found on pages C21–C24) provides the data overview of the most important changes. These include:

- From 1970–2000, the population in coastal watershed counties increased by more than 37.5 million people, an amount equivalent to adding the total (year 2000) populations of California and Oregon to the United States.
- Coastal Zone counties grew by more than 28 million people, an amount larger than the 2000 populations of Texas and Virginia.
- The population growth rates of coastal zone and coastal watershed counties have not been consistently more rapid than the nation as a whole. In fact, over the thirty year period, both tiers of coastal counties grew slightly more slowly than the nation. Both types of coastal counties did grow more rapidly than the nation during the 1980s, but not in the 1970s or 1990s. In the 1970s, population growth was rapid in inland areas associated with energy development. In the 1990s population growth was rapid in the intermountain west and southeast in the wake while the coastal regions endured the effects of a prolonged slump in growth.
- Over the last decade, population growth has been fastest away from the shoreline but also in the counties adjacent to the shore. When all three tiers are examined in the 1990s (data for the near shore area is available only for 1990 and 2000), the slowest growth was in the near shore tier, while the fastest growth was in the coastal zone counties. This inland shift of population results from the fact that much of the coastline is already developed and tends to be among the most expensive real estate. But rapid population growth has not yet shifted towards the farther reaches of the watersheds. Growth remains concentrated near, but not on, the shoreline.

The proportion of the total United States population in the coastal watershed and coastal zone counties has declined slightly over the past thirty years, but the proportion of population in these counties remains nearly twice their proportion of the land area of the country. (Table C.2) The proportion of the population in the near shore coastal area in 2000 is more than three times the proportion of land area of the near shore.

This means the population density of the coastal regions is significantly higher than the nation as a whole. The national density of 79 persons per square mile of land area (in 2000) is exceeded substantially in the near shore area, where there were more than 230 persons per square mile. While the population density increased by 22 people per square mile nationally from 1970 to 2000, it increased by 43 people per square mile in the coastal counties.

Regional Trends in Population Growth

Trends in population growth in coastal regions have not been consistent across the nation. Figure C.2 summarizes the population change from 1970 to 2000 by region. (See also Table C.3)

- The Atlantic and Pacific regions show the largest population growth, but the Gulf of Mexico region shows by far the fastest population growth. The coastal zone counties along the Gulf
almost *doubled* in population over the past thirty years. Much of this growth occurred in Florida.

- The Great Lakes region saw a population decline in the coastal zone counties from 1970–2000, primarily due to trends in the 1970s. This was due in large part to population declines in cities such as Detroit and Cleveland.
- Population growth trends differed in each region across the three decades, but the 1990s saw the greatest absolute *amount* of growth in all regions.
- Growth accelerated across the decades in the Atlantic region and the Great Lakes, recovered from a population loss in the 1970s to a gain in the 1990s. Growth rates were faster in the 1980s in the Pacific. The Gulf of Mexico saw the fastest growth in coastal zone counties in all three decades.
- The fastest growth in the near shore region over the past decade was in the Gulf of Mexico, the slowest in the Great Lakes.

Trends in the large regions examined here illustrate some of the major variations in population growth across the country. Important additional variations exist within each of the regions between and within states. One of the most important of these variations is the different rates of growth in urban and rural areas (Table C.4).\

Over the past thirty years, the population growth rate in rural areas substantially exceeds that of urban areas. Rural coastal zone counties grew by more than 57% from 1970 to 2000, compared with 38% growth in urban coastal zone counties. Population growth has been most rapid in those urban region counties which are furthest from the central city and in those rural counties furthest from the city with at least one large community.8

Trends in Housing Growth

The potential for population growth’s impact on coastal and ocean resources extends beyond the sheer number of people who reside in coastal areas. That potential is also driven by the growth in the number of housing units in a region, which is a principal source of demand for land that may otherwise be used for wildlife habitat, wetlands, etc. Much of the growth in America takes place in a pattern which has come to be called “sprawl”, which involves extensive spreading out of housing and economic activity across the landscape. Coastal areas are very much characterized by sprawling patterns of growth. (Beach, D. 2003)

Figure C.3 shows the comparative growth rates of housing and population in coastal watershed and coastal zone counties from 1970–2000. Over the whole period, housing growth has substantially exceeded population growth, although the differences in rates diminished by the 1990s. The trends of faster housing growth than population growth is particularly strong in the Great Lakes region, which saw a slight decline (0.4%) in the population in Coastal Zone counties of over the three decades, but an increase in housing in the same counties of nearly 25%.

Rural coastal zone counties also grew substantially faster in housing than urban coastal zone coun-
ties. From 1970–2000, the number of housing units in rural coastal counties more than doubled (a 107% growth rate), while housing grew 63% in urban counties over the same period. Smaller coastal zone counties in urban regions saw very fast housing growth rates. Coastal zone counties at the fringe of urban areas had the fastest rate of housing growth in any of the urban-rural county types, with an increase of over 150% from 1970–2000.

Two major factors drive these trends in housing relative to population growth. A certain amount of housing growth is required for population growth, but a major factor is the falling size of U.S. households. In 1970 the average household consisted of 3.14 persons; by 2000 this was reduced to 2.59 persons. (Bureau of the Census 2001) This change alone accounts for more than half of the growth in housing. Another factor that heavily influences rapid growth in coastal regions is the growth in seasonal housing, which tends to be concentrated in rural counties.

Summary of Population and Housing Trends

Population growth continues to place significantly increased pressure on coastal regions. Total population growth has not been disproportionately located in coastal counties, but the sheer magnitude of that growth on the limited land area of coastal regions creates a much heavier “footprint” than in other parts of the country. Population densities in coastal areas are two to three times as high as in the nation as a whole, reflecting both the attraction of the coast and the intensity of use.

The population of coastal regions is shifting inland, away from the shore and towards the upland areas of coastal watersheds. This trend is most noticeable in the counties closest to the shore. The fastest population growth is occurring in the counties bordering the Gulf of Mexico, particularly in Florida. The largest population growth has been occurring in the Pacific, particularly in California. Population growth has been occurring much more rapidly in rural coastal zone counties than urban coastal zone counties, and in those counties at the fringe of urban regions.

Housing growth exceeds population growth in the coastal areas, especially in the Great Lakes region and in rural coastal zone counties. This pattern of growth puts stresses on natural resources well in excess of that suggested by simple measurement of population growth. In 1969, the Stratton Commission noted that the pressures on the coastal zone were expanding seaward. While this is true, the expansion of population pressures inland and away from the urban areas may be the most important trend over the past thirty years. These trends will almost certainly continue well into the future, since they reflect both fundamental economic forces such as land value that affect where housing is affordable.

Restoring and enhancing the nation's coastal resources will require increased attention not only on the land forms, such as the Big Sur coast of California or the beaches of the Atlantic that form the coast of the popular imagination. It will require increased attention on the less populated rural parts of the coast where change is occurring most rapidly and on the upland areas of watersheds where the accumulation of subtle changes are magnified in the water rivers, streams, and lakes of the area as water flows to the sea.
4. The Coastal and Ocean Economy of the United States

It is no exaggeration to say that the American economy began on the coasts and oceans. Of course all the early European settlements were along the coast, and from these sprouted not only many of America’s great cites but America itself. But even before the first permanent settlements in Virginia and Massachusetts, Europeans were venturing across the Atlantic to fish. (Innis, H. 1940) Native Americans were using the shore as their summer home centuries before the mansions of Newport were built. (Larrabee, B. W. et al. 1998) The nation grew around the ports, and trade they made possible. So the connection of the economy to the sea has been, and remains a vital one in the livelihood of the nation.

Seeing the importance of the ocean in America’s past is not difficult. Understanding the role of the ocean and coasts in today’s huge and complex economy is more difficult. There are many isolated facts that have been collected about the nation’s ocean and coastal economy which attest to the continued importance of the ocean to the economy, but little in the way of systematic measurement has been available.9 A major effort to develop a systematic and consistent measurement of economic activity associated with the coasts and ocean, the National Ocean Economics Project, has provided new insights into how the nation’s economy depends on its coasts and oceans—and how that dependence is undergoing dramatic changes.10

The terms “ocean” and “coastal” economy are often applied in a way that implies they are synonymous, but they are not.

The ocean economy is that portion of the economy which relies on the ocean as an input to the production process or which, by virtue of geographic location, takes place on or under the ocean.

The coastal economy is that portion of economic activity which takes place on or near the coast.

The reason for this distinction stems from the fact that the “ocean” and “coast” are two different resources. The “ocean” provides a variety of products and services such as food, recreation, and transportation. The “coast”, on the other hand is a region which provides access to the services of the ocean as well as being a specific economy within larger regions. The coast contains both ocean and many non-ocean related economic activities, and is much larger than the ocean economy. The coast economy describes the category of economic activity that creates much of the impact on coastal resources, while the ocean economy is the direct connection between the sea, the Great Lakes, and the nation’s overall economic growth.

The ocean economy can be divided into the following broad sectors and industries:*

- **Living resources** (fisheries harvesting and processing, aquaculture, seaweed harvesting)
- **Marine construction** (construction of piers and wharves, dredging, beach reconstruction)
- **Ship and boat building**
- **Marine transportation** (transportation of both freight and passengers)
- **Minerals** (oil and gas, sand and gravel, miscellaneous other mineral resources)
- **Tourism and recreation** (restaurants, lodging, recreation services, marinas, boat dealers)
- **Scientific Research** (oceanographic, biological, ecological)
- **Government** (Federal, state, and local agencies that use or manage ocean resources).

Some of these industries are related to the ocean by what they do, such as marine transportation of goods and people. Other industries are ocean-related because of where they are. Tourism and recreation industries such as hotels or recreation services are ocean related when located in the near shore area, defined by being in a shore-adjacent zip code.

* The data used in this analysis are based on the ES–202 data employment and wage data series collected by the U.S. Department of Labor Bureau of Labor Statistics.

Table C.5 shows establishments, employment, wages, and output (share of gross state product) for the total economy of the coastal regions (the near shore zip-code defined regions plus the coastal zone and coastal watershed counties) in 1990 and 2000.11
Major conclusions from Table C.5 include:

- The coastal states account for about three-quarters of the U.S. economy measured by employment and value added in 2000.
- The proportion of the U.S. economy in the coastal states increased from 1990 to 2000.
- Coastal watershed counties account for just under half of the U.S. economy and coastal zone counties for about one-third of the economy.
- All of the tiers of the coast, from the near shore area to the coastal states, grew faster than the U.S. economy over the past decade.
- With 4.6% of the U.S. land area, the coastal near shore region had more than 11% of the U.S. economy in 2000.
- The near shore area was also the fastest growing area of the coast from 1990 to 2000, which grew faster in employment, wages, and value added than coastal zone or coastal watershed counties.

This comparatively rapid growth in the economy of the near shore area is in marked contrast to the relatively slower growth of the population in this area, suggesting the socio-economic pressures on the near shore area arise from more than population growth. From 1990–2000, the population of the near shore region grew by 3.6 million (see Table C.1), but the number of jobs grew by more than 3.8 million.

In sum, the economic trends over the past decade have generally shown greater emphasis on coastal regions, with the fastest growth occurring in the areas near the shore. While much of the discussion of the relationship between socioeconomic trends and the health of coastal and ocean resources has concentrated on population growth, the effects of growth in economic activity have been ignored. But economic activity, the growth in employment and output in the near shore area may be even more important than pure population growth. To understand why requires understanding of the composition of growth.

From 1990–2000 the United States gained 22 million jobs. Despite overall economic growth, manufacturing jobs declined by over 600,000, while trade (wholesale and retail) plus services grew by nearly 17 million, accounting for nearly 80% of the job growth. The decline in manufacturing industries such as steel production, ship building, and chemicals reduced (often at great expense to local communities) the source of many major environmental impacts in the coastal area. Their replacement by hundreds of thousands of smaller establishments in the services and trade industries has allowed employment growth to continue, and even accelerate. But the sum total of those additional establishments has required more and more land for buildings, parking, roads, and other infrastructure, placing proportionately an even heavier demand on coastal lands and resources than the “old” economy.

This shift in the nature of the economy has also greatly affected how we earn our living from the ocean. Table C.6 shows the data for the private sector ocean economy of the United States for 1990–2000, while Figure C.5 highlights changes in the ocean economy over the same period. The government and scientific research sectors are not included in the ocean economy because of data limitations, so the discussion in this paper is limited to the private ocean economy.

Overall in 2000, the ocean economy accounted directly for 1.6% of employment and 1.4% of the total U.S. private economy. While these may seem like small proportions, they should be considered in context:

- The ocean economy would be the 27th largest state economy in the nation in 2000.
- In 2000, the ocean economy was almost 2.5 times larger than the agricultural economy in terms of output, and over 150% larger than employment in the farm sector. This employment figure for the ocean sector does not include employment in fisheries harvesting.
- In employment, the ocean sector is larger than every manufacturing industry.
The ocean economy has followed this overall pattern of growth in the U.S. economy, shifting away from goods-oriented and towards service oriented production. From 1990 to 2000 there were sharp declines in establishments and employment in the living resources, minerals, and ship and boat building industries, while there was a substantial increase in the establishments and employment in the tourism and recreation sector. The marine construction sector also grew slightly in output, but declined in employment from 1990–2000, although it should be noted that this sector is poorly measured under the Standard Industrial Classification system and is subject to strong influence from the business cycle when measured at any two particular years.

The dramatic shift towards tourism and recreation and away from the goods producing sectors has many causes. The growth in tourism and recreation is clearly consistent with long term increases in overall affluence and increases in leisure time. The enduring appeal of the ocean as a source of recreation has not only been sustained, but enhanced by the rise of such industries as cruise ships. At the same time there have been substantial changes in the goods producing sectors.

- The ship building industry was at a post-World War II peak in employment in 1990 as the end of the Reagan-era naval expansion was occurring. Since almost all ship building in the United States is done for the Navy, the end of the Cold War and the subsequent reduction in ship procurement for the Navy had a profound effect on this industry. Shipbuilding employment declined by 38% between 1990 and 2000, while output declined by 12%. There was a significant increase in boat building employment (32%) and output (81%), primarily for the recreational market. But this was not enough to offset the decline in employment in ship building.

- The living resources sector saw dramatic declines as overfishing in key areas such as New England, the Pacific, and Gulf of Mexico led to enforced reductions in fishing effort. While the fisheries harvesting sector is not fully reflected in these figures, the overall trend towards declines in employment and output in this sector is clear. Seafood processing employment, which will mirror trends in seafood harvesting, declined by 12%. The value of output in the seafood processing industry rose (by 30%) as declining catches resulted in higher prices. Those declines were only slightly offset by the growth of aquaculture, which grew by 27% in employment and 23% in output, but remains a small industry.

- Minerals production, primarily offshore oil and gas, declined somewhat over the decade as older fields in the Gulf of Mexico were played out. Employment fell by 35% while contribution to gross state product fell by 6%. More importantly, there was a reduction in the number of employees needed in the oil and gas industry as more and more technology was employed to find and produce the ocean's mineral resources.

- Ocean related transportation declined in employment, but grew in importance. The declines in employment were primarily in deep
sea freight handling (down 14%) and in search and navigation equipment (down 41%). In the case of freight, while the volume of ocean-going trade increased over the decade, the number of people required to handle the trade declined as containers and automation allowed fewer people to work the docks. The decline in search and navigation equipment was heavily related to post-Cold War military procurement reductions. Ocean related passenger transportation increased significantly (up 47% in employment and 130% in GSP), from cruise ships, ferry services and tour boats.18

The changes in the ocean economy away from goods-producing activities should, not, however, obscure the continued importance of goods-related activities. Figure C.6 compares the distribution of establishments, employment, wages, and output from the ocean sectors for 2000. Tourism and recreation dominates the number of establishments and employment, with three quarters or more of the ocean economy accounted for by this sector. When wages and output are considered, the goods producing industries are much more important, particularly the minerals sector. Accounting for 2% of employment, minerals accounts for nearly ten times the proportion of ocean economy output.

Figure C.6 Composition of the Private Sector Ocean Economy by Different Measures: 2000

<table>
<thead>
<tr>
<th>Sector</th>
<th>Establishments</th>
<th>Employment</th>
<th>Wages</th>
<th>GSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>2%</td>
<td>3%</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Minerals</td>
<td>4%</td>
<td>3%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Ship & Boat Building</td>
<td>2%</td>
<td>2%</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>Tourism & Recreation</td>
<td>13%</td>
<td>13%</td>
<td>73%</td>
<td>82%</td>
</tr>
<tr>
<td>Transportation</td>
<td>12%</td>
<td>12%</td>
<td>50%</td>
<td>51%</td>
</tr>
</tbody>
</table>

Source: BLS, NOEP
This difference in importance based on which measure is used also influences which of the coastal regions of the U.S. can claim the largest share of the ocean economy. Figure C.7 shows the distribution of the ocean economy in 2000 by both employment and output. The Pacific region is the largest region on both measures, with 38% of employment and 34% of output. The Gulf of Mexico region accounts for 12% of employment and 32% of output.

The geographic distribution of the ocean must also be considered in terms of the ocean economy’s role in both urban and rural locations. (Figure C.8) The ocean economy is overwhelmingly an urban economy; 93% of employment in the ocean industries is in metropolitan area counties, and two thirds of employment is in counties in metropolitan areas with a total population of one million or more. It is perhaps not surprising that the ocean economy is very much an urban economy given the large number of America’s principal cities that exist on the coast, but the extent of the concentration of what is a natural-resource based economy in the urban centers of the U.S. speaks to a unique role of the ocean in the American economy. Of all the major natural resources such as farmland and forests, the oceans and Great Lakes are the only resource so intimately connected to the cities, rather than just the country.

However, the importance of the ocean economy to rural economies should not be lost. While the employment in the ocean economy is overwhelmingly urban, it comprises less than 8% of the economy in urban areas, but more than 12% of the economy in rural counties. Moreover, the growth rate in ocean sector employment in rural counties over 1990–2000 was one third faster than in urban counties (16% in rural counties v. 12% in urban counties). Recalling that almost all of the growth in employment occurred in the tourism and recreation sector, the increasing importance of the ocean economy in rural counties is closely tied to their roles of providing an escape for urban dwellers looking for recreation.

Summary of Economic Trends

Total economic activity on the coast accounts for a substantial portion of the American economy. Over three quarters of U.S. domestic economic activity takes place in the coastal states, and nearly half in the coastal watershed counties. The proportion of economic activity in the near shore area is more than twice the proportion of land area, and the total volume of economic activity in the near shore area may have a more profound effect on coastal resources than the more frequently cited figures about population pressures.

The ocean economy is a small proportion of America’s huge 10 trillion dollar economy, but it is still larger than all but the largest state economies. At over $117 billion in 2000, it represents a significant level of economic activity. But the way in which we use the ocean is changing dramatically and rapidly.

Mirroring larger trends in the economy, the services of tourism and recreation have provided almost all the growth in employment and much of the
growth in wages and output, while goods related sectors such as the fisheries, transportation, ship and boat building, and minerals have declined in employment and their growth in wages and output have lagged behind the overall economy. All of the ocean economy sectors remain important to the nation, and a major focus of policy towards the use of the ocean must be to balance the demands of a fast growing tourism and recreation sector with the needs of still-vital uses of the sea for living resources, minerals and fuel, transportation, and ship and boat building. Conflicts over the uses of the scarce coastal and ocean resources will only increase in intensity in the future given these trends.

Most of the employment in the ocean economy is to be found in urban areas, where the competition for land and the impacts of human activity are at their greatest, but where the ocean provides a key component making our cities both competitive and livable. At the same time, the ocean economy plays a proportionately much larger role in the rural regions of the U.S., where overall economic growth has been much slower. The vitality of rural areas on the coast remains very much tied to the sea.
The preceding analysis examines the role of ocean and coastal economic activity using the conventional measures of employment, wages (income), and output. These measures tell a vital, but incomplete story of the role of ocean and coastal resources in the economic life of the nation. What is left out is the economic values associated with a family spending a day at the local beach, or of surfers or sailors who are passionate about their use of the oceans, which may result in little spending each year that winds up being measured in the national income accounts but is an essential part of peoples’ economic lives. Also missing are the economic values that natural resources such as estuaries or coral reefs perform as nurseries for fisheries as natural pollutant cleansing mechanisms and buffers against storm damage.

These economic values are very real, but are not measured as systematically as with market transaction-based economic activity. Economists have made substantial progress in developing methods to measure these values, but studies of these “non-market” values are sporadic. Some types of resources, such as recreational resources, have been studied regularly, but only some coastal regions have been studied and many areas have never been examined. Other resources are studied only when damaged by events such as an oil spill for purposes of federal law. The result is that it is not possible to provide an overview of these economic values of the ocean and coasts, but only to provide examples of these values and why they are important.

Estuaries are perhaps the most diverse of coastal environmental systems, and so are recognized as being among the most valuable. A number of studies have been done of the economic values associated with estuaries, particularly those which are covered by the National Estuary Program administered by EPA. One such study of the Indian River Lagoon area of Florida examined the economic values associated with recreational fishing in the region, as well as resident’s willingness to pay to restore and enhance the Lagoon’s environmental quality. (Apogee Research and Resource Economic Consultants 2000) Estimates of the value of marine recreational fishing in excess of expenditures range from $100 to $589 per angler, resulting in an estimate of $140 million per year in recreational fishing values. This figure is limited to the residents of the five-county region around the Lagoon, and does not include recreational anglers from other areas.

This study also examined the willingness to pay to improve the environmental quality of the estuary through programs such as stormwater management, protection of wetlands, and acquisition of lands for conservation purposes. The median values of these actions per household were estimated to be $40, $25, $19, and $29 respectively. These values were reported whether or not those asked actually used the Lagoon or not. Aggregated across the population of the five-county region, the value of the environmental quality of the Indian River Lagoon was found to range between $14.6 million to $25.9 million depending on which package of environmental improvements residents were asked to value.

Coral Reefs are also one the most important marine resources and one of the most threatened. Understanding the economic value of the reefs has become an important element in developing restoration and management strategies. A recent study (Cesar, H. et al. 2002) of parts of the reef systems in the Hawaiian Islands estimates the values of the rich coral reefs of that state to be at least $384 million per year. The vast majority if this benefit is from tourism and recreation, but it also derives from the enhanced value of real estate in areas bordered by coral reefs, the value of the biodiversity of the reef ecosystems, and the values of enhanced commercial and recreational fisheries productivity.

Estimating the **value of lost resources** from events such as oil spills has become an integral part of the response to such disasters. One of the most important of such estimates was the study of the value lost to Americans from the damages caused by the grounding of the tanker *Exxon Valdez* in 1989. Studies done for the State of Alaska (Carson, R. T. et al. 1992) found that Americans were highly aware of the damage from that spill, and were willing to pay to avoid the losses caused by that oil spill. These studies found a median willingness to pay to avoid the damages of $31 per household, or about $2.8 billion for the U.S. as a whole. This study became the basis for the litigation and a settlement arising from what was the largest oil spill in U.S. waters.
The value of beach recreation Beaches are among the coast's most important recreational resources. Their economic value is comprised of the expenditures that visitors make to visit the beach and the value to the beach-goer over and above what they spend. A significant body of research has attempted to measure these values. While the research methods and approaches have differed, most of the research has shown that the non-market values of the use and enjoyment of beaches are significant.

Southern California has among the most famous beaches in the world. The beaches of Orange County attract upwards of 150,000 visits per day in the summer. Studies of the value of use and enjoyment of southern California beaches range from $18.00 per day for Santa Monica beaches to $23.00 per day for Huntington Beach. (Hanneman, M. 2001) The beaches of Ohio are less well known, but just as important to the residents and visitors. Studies of the northern Ohio beaches of Headlands State Park and Maumee Bay found values similar to California of $15.60 per day for the former and $25.60 per day for the latter. (Sohngen, B. et al. 1999) Summed over a year, the value of using Santa Monica beach is estimated at over $200 million for the 12 million visitors to these beaches. The comparable value for Huntington Beach is over $12 million, while the Ohio beaches are valued at $6.1 million (Maumee Bay) and $3.5 million (Headlands) based on the lower number of visitors. These studies illustrate both the potential size of the non-market values of beaches, and the lack of data which exists in many other beach-oriented coastal regions from Maine to Hawaii.

Because of the complexities in estimating these non-market values, it will probably never be possible to compile a single picture of these values of the ocean and coasts in the same way we can with measures such as employment, wages, and output. But these illustrations show that these non-market values are often large and understanding them is vital to our ability to manage ocean and coastal resources to best advantage.
6. IMPLICATIONS

The changes in the coastal and ocean socio-economic environment that have been underway will shape policy for the coasts and oceans in a number of important ways. Much of the health of the oceans depends on what happens on the land, as the Stratton Commission recognized. Shaping policy towards the management of the land and water resources of the coastal areas will have to take into account the increases in population density throughout the coast, but also the faster population growth in upland areas and the faster economic and employment growth near the shore. The upland areas of watersheds require more attention as a result of the first trend, while the impacts of rapid commercial growth near the shore require attention as a result of the second.

Population impacts must also be reconsidered as resulting from more than the people who live on the coast. The real population growth on the coasts is not from permanent residents near the shore but the large number of people who come to the shore for short periods of time. These include the large number of employees who must commute into the near-shore region to take the growing number of jobs there but who cannot live there because of high real estate prices. It also includes people who commute to the near shore area for shopping or to utilize the growing retail and service industries there. Finally, it includes large numbers of tourists and recreationists who increase the population in coastal areas several fold, primarily in the summer. These populations are poorly measured, but are clearly implied by the trends in the economy and housing.

The sum of the “short term” and “resident” populations means that the public must plan for and build a transportation infrastructure to serve a much larger population in coastal areas than actually live there. Because of rapid employment growth in near shore areas, transportation infrastructure must have the capacity to move employees on a daily basis and tourists on a seasonal basis. This large transportation infrastructure must be provided in such a way that it minimizes impacts on the very resources that make the coast special, and allows community character to be maintained.

The complex dimensions of population, housing, and economic changes are clearly challenging federal, state, and local agencies. Inevitably questions arise about whether the high degree of both functional and geographic fragmentation in the jurisdictions of public agencies is a barrier to effective policy. Such concerns lead often lead to calls for new “regional” levels of government, in which jurisdictions match appropriate ecological and socio-economic boundaries. The question of matching jurisdictions with responsibilities is an important one.

While new forms of organizations may be needed in some cases, there are a number of organizations integrating federal, state and local governments with responsibilities appropriate to managing coastal and ocean resources. These include coastal zone management agencies under the Coastal Zone Management Act, the National Estuary Programs established under the Clean Water Act, and the Metropolitan Planning Organizations established under the Intermodal Surface Transportation Efficiency Act. These organizations can play an important role in addressing many of the issues raised by the evolution of socio-economic trends discussed here and the changes in the natural environment noted in other information provided to the Commission.

The changes in the ocean economy point to a number of different conclusions:

Fisheries It is clear that the severe problems with America’s fisheries resources have had significant negative effects on the economy of many communities. The losses in jobs reflected in the processing industry figures reported here are magnified several times in the unreported employment figures of harvesting sector employment. While many fisheries remain vital sources of employment and economic output, a significant restoration of abundance in fish stocks to sustainable levels will provide important economic boosts to many regions. Aquaculture is also an important new industry, but it does not appear to be replacing the employment levels lost in the capture fisheries.

Maritime Transportation The role of the maritime transportation industry in the economy is changing dramatically. While the volume of goods being moved across the oceans and along the coasts comprises a large and growing share of the American economy, competitive pressures on the transportation industry and improved technologies are reducing the demand for labor, particularly in the handling
of freight. Expansions and improvements to maritime freight transportation will continue to be a key to the success of the ocean and national economies.

The rapid growth of the cruise ship industry, now operating in virtually all coastal regions, represents both an important new dimension to the marine transportation industry and is a part of the rapidly growing tourism and recreation industry. The cruise ship industry offers both significant economic development opportunities to the communities served by the industry and new challenges in community planning and environmental management as the equivalent of major resort hotels move up and down the coast.

Minerals The offshore oil and gas industry remains an important source of energy for the nation, albeit a controversial one. Like maritime transportation, employment in this industry is declining as efficiency improvements and changing output levels affect the industry. Also like maritime transportation, offshore oil and gas will continue to play an important part in the economy. Uses of other ocean minerals, like sand and gravel, are not currently large enough to play a significant role in the ocean economy, but may play a larger role in the future.

Tourism and Recreation The explosive growth of coastal and ocean tourism and recreation dominates the story of the ocean economy over the last decade, and this is likely to be the case for the foreseeable future. The growth in tourism and recreation is part of the reason for the rapid growth in employment and economic activity in the near shore regions, meaning that the issues discussed above concerning those trends are part of the story of tourism and recreation growth. Seasonal population and housing growth is also part of the story. While much attention has been devoted to promoting sustainable forms of “ecotourism” in coastal regions, it is clear that it is the overall growth of tourism and recreation activities in coastal areas that requires the greatest attention. There is also likely to be an increasing tie between population growth and tourism and recreation growth in coastal areas. As the baby boom generation moves into retirement in the next two decades, many will seek to permanently re-locate to the coastal regions where they have previously enjoyed vacations. Many coastal regions will develop sharp age structure imbalances, coming to be dominated by retirees and the aged.
7. The Future of Understanding the Coastal and Ocean Economy

Despite the size and importance of the ocean and coastal economy, the Federal government invests very little in trying to monitor and understand it. While the National Marine Fisheries Service and the Special Projects Office have ongoing economic research programs, they are limited to generating information directly related to NOAA programs. There is no organization with a general purpose economic research program or funding within NOAA comparable to the Economic Research Service in the Department of Agriculture, which has an annual budget of over $100 million. None of the major economic statistics agencies of the Federal government, including the Department of Commerce’s Bureau of the Census and Bureau of Economic Analysis or the Department of Labor’s Bureau of Labor Statistics, have either mandate or money to study the ocean and coastal economy.

The economic statistics cited in this report are the result of a NOAA and EPA-sponsored National Ocean Economics Project, a multi-year research study being conducted at several universities. This research program is providing critical information, but research is not a substitute for the kind of ongoing commitment to generating data that can be used to monitor and study the coastal and ocean economy. As part of its recommitment to ocean policy, the Federal government needs to establish an ongoing program of using its existing statistical resources to continue the measurement of the coastal and ocean economy and to generating additional data resources and analysis in this field.

A sustained effort to monitor and improve understanding of the coastal and ocean economy requires a cooperative approach among a number of different federal and nonfederal organizations. Seven organizations will play key roles.

1. **NOAA.** As the principal federal agency with responsibility for the oceans, NOAA must play the lead role, working with other agencies to set agendas for research and publication of data, as well as enhancing the use of economic data to assist decision making at the federal, state, and local levels.

2. **The Bureau of Labor Statistics.** BLS, in cooperation with the states, collects the most basic employment and wage data on the economy. The economic data presented here is based on the Longitudinal Data Base maintained by the Bureau. This data will continue to be the fundamental element of monitoring the coastal and ocean economy from national to local levels.

3. **The Bureau of the Census** is the other major collector of primary data on the economy, including the censuses of population and housing and of the major sectors of the economy. The Department of Agriculture has responsibility for the Census of Agriculture, which includes data on aquaculture.

4. **The Bureau of Economic Analysis.** BEA uses data inputs from the data collecting agencies to maintain the most important measure of annual economic activity, the national income and product accounts, the best-known element of which is the gross domestic product. Related measures such as the gross state product are key to understanding regional economies, as is the measurement of self employment.

5. **EPA.** The Environmental Protection Agency undertakes substantial economic research in the fields of land, water, and air pollution that affect ocean and coastal resources at many points. EPA’s economic research focuses particular attention on nonmarket values, and provides an important supplement to NOAA’s work in this area.

6. **The National Science Foundation** is the provider of support for much of the basic research in the sciences, including the social sciences. It has recently undertaken new initiatives to better link the natural and social sciences in the aid of improved management of the environment and natural resources, which fits well within the framework of socio-economic research on the coasts and oceans.

7. **Universities and Other Researchers.** As with marine science in general, the key research in measuring the coastal and ocean economy is a cooperative arrangement between the federal government and researchers in the nation’s universities and in private research organizations. The interaction among federal, academic, and private researchers, with the federal government providing a key catalytic role with funding, takes advantage of the strengths of multiple perspectives and organizational missions.

The future of socio-economic information for the coasts and oceans will require the successful creation
of a network among these and other organizations who are concerned with the coasts and oceans. That network must be built around the following functions:

- **Data Collection.** Standard measures of employment, income, and output for the ocean and coastal economy need to be developed and maintained. The work by the National Ocean Economics Project provides the foundation for this work. In addition, special measures must be developed for the unique aspects of the coastal and ocean economy. In particular, the influence of the coasts and ocean on land values needs to be understood throughout the range of different coast types. The vital role of the oceans in tourism and recreation needs to be better understood in terms of both market and nonmarket values, and the economic values of the ecosystem service roles of the coasts and oceans better measured.

- **Data Distribution.** Data must be collected, but they must also be widely distributed both to be available to policy makers to factor into decisions and to spur further research. The availability of contemporary database and Internet delivery systems makes this function easier and cheaper than ever.

- **Data Analysis.** Data are only useful when they are transformed into information through analysis. Data analysis should be driven in large part by the needs to support decision making at the federal, state, and local levels about the management of ocean and coastal resources. This will mean both analysis of socio-economic trends on their own, and, increasingly, the ability to analytically link changes in the socio-economic sphere to changes in the environment, and vice versa.

- **Education and Research.** Outside of the fields of fisheries and mineral economics, the field of ocean and coastal socio-economic studies is still relatively new and confined to a fairly small group of specialists. There must be an expansion of the field through training of both researchers and policy specialists to generate and use this information. Research must also continue to improve our measurement of non-market values, to develop measures of the use of coastal and ocean resources such as beaches, and to improve the data systems for standard measures such as employment and output. Current work in these areas represents a beginning, not an end to these endeavors. The advent of geographic information systems also substantially eases the integration of socio-economic with natural resource data, and this integration needs to be another focus of research so that the interactions between the human and natural environments in the coastal areas can be better understood.

Given these resources and needs, the federal government should commit to an ongoing program of socio-economic research of trends and values of the nation’s coasts and oceans. That program should include the following elements:

- Designation of a specific socioeconomic research and data collection function within NOAA.
- An interagency group, chaired by NOAA, of researchers and data providers in the federal agencies concerned with data for the coasts and oceans.
- An Advisory Board, reporting to NOAA and the interagency group, of outside researchers with appropriate expertise, to help set agendas, design programs, and evaluate progress.
- A statutory requirement that the Bureau of Labor Statistics and Bureau of Economic Analysis prepare an annual report on the employment, wages, and output associated with the coasts and oceans of the United States.
- A special effort to make available key data that are missing from the current suite of economic statistics, particularly employment and incomes in the fisheries harvesting sector.
- Regular funding for research into improved measures of both the market and non-market economic values of the coasts and oceans. An area of particular importance is establishing the economic value of the nation’s ocean and coastal resources as assets in which we invest.
- An Internet based data archive and distribution system that links key sources of coastal and ocean socioeconomic data and research.

Funding for these efforts should be in the $8–10 million range annually, with funds provided to both data using and data providing agency for sufficient staff and other costs. This is particularly the case for the data providing agencies such as the Bureau of Labor Statistics, Bureau of the Census and Bureau of Economic Analysis who cannot play their roles without additional resources. Partnership arrangements with nonfederal organizations like the National Ocean Economics Project should be maintained and expanded.

It should be noted that at a time of scarce budgetary resources, this amount may seem like a substantial sum. But it is less and than 1/10th of what the federal government currently spends on economic research in the agriculture sector, which is actually smaller than the ocean sector in the overall economy.
Table C.1 Population Change in the Three Tiers of the Coast

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>202.55</td>
<td>225.90</td>
<td>248.16</td>
<td>280.85</td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>107.99</td>
<td>117.56</td>
<td>130.89</td>
<td>145.49</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>75.51</td>
<td>82.87</td>
<td>92.94</td>
<td>103.59</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>35.26</td>
<td>39.11</td>
<td></td>
<td>39.11</td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000.
Source: US Census

Change

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N (millions)</td>
<td>Percent</td>
<td>N (millions)</td>
<td>Percent</td>
<td>N (millions)</td>
</tr>
<tr>
<td>United States</td>
<td>23.36</td>
<td>11.5%</td>
<td>22.25</td>
<td>9.9%</td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>9.58</td>
<td>8.9%</td>
<td>13.33</td>
<td>11.3%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>7.36</td>
<td>9.7%</td>
<td>10.08</td>
<td>12.2%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>3.85</td>
<td>10.9%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000.

Table C.2 Population Density in the Coastal Regions

<table>
<thead>
<tr>
<th></th>
<th>Percent of U.S.</th>
<th>Population Density (Persons per Square Mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>3,537,377</td>
<td>100.0%</td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>871,216</td>
<td>24.6%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>663,528</td>
<td>18.8%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>164,113</td>
<td>4.6%</td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000.
** In Square Miles. Excludes surface water area such as wetlands, lakes, and rivers.
Source: US Census
Table C.3 Population in Coastal Tiers by Coastal Region

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>202.55</td>
<td>225.90</td>
<td>248.16</td>
<td>280.85</td>
</tr>
<tr>
<td>Atlantic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>39.22</td>
<td>41.32</td>
<td>45.49</td>
<td>50.41</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>28.47</td>
<td>30.54</td>
<td>34.21</td>
<td>38.47</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>14.2</td>
<td>15.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>13.18</td>
<td>15.70</td>
<td>17.80</td>
<td>20.95</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>6.12</td>
<td>8.32</td>
<td>9.95</td>
<td>11.77</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>6.0</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>22.84</td>
<td>26.95</td>
<td>33.21</td>
<td>37.92</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>20.84</td>
<td>24.41</td>
<td>29.6</td>
<td>33.30</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>8.1</td>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Lakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>30.34</td>
<td>30.30</td>
<td>30.36</td>
<td>32.04</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>20.06</td>
<td>19.67</td>
<td>19.21</td>
<td>19.99</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>5.40</td>
<td>5.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (millions)</td>
<td>Percent</td>
<td>N (millions)</td>
<td>Percent</td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23.36</td>
<td>11.5%</td>
<td>22.25</td>
<td>9.9%</td>
</tr>
<tr>
<td>Atlantic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>2.10</td>
<td>5.4%</td>
<td>4.17</td>
<td>10.1%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>2.07</td>
<td>7.3%</td>
<td>3.67</td>
<td>12.0%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>1.50</td>
<td>10.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>2.52</td>
<td>19.1%</td>
<td>2.10</td>
<td>13.4%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>2.20</td>
<td>35.9%</td>
<td>1.63</td>
<td>19.6%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>1.10</td>
<td>18.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>4.11</td>
<td>18.0%</td>
<td>6.26</td>
<td>23.2%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>3.57</td>
<td>17.1%</td>
<td>5.19</td>
<td>21.3%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>0.80</td>
<td>9.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Lakes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>-0.04</td>
<td>-0.1%</td>
<td>0.06</td>
<td>0.2%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>-0.39</td>
<td>-1.9%</td>
<td>-0.46</td>
<td>-2.3%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>0.12</td>
<td>2.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000

Source: US Census
Table C.4 Population Growth by Coastal Tier and Urban/Rural County

<table>
<thead>
<tr>
<th></th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Watershed Counties</td>
<td>100.82</td>
<td>121.69</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>73.15</td>
<td>90.69</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>31.58</td>
<td>34.87</td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000

Source: US Census

Change

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (millions)</td>
<td>Percent</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>34.31</td>
<td>34.0%</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>28.23</td>
<td>38.6%</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>3.29</td>
<td>10.4%</td>
</tr>
</tbody>
</table>

* Data available only for 1990 and 2000

Table C.5 Total Coastal Economy

<table>
<thead>
<tr>
<th></th>
<th>Establishments</th>
<th>Wage & Salary Employment</th>
<th>Wages (Millions)</th>
<th>Gross State Product (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total U.S. Economy</td>
<td>NA</td>
<td>109,043,000</td>
<td>$2,743,643</td>
<td>$5,706,658</td>
</tr>
<tr>
<td>Total Coastal States</td>
<td>4,998,116</td>
<td>76,477,272</td>
<td>$1,850,303</td>
<td>$3,887,225</td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>3,101,001</td>
<td>49,068,567</td>
<td>$1,246,219</td>
<td>$2,584,802</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>2,267,894</td>
<td>36,395,010</td>
<td>$884,366</td>
<td>$1,865,741</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>776,991</td>
<td>10,784,785</td>
<td>$264,346</td>
<td>$558,634</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total U.S. Economy</td>
<td>NA</td>
<td>131,720,000</td>
<td>$4,834,254</td>
<td>$9,415,552</td>
</tr>
<tr>
<td>Total Coastal States</td>
<td>6,495,532</td>
<td>100,452,156</td>
<td>$3,632,333</td>
<td>$7,023,413</td>
</tr>
<tr>
<td>Coastal Watershed Counties</td>
<td>3,831,358</td>
<td>60,696,525</td>
<td>$2,334,920</td>
<td>$4,512,357</td>
</tr>
<tr>
<td>Coastal Zone Counties</td>
<td>2,906,685</td>
<td>44,659,916</td>
<td>$1,698,336</td>
<td>$3,264,539</td>
</tr>
<tr>
<td>Near Shore*</td>
<td>1,065,576</td>
<td>14,574,973</td>
<td>$536,196</td>
<td>$1,058,596</td>
</tr>
</tbody>
</table>

Percent Change 1990–2000	Total U.S. Economy	20.8%	76.2%	65.0%
Total Coastal States	30.0%	31.3%	96.3%	80.7%
Coastal Watershed Counties	23.6%	23.7%	87.4%	74.6%
Coastal Zone Counties	28.2%	22.8%	92.0%	75.0%
Near Shore*	37.1%	35.1%	102.8%	89.5%

* Data available only for 1990 and 2000

Table C.6 Private Ocean Economy

<table>
<thead>
<tr>
<th>Ocean Economy Sector</th>
<th>Establishments</th>
<th>Employment</th>
<th>Wages (Millions Current $)</th>
<th>Gross State Product (Millions Current $)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1990</td>
<td>2000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>91,203</td>
<td>1,924,014</td>
<td>$38,064</td>
<td>$87,074</td>
</tr>
<tr>
<td>Construction</td>
<td>2,144</td>
<td>30,198</td>
<td>$937</td>
<td>$1,854</td>
</tr>
<tr>
<td>Living Resources</td>
<td>5,098</td>
<td>71,819</td>
<td>$1,540</td>
<td>$4,421</td>
</tr>
<tr>
<td>Minerals</td>
<td>1,829</td>
<td>45,099</td>
<td>$1,860</td>
<td>$15,043</td>
</tr>
<tr>
<td>Ship & Boat Building</td>
<td>3,192</td>
<td>230,097</td>
<td>$6,564</td>
<td>$9,769</td>
</tr>
<tr>
<td>Tourism & Recreation</td>
<td>71,958</td>
<td>1,182,809</td>
<td>$13,447</td>
<td>$29,978</td>
</tr>
<tr>
<td>Transportation</td>
<td>6,982</td>
<td>363,992</td>
<td>$13,716</td>
<td>$26,008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>116,736</td>
<td>2,279,006</td>
<td>$55,704</td>
<td>$117,318</td>
</tr>
<tr>
<td>Construction</td>
<td>2,064</td>
<td>31,835</td>
<td>$1,364</td>
<td>$2,594</td>
</tr>
<tr>
<td>Living Resources</td>
<td>4,580</td>
<td>62,184</td>
<td>$1,838</td>
<td>$4,714</td>
</tr>
<tr>
<td>Minerals</td>
<td>1,984</td>
<td>40,097</td>
<td>$2,432</td>
<td>$15,414</td>
</tr>
<tr>
<td>Ship & Boat Building</td>
<td>3,684</td>
<td>176,098</td>
<td>$6,952</td>
<td>$8,089</td>
</tr>
<tr>
<td>Tourism & Recreation</td>
<td>95,850</td>
<td>1,672,156</td>
<td>$27,292</td>
<td>$59,497</td>
</tr>
<tr>
<td>Transportation</td>
<td>8,572</td>
<td>296,634</td>
<td>$15,826</td>
<td>$27,009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ocean Economy Sector</th>
<th>Establishments</th>
<th>Employment</th>
<th>Nominal Wages (Millions)</th>
<th>Nominal GSP (Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change 1990-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>25,533</td>
<td>354,993</td>
<td>$17,640</td>
<td>$30,244</td>
</tr>
<tr>
<td>Construction</td>
<td>(80)</td>
<td>1,638</td>
<td>$427</td>
<td>$740</td>
</tr>
<tr>
<td>Living Resources</td>
<td>(518)</td>
<td>(9,636)</td>
<td>$298</td>
<td>$293</td>
</tr>
<tr>
<td>Minerals</td>
<td>155</td>
<td>(5,002)</td>
<td>$572</td>
<td>$371</td>
</tr>
<tr>
<td>Ship & Boat Building</td>
<td>492</td>
<td>(53,999)</td>
<td>$388</td>
<td>-$1,680</td>
</tr>
<tr>
<td>Tourism & Recreation</td>
<td>23,892</td>
<td>489,346</td>
<td>$13,845</td>
<td>$29,519</td>
</tr>
<tr>
<td>Transportation</td>
<td>1,590</td>
<td>(67,357)</td>
<td>$2,110</td>
<td>$1,001</td>
</tr>
</tbody>
</table>

Percent Change 1990-2000				
TOTAL	28.0%	18.5%	46.3%	34.7%
Construction	-3.7%	5.4%	45.6%	39.9%
Living Resources	-10.2%	-13.4%	19.3%	6.6%
Minerals	8.5%	-11.1%	30.8%	2.5%
Ship & Boat Building	15.4%	-23.5%	5.9%	-17.2%
Tourism & Recreation	33.2%	41.4%	103.0%	98.5%
Transportation	22.8%	-18.5%	15.4%	3.8%

References

National Oceanic and Atmospheric Administration (2001). Spatial Patterns of Socioeconomic Data from 1970–2000: A national research dataset aggregated by watershed and political boundaries. Silver Spring, MD, NOAA.

CHARLES S. COLGAN is Professor of Public Policy and Management in the Edmund S. Muskie School of Public Service at the University of Southern Maine. He is also Associate Director of the USM Center for Business and Economic Research. He serves as Chief Economist of the National Ocean Economics Project. Prior to joining the University of Southern Maine he served with the Maine State Planning Office, where he was a Director and Treasurer of the Coastal States Organization. He served on the Outer Continental Shelf Policy Committee of the Department of the Interior from 1977–1986.

Comments on earlier drafts of this paper were provided by Tom Kitsos and Peter Hill of the Ocean Commission Staff, Dr. Linwood Pendleton of the University of Wyoming, Dr. Karen Polenske of the Massachusetts Institute of Technology, Dr. Michael Hanemann of the University of California-Berkeley, and Dr. Rodney Weiher, Chief Economist of the National Oceanic and Atmospheric Administration.

Dr. Judith Kildow of California State University-Monterey Bay and Principal Investigator of the National Ocean Economics Project coordinated the overall research project.

The fundamental research into the ocean and coastal economy is funded primarily by the Coastal Services Center, National Ocean Service, National Oceanic and Atmospheric Administration. Margaret Davidson, the Director of the Coastal Services Center, has provided the assistance required to sustain the research.

The Bureau of Labor Statistics Office of Employment and Unemployment Statistics has provided access to its data files in order to build the unique data sets used in the project under their Research Fellowship Program. Richard Clayton, David Tallan, and Amy Knaup of OEUS have provided much assistance in creating and managing the data sets.
“Counties” in this context includes not only political jurisdictions that function as counties, including parishes in Louisiana and boroughs in Alaska. It also includes Census-designated areas in some states. These are areas defined by the Census bureau as sub-state regions for statistical purposes even though there is no governmental function. Counties in Connecticut, Rhode Island, and Massachusetts, along with some regions in Alaska fall into this category. In Virginia, independent cities, which have functions to similar to counties, but are not classified as counties under state law, are included when they fall within defined coastal areas.

Boundaries of coastal zone are provided by the Office of Coastal Resource Management, NOAA.

The four states which define the entire state as the coastal zone are Florida, Rhode Island, Delaware, and Hawaii.

Examples of states using county boundaries include Washington, South Carolina, Mississippi, and North Carolina. States using municipal boundaries include Maine and Connecticut. In New York, the coastal zone includes counties along the Hudson River as far north as Albany, as well as counties along both the Atlantic and Great Lakes coasts. Pennsylvania defines its coastal zone only along Lake Erie and not along the Delaware River. In this analysis, Cook County Illinois is included in the coastal zone county definition, although Illinois does not participate in the CZM program to provide complete coverage of the nation.

This figure is based on the decennial census, which measures population on April 1 of the year. It does not include seasonal peak populations, which can be orders of magnitude higher in a number of coastal regions.

The Atlantic region is defined as coastal zone and coastal watershed counties from Washington County, Maine to Miami-Dade County, Florida, including the Chesapeake Bay counties of Maryland and Virginia. New York counties exclude counties on the Hudson River, beginning with New York County. Monroe County, Florida is counted in the Gulf of Mexico region. The Pacific region includes Hawaii and Alaska. Cook county is included in Illinois in the coastal zone definition, although Illinois does not participate in the CZM program.

For purposes of defining urban and rural, the Urban Influence Codes of the Department of Agriculture’s Economic Research Service are used. These codes define counties as urban or rural based on the population of the largest city or town, the location within a Census-defined metropolitan area, and the adjacency of the county to largest central city (if in a metro area) or to a metro area. For more information, see http://www.ers.usda.gov/briefing/rurality/UrbanInf/.

“Large community” is defined as a population in 1990 of 20,000 or more.

The National Ocean Economics Project is funded by NOAA and EPA. It involves researchers at the University of Southern California, University of Vermont, and University of Southern Maine. For more information see www.oceanconomics.org

Establishments are “places of business”, not firms. A firm may operate many establishments. Employment is defined as wage and salary employment in industries covered by the unemployment insurance laws. This definition excludes self employment, many of the employees in the railroad industry (who are covered under a separate federal statute), and farm employment. It also excludes harvesting sector employment in the fisheries. The Living Resources sector excludes harvesting sector employment, which is not collected nationally. Data for 1990 and 2000 are the only two years for which data on the ocean economy is currently available.

Wage and salary jobs. Source: Bureau of Economic Analysis.

Government employment is measured as total employment in government agencies and does not differentiate by type of function. Thus it is not possible to distinguish ocean related from non-ocean related government activities. Marine science organizations are, for the most part, separately reported from other science and research organizations and universities.

Measured as farm proprietors. Source: BEA.

Defined as two-digit SIC classifications.

The cruise ship industry is also poorly measured in the economic statistics. The cruise ships themselves are foreign owned and foreign crews thus do not show up in the U.S. gross state product figures. The principal measure of the cruise ship industry is thus the shore-side employment of support organizations who provide food, fuel, and other services. Consumer expenditures on cruise ships are measured in the gross domestic product within overall consumption, but cannot be separated out in this analysis of production.

Employment in the harvesting sector of the commercial fishing industry is not included in any government statistics programs because this industry is excluded from the unemployment insurance laws. Occasional estimates of harvesting employment have been made for various fisheries and regions, but there is no regular measurement of employment in this sector.

Tour boats should more properly be counted under tourism and recreation, and some are. But the SIC system does not separate ferry services from tour boats if the establishment is classified as waterborne passenger transportation.

A number of federal laws, including the Clean Water Act, the Comprehensive Environmental Response, Compensation, and Liability Act, and the National Marine Sanctuaries Act require that economic damages from events such as oil spills be assessed.

The economic term is consumer surplus, the value represented by what one would be willing to pay to use a beach less what someone actually pays to use the beach.
GLOSSARY OF FEDERAL OCEAN AND COASTAL-RELATED COMMISSIONS, COMMITTEES, COUNCILS, LAWS, AND PROGRAMS

SECTION 1
PURPOSE OF THIS GLOSSARY .. D 4

SECTION 2
OCEAN AND COASTAL-RELATED FEDERAL COMMISSIONS, COMMITTEES, AND COUNCILS .. D 5

Aquatic Nuisance Species Task Force .. D 5
Arctic Research Commission ... D 5
Atlantic States Marine Fisheries Commission .. D 5
Coral Reef Task Force ... D 5
Council on Environmental Quality ... D 6
Estuary Habitat Restoration Council ... D 6
Great Lakes Fishery Commission .. D 6
Gulf States Marine Fisheries Commission .. D 6
Joint Subcommittee on Aquaculture .. D 6
Marine Mammal Commission ... D 6
National Invasive Species Council ... D 7
National Ocean Research Leadership Council ... D 7
National Science and Technology Council—Committee on Environment and Natural Resources and Committee on Science .. D 7
Pacific States Marine Fisheries Commission .. D 7
Regional Fishery Management Councils ... D 7
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ocean and Coastal-related Federal Laws</td>
</tr>
<tr>
<td>D 8</td>
<td>Abandoned Shipwreck Act</td>
</tr>
<tr>
<td>D 8</td>
<td>Act to Prevent Pollution from Ships</td>
</tr>
<tr>
<td>D 8</td>
<td>Atlantic Coastal Fisheries Cooperative Management Act</td>
</tr>
<tr>
<td>D 8</td>
<td>Atlantic Striped Bass Conservation Act</td>
</tr>
<tr>
<td>D 8</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>D 8</td>
<td>Clean Vessel Act</td>
</tr>
<tr>
<td>D 8</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>D 9</td>
<td>Coastal Barrier Resources Act</td>
</tr>
<tr>
<td>D 9</td>
<td>Coastal Wetland Planning, Protection, and Restoration Act</td>
</tr>
<tr>
<td>D 9</td>
<td>Coastal Zone Management Act</td>
</tr>
<tr>
<td>D 9</td>
<td>Coastal Zone Act Reauthorization Amendments</td>
</tr>
<tr>
<td>D 10</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Coral Reef Conservation Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Deep Seabed Hard Mineral Resources Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Deep Water Royalty Relief Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Deepwater Port Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Disaster Mitigation Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>D 10</td>
<td>Estuary Restoration Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Farm Bill 1985—Food Security Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Farm Bill 1990—Food, Agriculture, Conservation, and Trade Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Farm Bill 1996—Federal Agriculture Improvement and Reform Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Farm Bill 2002—Farm Security and Rural Investment Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Federal Water Pollution Control Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Magnuson-Stevens Fishery Conservation and Management Act</td>
</tr>
<tr>
<td>D 11</td>
<td>Marine Mammal Protection Act</td>
</tr>
<tr>
<td>D 12</td>
<td>Marine Plastic Pollution Research and Control Act</td>
</tr>
<tr>
<td>D 12</td>
<td>Marine Protection, Research, and Sanctuaries Act</td>
</tr>
<tr>
<td>D 12</td>
<td>Methane Hydrate Research and Development Act</td>
</tr>
<tr>
<td>D 12</td>
<td>National Aquaculture Act</td>
</tr>
<tr>
<td>D 12</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>D 12</td>
<td>National Invasive Species Act of 1996</td>
</tr>
<tr>
<td>D 12</td>
<td>National Marine Sanctuaries Act</td>
</tr>
<tr>
<td>D 13</td>
<td>National Oceanographic Partnership Act</td>
</tr>
<tr>
<td>D 13</td>
<td>National Sea Grant College Act</td>
</tr>
<tr>
<td>D 13</td>
<td>Nonindigenous Aquatic Nuisance Prevention and Control Act</td>
</tr>
<tr>
<td>D 13</td>
<td>Ocean Dumping Act</td>
</tr>
<tr>
<td>D 13</td>
<td>Ocean Thermal Energy Conversion Act</td>
</tr>
</tbody>
</table>
SECTION 4

OCEAN AND COASTAL-RELATED FEDERAL PROGRAMS

Atmospheric Deposition Monitoring Programs ... D 15
Centers for Ocean Science Education Excellence ... D 15
Civil Works Program of USACE ... D 15
Clean Water Act—Beaches Environmental Assessment and Coastal Health Act D 15
Clean Water Act—Discharge of Dredged and Fill Material (Section 404) D 15
Clean Water Act—National Estuary Program (Section 320) ... D 16
Clean Water Act—Nonpoint Source Pollution Program (Section 319) D 16
Clean Water Act—Marine Sanitation Devices (Section 312) ... D 16
Clean Water Act—State Revolving Fund .. D 16
Clean Water Act—Total Maximum Daily Load Program (Section 303(d)) D 17
Clean Water Act—Water Quality Certification Program (Section 401) D 17
Coastal Barrier Resources System .. D 17
Coastal Nonpoint Pollution Control Program .. D 17
Coastal Program of USFWS ... D 17
Coastal Zone Management Program .. D 17
Environmental Monitoring and Assessment Program ... D 17
Flood Bill Conservation Programs .. D 18
National Estuarine Research Reserve System ... D 18
National Flood Insurance Program .. D 18
National Marine Sanctuary Program .. D 18
National Oceanographic Partnership Program ... D 18
National Park System .. D 19
National Sea Grant College Program ... D 19
National Status and Trends Program .. D 19
National Stream Quality Accounting Network ... D 19
National Streamflow Information Program ... D 19
National Water Quality Assessment ... D 19
National Wildlife Refuge System .. D 19
SECTION 1

PURPOSE OF THIS GLOSSARY

This glossary is intended to provide additional context or information on the origins of many of the federal commissions, committees, councils, laws, and programs noted in the report of the U.S. Commission on Ocean Policy. Glossary entries meet the following criteria for inclusion:

- The entry is mentioned in the report.
- The entry has a significant impact on ocean and coastal policy.
- The entry provides additional information not appropriate for the report text.
- The entry is authorized by federal legislation or an executive action of the President.

Where appropriate, the entries include cross-references to related items, legal citations, and Web site addresses.
Aquatic Nuisance Species Task Force

Established in 1990 by the Nonindigenous Aquatic Nuisance Prevention and Control Act (Pub. L. 101–646; 16 U.S.C. §§ 4701 et seq.) and expanded by the National Invasive Species Act in 1996 (Pub. L. 104–332), the Aquatic Nuisance Species Task Force convenes regional panels and issue-specific committees to coordinate governmental efforts dealing with aquatic nuisance species in the United States. Its activities include research, formulation of strategies to prevent species introductions and dispersal, species control and monitoring, dissemination of information, and the development of state management plans. NOAA and USFWS co-chair the task force, which includes seven federal agency representatives, an observer from Canada, and twelve nonfederal stakeholders.

Atlantic States Marine Fisheries Commission

In 1942, fifteen Atlantic Coast states, stretching from Maine to Florida and including Pennsylvania, formed the Atlantic States Marine Fisheries Commission (ASMFC), a Congressionally-chartered interstate compact agency. The ASMFC assists in managing and conserving coastal fishery resources in state waters through the development of interstate fishery management plans that rely on state authorities for implementation. Congressional legislation in 1984 and 1993 made compliance with the plans, which was originally voluntary, enforceable by giving the Secretary of Commerce authority to close a state’s fishery upon the recommendation of the ASMFC. The ASMFC’s other program areas are research, habitat conservation, sport fish restoration, and law enforcement.

Arctic Research Commission

Created by the Arctic Research and Policy Act of 1984 (Pub. L. 98–373; 15 U.S.C. §§ 4102 et seq.), the Arctic Research Commission’s five members, appointed by the President, review federal research programs in the Arctic, make recommendations, and publish a report to the President and Congress. Members are drawn from academia, indigenous residents, and private industry.

Coral Reef Task Force

Established in 1998 by Executive Order 13089, the Coral Reef Task Force has a mandate to map and monitor U.S. coral reefs, research the causes and solutions to coral reef degradation, reduce and mitigate coral reef degradation from pollution, overfishing and other causes, and implement strategies to promote conservation and sustainable use of coral reefs internationally. Co-chaired by the Departments of Commerce and the Interior, other members include CEQ, USDA, DOD, DOJ, DOS, DOT, EPA, NASA, NSF, USAID, USCG and affected U.S. states and territories.

Council on Environmental Quality

Created by the National Environmental Policy Act of 1969 (NEPA; Pub. L. 91–190; 42 U.S.C. §§ 4321 et seq.), the Council on Environmental Quality (CEQ) in the Executive Office of the President has a mandate to ensure that federal agencies meet their NEPA obligations and to report to the President on the state of the environment. CEQ also oversees federal agency implementation of the environmental impact assessment process and mediates disagreements between agencies over the adequacy of such assessments.

Web: <http://www.whitehouse.gov/ceq>.

Estuary Habitat Restoration Council

The Estuary Habitat Restoration Council (EHRC), created by the Estuary Restoration Act (Pub. L. 106–457; 33 U.S.C. §§ 2901 et seq.), includes the USACE, NOAA, EPA, USFWS, and USDA. The EHRC is required to develop a strategy for restoring estuaries, and published a final strategy for restoring estuaries in thirty states and U.S. territories in December 2002. The goal of the strategy is to restore one million acres of habitat by 2010.

Great Lakes Fishery Commission

The Great Lakes Fishery Commission (GLFC) was established in 1955 by the Convention on Great Lakes Fisheries, a bilateral treaty between the United States and Canada. The GLFC coordinates fisheries research, implements programs to control the invasive sea lamprey, and facilitates cooperative fishery management among state, provincial, tribal, and federal management agencies.

Gulf States Marine Fisheries Commission

In 1949, five states bordering the Gulf of Mexico (AL, FL, LA, MS, and TX) formed the Gulf States Marine Fisheries Commission (GSMFC), a congresionally-chartered interstate compact agency. The GSMFC assists in managing and conserving coastal fishery resources in state waters through the development of interjurisdictional fishery management plans that rely on state authorities for implementation, and coordinates state and federal programs regarding marine fisheries resources. The GSMFC’s other program areas are data collection, habitat conservation, and sport fish restoration.

Joint Subcommittee on Aquaculture

Established by the National Aquaculture Act of 1980 (Pub. L. 96–362; 16 U.S.C. §§ 2801 et seq.), the Joint Subcommittee on Aquaculture (JSA) operates under the aegis of the National Science and Technology Council of the Office of Science and Technology Policy in the Executive Office of the President. The Subcommittee reviews national needs related to aquaculture, assesses the effectiveness of federal efforts, and recommends actions on aquaculture issues. The Secretary of Agriculture is the permanent chair of the JSA. Members include approximately a dozen federal agencies.

Marine Mammal Commission

The Marine Mammal Commission (MMC) was created by the Marine Mammal Protection Act (Pub. L. 92–522; 16 U.S.C. §§ 1401 et seq.) to provide independent oversight of the marine mammal conservation policies and programs carried out by federal regulatory agencies. The MMC is charged with developing, reviewing, and making recommendations on domestic and international actions and policies of all federal agencies with respect to marine mammal protection and conservation and with carrying out a research program. The President appoints the MMC’s three members.

National Invasive Species Council

National and international concern about invasive species led to the issuance of Executive Order 13112 in February 1999. The Executive Order established the National Invasive Species Council, consisting of ten federal departments and agencies, to provide national leadership on terrestrial and aquatic invasive species.

National Ocean Research Leadership Council

The National Ocean Research Leadership Council (NORLC) is the governing body of the National Oceanographic Partnership Program (NOPP), both created by the National Oceanographic Partnership Act of 1996 (Pub. L. 104–201) to support research and education that advances ocean understanding. The NORLC consists of the heads of twelve federal agencies involved in funding or setting policy for ocean research. The NORLC is advised by a group of nonfederal experts in ocean matters, whose members represent the National Academy of Sciences, academic oceanographic research institutions, state governments, and others.
See also Section 4 (Federal Programs): National Oceanographic Partnership Program.

Pacific States Marine Fisheries Commission

Authorized by Congress in 1947, the Pacific States Marine Fisheries Commission (PSMFC) is an interstate compact agency that includes five western states (AK, CA, ID, OR, and WA). PSMFC programs include fisheries data collection, research, and monitoring, information dissemination, and facilitation of interstate agreements on fishery management issues.

Regional Fishery Management Councils

In 1976, the Fishery Conservation and Management Act (now titled the Magnuson-Stevens Fishery Conservation and Management Act) created eight Regional Fishery Management Councils (RFMCs) to manage the living marine resources within the nation’s exclusive economic zone as later defined by the Act. The RFMCs operate in the Caribbean, Gulf of Mexico, Mid-Atlantic, New England, North Pacific, Pacific, South Atlantic, and Western Pacific regions. Each RFMC consists of a NMFS regional director, directors of the state marine management agencies, and members nominated by state governors and appointed by the Secretary of Commerce. In addition, there are at least three nonvoting members representing USCG, USFWS, and DOS; other nonvoting members may also be appointed.
SECTION 3

OCEAN AND COASTAL-RELATED FEDERAL LAWS

Abandoned Shipwreck Act

The Abandoned Shipwreck Act of 1987 (Pub. L. 100–298; 43 U.S.C. §§ 2101 et seq.) vests title to certain abandoned shipwrecks in state submerged lands to the federal government which, with certain exceptions, immediately transfers ownership to the state whose submerged lands contain the shipwreck. States are encouraged to develop policies to allow for public and private sector recovery of shipwrecks consistent with the protection of historical values and environmental integrity and with guidelines issued by the Secretary of the Interior.

Atlantic Striped Bass Conservation Act

In 1984, Congress enacted the Atlantic Striped Bass Conservation Act (Pub. L. 98–613; 16 U.S.C. §§ 1851 et seq.), requiring the Secretary of Commerce to impose a moratorium on fishing for striped bass in any state that is not in compliance with the Atlantic States Marine Fisheries Commission (ASMFC) interstate fisheries management plan for striped bass. Such action must be recommended by the ASMFC, and noncompliance confirmed by the Secretary. See Section 2 (Federal Commissions, Committees, and Councils): Atlantic States Marine Fisheries Commission.

Act to Prevent Pollution from Ships

In 1980, Congress enacted the Act to Prevent Pollution from Ships (APPS; Pub. L. 96–478; 33 U.S.C. §§ 1901 et seq.). Together with subsequent amendments, APPS prohibits the discharge of oil and noxious liquids and the disposal of various types of garbage in offshore waters consistent with the International Convention for the Prevention of Pollution from Ships (known as MARPOL). Requirements vary based on the form of the material and the vessel's location and distance from shore. The law applies to all ships, whether U.S. or foreign flag, that are subject to U.S. jurisdiction.

Clean Air Act

Congress passed the Clean Air Act Amendments of 1970 (CAA; Pub. L. 91–604; 42 U.S.C. §§ 7401 et seq.) to regulate pollution from stationary and mobile sources. Administered by EPA, the bulk of the CAA is concerned with establishing a regulatory program for controlling air pollution, although it does address the goal of improving air quality through federal subsidies, technical assistance, studies, training, and other methods. Managing atmospheric deposition of pollutants to water bodies is the principal nexus between the CAA and ocean and coastal management concerns.

Atlantic Coastal Fisheries Cooperative Management Act

In 1993, Congress enacted the Atlantic Coastal Fisheries Cooperative Management Act (Pub. L. 103–206; 16 U.S.C. §§ 5107 et seq.), which provides a mechanism to ensure state compliance with mandated conservation measures of interstate fishery management plans approved by the Atlantic States Marine Fisheries Commission. See Section 2 (Federal Commissions, Committees, and Councils): Atlantic States Marine Fisheries Commission.

Clean Vessel Act

Under the Clean Vessel Act of 1972 (Pub. L. 102–587; 33 U.S.C. §§ 1322 et seq.), the USFWS administers a program to issue grants to coastal and inland states for pumpout stations and waste reception facilities to dispose of recreational boater sewage.
Clean Water Act

Congress enacted the Federal Water Pollution Control Act Amendments of 1972 (Pub. L. 92–500; 33 U.S.C. §§ 1251 et seq.), more commonly known as the Clean Water Act (CWA), to “restore and maintain the chemical, physical, and biological integrity of the Nation’s waters” in order to support “the protection and propagation of fish, shellfish, and wildlife and recreation in and on the water.” The CWA, implemented primarily by EPA and amended numerous times, employs a number of regulatory and non-regulatory tools to reduce direct pollutant discharges into waterways, finance municipal wastewater treatment facilities, and manage polluted runoff. See Section 4 (Federal Programs): Descriptions of a number of CWA programs.

Coastal Barrier Resources Act

The Coastal Barrier Resources Act of 1982 (CBRA; Pub. L. 97–348; 16 U.S.C. §§ 3501 et seq.) established the Coastal Barrier Resources System that currently consists of nearly 1.3 million acres of coastal barrier islands along the Atlantic and Gulf coasts, Puerto Rico, the U.S. Virgin Islands, and the Great Lakes. USFWS, which administers the program, submits recommendations to Congress for new sites; Congress acts to add or exempt sites. The system seeks to preserve natural resources and minimize the loss of human life and property resulting from poorly located coastal barrier development by restricting the developer and property owners from obtaining federal financial assistance, such as flood insurance coverage or infrastructure expenditures, with exceptions for military and Coast Guard use.

Coastal Wetland Planning, Protection, and Restoration Act

Congress enacted the Coastal Wetland Planning, Protection and Restoration Act (CWPPRA; Pub. L. 101–646; 16 U.S.C. §§ 3951 et seq.), also known as the Breaux Act after its chief legislative sponsor, in 1990 to address wetland loss in coastal states through acquisition, protection, and restoration projects. The CWPPRA is jointly administered by the EPA and USFWS and includes annual funding of approximately $50 million for Louisiana and between $11 and $15 million awarded through a competitive grant process for other states.

Coastal Zone Management Act

Congress enacted the Coastal Zone Management Act of 1972 (CZMA; Pub. L. 92–583; 16 U.S.C. §§ 1451 et seq.) to promote the sustainable development of the nation’s coasts by encouraging states and territories to balance the conservation and development of coastal resources using their own management authorities. Implemented by NOAA, the CZMA provides financial and technical assistance incentives for states to manage their coastal zones consistent with the guidelines of the Act. States with federally approved programs also receive “federal consistency” authority to require that federal activities affecting their coastal zone are consistent with the state’s coastal management program. The CZMA also established the National Estuarine Research Reserve System, and is associated with the coastal nonpoint pollution control program established under the Coastal Zone Act Reauthorization Amendments. See: Coastal Zone Act Reauthorization Amendments See Section 4 (Federal Programs): Coastal Zone Management Program and National Estuarine Research Reserve System.

Coastal Zone Act Reauthorization Amendments

The Coastal Zone Act Reauthorization Amendments of 1990 (CZARA; Pub. L. 106–580; 16 U.S.C. §1455b), enacted as section 6217 of the Omnibus Budget Reconciliation Act of 1990 amending the Coastal Zone Management Act, established the Coastal Nonpoint Pollution Control Program to improve coastal water quality. Jointly administered by NOAA and EPA, the program requires every state with a federally-approved coastal management program to identify management measures to address nonpoint source pollution of coastal waters. State programs must include enforceable policies and mechanisms to ensure implementation of the measures. See: Coastal Zone Management Act.
Comprehensive Environmental Response, Compensation, and Liability Act

Enacted in 1980, the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA; Pub. L. 96–510; 42 U.S.C. §§ 9601 et seq.) gives the federal government broad authority to respond to releases or threatened releases of hazardous substances that may endanger public health or the environment. EPA is the lead implementing agency. CERCLA also sets requirements concerning closed and abandoned hazardous waste sites, including for liability of persons responsible for releases of hazardous waste at such sites.

Coral Reef Conservation Act

Deep Seabed Hard Mineral Resources Act

Deep Water Royalty Relief Act

The Deep Water Royalty Relief Act of 1995 (Pub. L. 104–58; 42 U.S.C. § 1337) amends the OCSLA to provide incentives in the form of royalty reductions for oil and gas leases in deep water areas of the Gulf of Mexico to encourage leasing and exploration and help spur the development of advanced new technologies for production of oil and gas in these areas.

Deepwater Port Act

The Deepwater Port Act of 1974 (Pub. L. 93–627; 33 U.S.C. §§ 1501 et seq.), as amended in 2002, authorizes and regulates the location, ownership, construction, and operation of deepwater ports (defined as a non-vessel, fixed or floating manmade structure that is used as a port or terminal for the loading, unloading, or handling of oil or natural gas for transportation to a state) in waters beyond the U.S. state seaward boundaries, sets requirements for the protection of marine and coastal environments from adverse effects of such port development, and promotes safe transport of oil and natural gas from such locations.

Disaster Mitigation Act

The Disaster Mitigation Act of 2000 (Pub. L. 106–390; 42 U.S.C. §§ 5121 et seq.) requires FEMA to impose more stringent hazard mitigation planning on states. States that fail to meet new criteria developed by FEMA are denied disaster assistance awards and other types of funding, while states that exceed requirements are eligible to use a greater proportion of any post-disaster funding they receive to implement hazard mitigation projects.

Endangered Species Act

The Endangered Species Act of 1973 (ESA; Pub. L. 93–205; 16 U.S.C. §§ 1531 et seq.) protects species of plants and animals listed as threatened or endangered. NOAA or USFWS determine the species that are endangered or threatened and are directed to designate critical habitat and develop and implement recovery plans for threatened and endangered species. Once a species is listed, federal agencies must ensure that any action they authorize, fund, or carry out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of their critical habitat.

Estuary Restoration Act

Farm Bill 1985—Food Security Act

Farm Bill 1990—Food, Agriculture, Conservation, and Trade Act

The Food, Agriculture, Conservation, and Trade Act of 1990 (Pub. L. 101–624; 14 U.S.C. §§ 1401 et seq.) maintained, with certain amendments, the conservation provisions of the 1985 Farm Bill and created new conservation programs applying to forestry activities. See Section 4 (Federal Programs): Farm Bill Conservation Programs.

Farm Bill 1996—Federal Agriculture Improvement and Reform Act

Farm Bill 2002—Farm Security and Rural Investment Act

The Farm Security and Rural Investment Act of 2002 (Pub. L. 107–171) greatly expanded overall funding for Farm Bill conservation programs and shifted the emphasis of funding from land retirement programs to supporting conservation measures on working agricultural lands. See Section 4 (Federal Programs): Farm Bill Conservation Programs.

Federal Water Pollution Control Act

See: Clean Water Act.

Magnuson-Stevens Fishery Conservation and Management Act

When Congress passed the Fishery Conservation and Management Act in 1976 (Pub. L. 94–265; 16 U.S.C. §§ 1801 et seq.), it claimed for the nation sovereign rights and exclusive fishery management authority over all fishery resources within 200 miles of the coast, and over certain continental shelf and anadromous fishery resources even beyond 200 miles. Later renamed the Magnuson-Stevens Fishery Conservation and Management Act (M-S Act), the Act as amended established national standards for fishery conservation and management in U.S. waters. The M-S Act also created eight Regional Fishery Management Councils composed of state and federal officials and fishing industry representatives that prepare and amend fishery management plans for certain fisheries requiring conservation and management. The Act also requires that fishery management plans identify essential fish habitat and protection and conservation measures for each managed species. In 1996, the Sustainable Fisheries Act amended the M-S Act to require NMFS to undertake a number of science, management, and conservation actions to prevent overfishing, rebuild overfished stocks, protect essential fish habitat, minimize bycatch, enhance research, and improve monitoring. See Section 2 (Commissions, Committees, and Councils): Regional Fishery Management Councils.

Marine Mammal Protection Act

Under the Marine Mammal Protection Act of 1972 (MMPA; Pub. L. 92–522; 16 U.S.C. §§ 1361 et seq.), NOAA has responsibility for ensuring the protection of cetaceans (whales, porpoises, and dolphins) and pinnipeds (seals and sea lions), except walruses. USFWS is responsible for ensuring the protection of walruses, sea otters, polar bears, and manatees. NOAA and USFWS are required to consult with the Marine Mammal Commission, also created by the MMPA. With several exceptions, the MMPA establishes a moratorium on the taking and importation of marine mammals and marine mammal products. See Section 2 (Commissions, Committees, and Councils): Marine Mammal Commission.
Marine Plastic Pollution Research and Control Act

Marine Protection, Research, and Sanctuaries Act

The Marine Protection, Research and Sanctuaries Act of 1972 (Pub. L. 92–532; 33 U.S.C. §§ 1401 et seq.) established programs to regulate ocean dumping, conduct ocean dumping research, and set aside areas of the marine environment as national marine sanctuaries. Title I is also known as the Ocean Dumping Act and seeks to prevent or strictly limit the dumping into ocean waters of any material that would adversely affect human health, welfare, or amenities, or the marine environment, ecological systems, or economic potential. Under Title I, the USACE is authorized to issue permits for dredged material disposal, and the EPA is authorized to designate appropriate dump sites, and to issue permits for dumping of material other than dredged material. Title III is also known as the National Marine Sanctuaries Act and authorizes the Secretary of Commerce to designate discrete areas of the marine environment as national marine sanctuaries to protect distinctive natural and cultural resources. NOAA administers the National Marine Sanctuary Program. See Section 4 (Federal Programs): National Marine Sanctuary Program.

Methane Hydrate Research and Development Act

Congress enacted the Methane Hydrate Research and Development Act of 2000 (Pub. L. 106–193) to promote the research, identification, assessment, exploration, and development of methane hydrate resources by creating a federal research and development program and establishing a Methane Hydrate Advisory Committee.

National Aquaculture Act

National Environmental Policy Act

The National Environmental Policy Act (NEPA; Pub. L. 91–190; 42 U.S.C. §§ 4321 et seq.) requires all federal agencies to include a detailed statement of the environmental impact of a major federal action significantly affecting the human environment. A “major” federal action is one that requires substantial planning, time, resources, or expenditure that the federal agency proposes or permits. Through Environmental Assessment and Environmental Impact Statement reviews, federal agencies are required to consider environmental impacts before action is taken. In addition, NEPA mandates coordination and collaboration among federal agencies. NEPA also created the Council on Environmental Quality in the Executive Office of the President. See Section 2 (Commissions, Committees, and Councils): Council on Environmental Quality.

National Invasive Species Act of 1996

The National Invasive Species Act of 1996 (Pub. L. 104–332; 16 U.S.C. §§ 4701 et seq.) substantially amended the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 (Pub. L. 101–646), which is the primary federal law dealing with aquatic invasive species and ballast water management, and is the basis for Coast Guard regulations and guidelines to prevent introductions of non-native species through the uptake and discharge of ships’ ballast water. See: Nonindigenous Aquatic Nuisance Prevention and Control Act See also Section 2 (Commissions, Committees, and Councils): Aquatic Nuisance Species Task Force.

National Marine Sanctuaries Act

National Oceanographic Partnership Act

Enacted as part of the 1997 National Defense Authorization Act, the National Oceanographic Partnership Act (Pub. L. 104–201) created the National Oceanographic Partnership Program and its governing body, the National Ocean Research Leadership Council, to promote the national interest in natural security, economic development, quality of life, and strong science education and communication through improved knowledge of the ocean.

See also Section 4 (Federal Programs): National Oceanographic Partnership Program.

National Sea Grant College Act

The National Sea Grant College Act of 1966 (Pub. L. 89–688; 33 U.S.C. §§ 1121 et seq.) established a network of programs at universities and scientific institutions focused on ocean, coastal, and Great Lakes research, education and outreach activities, and was modeled on the research and extension activities of the nation’s land grant universities. Sea Grant administration was originally housed at the National Science Foundation, but was transferred to the newly created NOAA in the Department of Commerce in 1970.

Nonindigenous Aquatic Nuisance Prevention and Control Act

The Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990 (NANPCA; Pub. L. 101–646; 16 U.S.C. §§ 4701 et seq.) created a broad new federal program to prevent the introduction of aquatic nuisance species and control their spread. The Act established the federal interagency Aquatic Nuisance Species Task Force, whose members include USFWS, USCG, EPA, USACE, and NOAA, to develop a program of prevention, monitoring, control, and study. NANPCA was reauthorized and expanded by the National Invasive Species Act of 1996.

See also Section 2 (Commissions, Committees, and Councils): Aquatic Nuisance Species Task Force.

Ocean Dumping Act

Ocean Thermal Energy Conversion Act

The Ocean Thermal Energy Conversion Act of 1980 (Pub. L. 96–320; 42 U.S.C. §§ 9101 et seq.), administered by NOAA, established a program to license facilities and plantships designed to convert thermal gradients in the ocean into electricity.

Oceans Act of 2000

The Oceans Act of 2000 (Pub. L. 106–256; 33 U.S.C. § 857–19) established the U.S. Commission on Ocean Policy to carry out a comprehensive review of marine-related issues and laws and make recommendations to Congress and the President for a coordinated and comprehensive national ocean policy and system of ocean governance.

Oil Pollution Act of 1990

The Oil Pollution Act of 1990 (OPA; Pub. L. 101–380; 33 U.S.C. §§ 2701 et seq.), enacted after the Exxon Valdez oil spill in Alaska’s Prince William Sound, addresses oil discharges to navigable waters and shorelines. The Act seeks to harmonize oil spill response mechanisms from the Clean Water Act, the Deepwater Port Act of 1974, the Trans-Alaska Pipeline Act, and the Outer Continental Shelf Lands Act and other federal laws with state laws, international conventions, and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). OPA requires that emergency response plans be prepared, raises liability limits, and creates an Oil Spill Liability Trust Fund to pay for removal costs and damages if the government is unable to collect cleanup costs from the liable party.
Outer Continental Shelf Lands Act

The Outer Continental Shelf Lands Act of 1953 (OCSLA; Pub. L. 83–212; 43 U.S.C. §§ 1331 et seq.) asserted United States jurisdiction over and ownership of the mineral resources of the continental shelf seaward of state boundaries (generally three miles offshore). The OCSLA authorized the Secretary of the Interior to lease offshore tracts through competitive bidding, collect royalties on production of oil and natural gas, cancel leases if continued activity is likely to cause serious harm to life, including fish and other aquatic life, and consider economic, social, and environmental values of renewable and nonrenewable resources in managing the outer Continental Shelf (OCS). In 1978, Congress significantly revised the OCSLA with the Outer Continental Shelf Lands Act Amendments, requiring the Secretary of the Interior to balance energy needs with the protection of human, marine, and coastal environments, provide greater opportunities for coastal states and competing user concerns to be taken into account, and to integrate improved environmental procedures into the OCS process.

Rivers and Harbors Act Section 10

Section 10 of the Rivers and Harbors Act of 1899 (30 Stat. 1151; 33 U.S.C. §§ 403 et seq.) prohibits the unauthorized obstruction of navigable waters of the United States or on the outer Continental Shelf (OCS). Construction of any structure or excavation or fill in U.S. navigable waters, including the OCS, is prohibited without a permit from USACE. Courts have also interpreted such obstructions to include pollution if it destroys the navigable capacity of a navigable waterway.

Submerged Lands Act

Congress enacted the Submerged Lands Act of 1953 (SLA; Pub. L. 83–31; 43 U.S.C. §§ 1301 et seq.) to grant to the U.S. coastal states title to the natural resources located within three nautical miles of their coastlines (nine nautical miles for Texas and the Gulf Coast of Florida). For purposes of the SLA, the term “natural resources” comprise oil, gas, and all other minerals, and all fish and other marine animal and plant life. The SLA also preserves the control of the seabed and its resources beyond state boundaries for the federal government.

Sustainable Fisheries Act

See: Magnuson-Stevens Fishery Conservation and Management Act.

Water Resources Development Act

Congress enacts a Water Resources Development Act (most recent WRDA at Pub. L. 108–137; 33 U.S.C. §§ 2201 et seq.) approximately every two years. WRDAs authorize USACE to study or implement individual projects around the nation, including navigation improvements, flood and shoreline erosion control, hurricane and storm damage reduction, emergency stream bank and shoreline stabilization, recreation, and more. WRDAs also contain provisions of general applicability to USACE activities, such as directives that establish environmental protection and no-net-loss of wetlands as USACE goals, and also authorize funding for technical assistance and studies for state, local, and tribal governments.
Atmospheric Deposition Monitoring Programs

Numerous federal agencies, including EPA, NOAA, and a number of agencies within the Departments of Agriculture, the Interior, and Energy collaborate with dozens of academic, research, industry, and state and local government entities in a variety of networks that monitor the atmospheric deposition of pollution to water bodies. The preeminent national deposition monitoring network is the National Atmospheric Deposition Program, which monitors more than 200 sites nationwide. EPA administers the Clean Air Status and Trends Network, measuring deposition at about 80 sites.

Centers for Ocean Science Education Excellence

The Centers for Ocean Science Education Excellence (COSEE) promote partnerships between research scientists and educators to advance ocean sciences education. The centers are a network of seven regional centers and a central coordinating office funded by the National Science Foundation with additional support from the U.S. Navy's Office of Naval Research and NOAAs National Sea Grant Program, National Ocean Service, and Office of Ocean Exploration. Launched in 2002, each center has multiple participating academic, research, and educational institutions.

Civil Works Program of USACE

The USACE Civil Works Program encompasses a vast array of programs that affect ocean and coastal resources, including permitting and implementation of wetland fill projects, offshore dumping and structures, navigational and other types of dredging, flood control projects, beach nourishment and other shoreline protection projects, invasive species control, regional sediment management, dam removal, disaster response, and more.

Clean Water Act—Beaches Environmental Assessment and Coastal Health Act

The Beaches Environmental Assessment and Coastal Health Act of 2000 amends section 303(a) and several other sections of the Clean Water Act to require states to set certain types of water quality standards for their coastal recreational waters. It also authorizes EPA to award grants to eligible states, territories, tribes, and local governments to support testing and monitoring of coastal recreational waters.

Web: <http://www.epa.gov/beaches/>.

Clean Water Act—Discharge of Dredged and Fill Material (Section 404)

EPA and the USACE jointly administer the program created by Section 404 of the Clean Water Act, which prohibits the discharge of dredged or fill material into waters of the United States, including wetlands, without a permit. Such discharges may occur only when there is no alternative that is less damaging to the aquatic environment. The applicant must demonstrate efforts to avoid and minimize potential adverse impacts, and, where relevant, must provide compensation for any remaining, unavoidable impacts through activities to restore or create wetlands. EPA can veto a USACE permit decision.

Clean Water Act—National Estuary Program (Section 320)

Created by 1987 amendments to the Clean Water Act, the National Estuary Program was established to improve the quality of estuaries of national importance. EPA administers the program, providing funds and technical assistance to local stakeholders to develop plans for attaining or maintaining water quality in a designated estuary. Stakeholders create a comprehensive conservation and management plan that includes measures for protection of public water supplies, protection and propagation of shellfish, fish, and wildlife populations, allowance for recreational activities in and on the water, and control of point and nonpoint sources of pollution that supplement existing pollution control measures. There are currently twenty-eight estuaries in the program. In addition to the National Estuary Program, the Clean Water Act also authorizes several other important regional estuary programs such as the Chesapeake Bay Program and the Great Lakes Program.

Clean Water Act—National Pollutant Discharge Elimination System (Section 402)

Established by the Clean Water Act in 1972, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources (e.g., pipes or constructed ditches) that discharge pollutants into waters of the United States. Industrial, municipal, and other facilities must obtain permits if their discharges go directly to surface waters. In most cases, the NPDES permit program is administered by authorized states.

Clean Water Act—Nonpoint Source Pollution Program (Section 319)

Under the Clean Water Act Nonpoint Source Pollution Program, EPA provides matching grants to states to develop and implement statewide programs for managing nonpoint sources of water pollution, such as runoff from farms, parking lots, and lawns. States must prepare an assessment of waters where the control of nonpoint source pollution is necessary to meet water quality standards, identify the significant sources of that pollution, and specify control measures. States also must develop a program that sets forth the best management practices necessary to remedy the problems.

Clean Water Act—Marine Sanitation Devices (Section 312)

Section 312 of the Clean Water Act requires vessels that operate in U.S. navigable waters and that have installed toilet facilities to have operable marine sanitation devices certified as meeting certain standards. Section 312 also allows establishment of zones where discharge of sewage from vessels is completely prohibited. Section 312 does not apply beyond three nautical miles offshore.

Clean Water Act—State Revolving Fund

The Clean Water State Revolving Fund (CWSRF) provides matching grant funds to states to establish revolving loan programs that provide below-market interest rates on loans and other financial incentives to towns, counties, nonprofit organizations, farmers, and homeowners for water quality improvement projects. The funds, which may finance only capital costs (not operations and maintenance costs) are mostly used for constructing wastewater treatment plants. From its inception in 1988 to 2002, the funds have provided an average of $3.8 billion per year for water quality improvement. Since the program’s inception, $38.7 billion has been disbursed.

Clean Water Act—Total Maximum Daily Load Program (Section 303(d))

Section 303(d) of the Clean Water Act created the Total Maximum Daily Load (TMDL) program to address waters in the nation that still do not meet the Clean Water Act goal of “fishable, swimmable” after implementing pollution control technology at point sources of pollution. Under the TMDL program, states must identify and develop TMDLs for such waters with EPA oversight. A TMDL is the maximum amount of a pollutant, from both point and nonpoint sources, that can be accommodated while still meeting water quality standards. States must develop a TMDL for each pollutant of concern, and develop and implement plans to achieve and maintain TMDLs by allocating reductions among point and nonpoint sources.

Web: <http://www.epa.gov/owow/tmdl>.

Clean Water Act—Water Quality Certification Program (Section 401)

The Clean Water Act Section 401 program, administered by EPA, requires federal agencies to obtain certification, or to require permit applicants to do so, from the state, territory, or Indian tribes before issuing permits that would result in increased pollutant loads to waters and wetlands. The certification is issued only if such increased loads would not cause or contribute to violations of water quality standards. States may grant, deny, or condition these certifications.

Coastal Program of USFWS

The USFWS Coastal Program focuses efforts to conserve fish and wildlife and their habitats in support of healthy coastal ecosystems in bays, estuaries and watersheds around the U.S. ocean coastline and Great Lakes. The program targets funding to sixteen high priority coastal ecosystems. The program provides assessment and planning tools to identify priorities for habitat protection and restoration, conserves pristine coastal habitats through voluntary conservation easements and locally initiated land acquisition, and forms partnerships to restore degraded habitat.

Coastal Zone Management Program

The Coastal Zone Management Program created by the Coastal Zone Management Act of 1972 encourages coastal and Great Lakes states to develop and implement programs to manage the use and protection of their coastal zones. NOAA is the federal agency with oversight. States with approved programs become eligible for matching grants and also gain “federal consistency” review authority.

Web: <http://coastalmanagement.noaa.gov/czm>.
See Section 3 (Federal Laws): Coastal Zone Management Act.

Environmental Monitoring and Assessment Program

The Environmental Monitoring and Assessment Program is a research program within EPA that develops the tools necessary to monitor and assess the status and trends of national ecological resources.

Web: <http://www.epa.gov/emap>.

Coastal Barrier Resources System

See Section 3 (Federal Laws): Coastal Barrier Resources Act.

Coastal Nonpoint Pollution Control Program

Web: <http://coastalmanagement.noaa.gov/czm/6217>.
See Section 3 (Federal Laws): Coastal Zone Act Reauthorization Amendments.
Farm Bill Conservation Programs

Congress has enacted Farm Bills since the 1920s. Since 1985, the laws, passed approximately every five years, have included an increasing conservation focus. The programs, administered primarily by the USDA’s Natural Resources Conservation Service, provide farmers and ranchers incentives to implement conservation actions and disincentives against taking actions that harm natural resources. Programs created and modified in the conservation titles of the 1985, 1990, 1996, and 2002 Farm Bills encourage compliance with minimum conservation practices, promote land retirement, and create incentives for improved farming and ranching practices to address environmental problems. Additional Farm Bill programs affecting natural resource protection include those that prevent conversion of farmland and grassland to urban uses, and a variety of programs that encourage watershed protection efforts. The 2002 Farm Bill raised anticipated spending for conservation and environmental programs over ten years to $38.6 billion. While funding to all programs increased, the 2002 bill shifted the funding emphasis from land retirement to conservation efforts on working lands.

Web: <http://www.usda.gov/farmbill>

National Flood Insurance Program

In 1968, Congress enacted the National Flood Insurance Program (NFIP), administered by FEMA. The NFIP maps flood-prone regions throughout the nation. Communities that voluntarily adopt NFIP building standards and land use controls intended to minimize flood damages and property losses in those areas make their residents and businesses eligible for guaranteed flood insurance coverage. About 19,000 communities participate in the program.

Web: <http://www.fema.gov/nfip>

National Marine Sanctuary Program

NOAA administers the National Marine Sanctuary Program, created by Title III of the Marine Protection, Research, and Sanctuaries Act of 1972. The Act authorizes the Secretary of Commerce to designate discrete areas of the marine environment as national marine sanctuaries to protect distinctive natural and cultural resources. There are currently thirteen national marine sanctuaries in the program.

Web: <http://www.sanctuaries.nos.noaa.gov>

National Oceanographic Partnership Program

The National Oceanographic Partnership Program (NOPP) promotes and funds research partnerships among federal agencies, academia, industry, and other members of the oceanographic scientific community to further ocean knowledge. Among NOPP programs is Ocean.US, which coordinates the development of the Integrated Ocean Observing System. NOPP is governed by the National Ocean Research Leadership Council.

Web: <http://www.coreocean.org/Dev2Go.web?Anchor=nopp_home_page&rnd=5308>
See also Section 3 (Federal Laws): National Oceanographic Partnership Act.

National Estuarine Research Reserve System

Established by the Coastal Zone Management Act in 1972, the program encourages coastal states and territories to set aside representative estuaries for long-term research, education, and stewardship purposes. Once an area is designated as a reserve, federal financial assistance is available for acquisition of property, and management, research, and education activities. NOAA is responsible for overseeing state management of the twenty-six reserves.

Web: <http://nerrs.noaa.gov>
See Section 3 (Federal Laws): Coastal Zone Management Act.
National Park System

The National Park System, administered by the National Park Service, includes a number of national parks in coastal or ocean areas, including in Florida, Alaska, Maine, Michigan, California, U.S. Virgin Islands, and American Samoa. Other ocean and coastal elements of the system include national seashores (ten national seashores on the Atlantic, Gulf and Pacific coasts), national lakeshores (four, all on the Great Lakes), and a number of national monuments (landmarks, structures, and other items of historic or scientific interest situated on federal lands).

Web: <http://www.nps.gov>.

National Sea Grant College Program

The National Sea Grant College Program's ocean, coastal, and Great Lakes research, education, technology transfer, and outreach activities are implemented by a network of programs at thirty universities and scientific institutions around the nation. The program was modeled on the research and extension activities of the nation's land grant universities. NOAA administers the program.

See Section 3 (Federal Laws): National Sea Grant College Act.

National Status and Trends Program

The objective of NOAA's National Status and Trends Program is to evaluate and detect changes in the environmental quality of the nation's estuarine and coastal waters. The program conducts monitoring of contaminants and other environmental conditions at approximately 350 sites nationwide.

Web: <http://ccma.nos.noaa.gov>.

National Stream Quality Accounting Network

USGS conducts long-term water quality and quantity monitoring through the National Stream Quality Accounting Network at fixed locations on large rivers around the country. Currently, this program focuses on monitoring the water quality of the nation's largest rivers—the Mississippi, Columbia, Colorado, Rio Grande, and Yukon. Consequently, most coastal regions are left out of the monitoring network.

National Streamflow Information Program

USGS operates the National Streamflow Information Program, a network of about 7,000 stream gages nationwide. (About 6,000 of these stations are telemetered by an Earth-satellite-based communications system.) The majority of the stream-gaging stations are jointly funded in partnerships with more than 800 state, local, and tribal governments or other federal agencies.

National Water Quality Assessment

USGS operates the National Water Quality Assessment, which uses a regional focus to study status and trends in water, sediment, and biota in forty-two major river basins and aquifer systems. This effort has made considerable progress toward assessing current water quality conditions and long-term trends.

National Wildlife Refuge System

The National Wildlife Refuge System, administered by the USFWS, encompasses over 95 million acres on more than 540 refuges and waterfowl production areas dedicated to the protection and conservation of the nation's wildlife resources. In 1966, legislation (Pub. L. 89–669; 16 U.S.C. § 668dd) codified the system, which was first established by executive order of President Theodore Roosevelt as a network of wildlife refuges and ranges, areas for the protection and conservation of fish and wildlife threatened with extinction, game ranges, wildlife management areas, and waterfowl production areas.

Web: <http://refuges.fws.gov>.
Shown here are the institutional components that should be established in the Executive Office of the President (EOP) to improve federal leadership and coordination of the nation’s oceans and coasts. This diagram also illustrates the organizational relationship between these new components and certain existing units in the EOP. The National Ocean Council, the President’s Council of Advisors on Ocean Policy, the Committee on Ocean Resource Management, and the Committee on Ocean Science, Education, Technology, and Operations are discussed in Chapter 4. The new and existing components located under the Committee on Ocean Science, Education, Technology, and Operations are outlined in Chapter 8 (educational components) and Chapter 25 (research and operational components).
APPENDIX F

CONGRESSIONAL COMMITTEES AND SUBCOMMITTEES WITH JURISDICTION OVER OCEAN AND COASTAL ISSUES
The primary institutions for policy and legislative development in Congress are the standing committees of the House and Senate. As the level of assertiveness of Congress has fluctuated over the years, its committee structure and power have also been subject to change. Congressional policy activism of the 1970s and 1980s, for example, resulted in the proliferation of the number of standing committees and subcommittees in both chambers. In the 100th Congress (1987–88), there were over 280 permanent jurisdictional entities in the House and Senate. Reform in the mid-1990s realigned and consolidated a significant portion of the committee system; in the 108th Congress (2003–04), there are slightly more than 200 standing committees and subcommittees.

Despite the reduction in the number of jurisdictional entities overall, the legislative and oversight responsibilities with respect to ocean and coastal issues in the United States Congress are spread across more than one-quarter of its committees and subcommittees. Some panels exercise more direct and broader jurisdiction over ocean policy than others, but all listed in this appendix have an important role in the collective and cumulative programmatic and budgetary decisions of Congress that define such policy.

It should be noted that the following identification and characterization of congressional committee ocean policy jurisdiction in the 108th Congress is not intended to be authoritative. Committee jurisdiction, although defined by the rules of each chamber, is an evolving concept affected by years of bill referral precedents and changing procedures occasioned by periodic reorganization and reform efforts. At a minimum, practically every Congress experiences some realignment in the subcommittee structure of one or more standing committees.

The built-in tension in the modern-day Congress between its representational role and agenda-setting and legislative responsibilities affect many different congressional processes, including the policy coherence of its committee structure. This appendix is illustrative of the breadth of committee and subcommittee involvement in ocean and coastal policy oversight and management in the 108th Congress. The current distribution of authority over the laws and policies of the nation’s ocean and coastal activities among a broad suite of fifty-eight congressional committees and subcommittees highlights the difficulty of policy coordination in the legislative branch of the federal government similar, perhaps, to that experienced in the executive branch.

In addition to the jurisdictional entities listed below, there are other standing committees in the Senate and House that indirectly impact ocean and coastal policy through important legislative authority over broader governmental and cross-cutting issues, such as: executive branch organization; taxes, customs, duties, and trade policies; health sciences; Indian affairs; labor standards and safety regulations; and other related matters.

There have been efforts from time to time to better coordinate ocean policy development in Congress. In the 1970s, a temporary select committee composed of members from the various standing units of jurisdiction was established in the House to rewrite the federal offshore oil and gas law. Also, around the same time, the Senate authorized the Commerce Committee to establish the National Ocean Policy Study (NOPS), a non-legislative cross-Senate entity that included ex officio representation by Members from other committees with similar jurisdictional interests. Operated in many ways as a broad ocean policy oversight subcommittee, NOPS has been inactive since 1994. A more recent initiative was the establishment in the 106th Congress of the House Oceans Caucus, composed of a broad bipartisan membership of the House of Representatives. Like other congressional caucuses, it possesses no legislative authority but provides a voice within the House for Members interested in ocean and coastal issues.
United States Senate Committees And Subcommittees With Ocean-And Coastal-related Jurisdiction: 108th Congress

In the 108th Congress, of the seventeen standing committees and sixty-eight subcommittees in the Senate, seven committees and twenty-one subcommittees are involved in ocean- and coastal-related policy and legislative issues. Selective examples of ocean-related programs, activities, and agencies under the jurisdiction of the applicable full authorizing committees and appropriations subcommittees are provided for illustrative purposes.

Authorizing Committees

Committee on Commerce, Science, and Transportation

Jurisdiction includes ocean and atmospheric policy, generally: NOAA, NASA, U.S. Coast Guard, MARAD, and Marine Mammal Commission programs and activities; coastal zone management; marine fisheries; merchant marine and ocean navigation, including transportation and safety; science, engineering, and technology research, development, and policy; transportation and commerce aspects of outer Continental Shelf lands; and elements of climate change.

• Subcommittee on Oceans, Fisheries, and Coast Guard
• Subcommittee on Science, Technology and Space
• Subcommittee on Surface Transportation and Merchant Marine

Committee on Environment and Public Works

Jurisdiction includes environmental protection, generally: EPA; CEQ; FEMA (Hazards Mitigation); USACE civil works programs for navigation, environmental restoration, and shoreline protection; DOI wildlife and fisheries programs, including endangered species; air and water pollution and water resources; environmental aspects of outer Continental Shelf lands; environmental policy (including NEPA), regulation and research; and ocean dumping.

• Subcommittee on Clean Air, Climate Change, and Nuclear Safety
• Subcommittee on Fisheries, Wildlife and Water
• Subcommittee on Transportation and Infrastructure

Committee on Energy and Natural Resources

Jurisdiction includes energy resource development, generally: DOI leasing program for oil, gas, and other minerals on the outer Continental Shelf and deep seabed; national parks, refuges, forests, and the Land and Water Conservation Fund; DOE and energy policy, research, development and regulation (including hydroelectric and renewable energy); energy-related aspects of deepwater ports; and U.S. territorial possessions.

• Subcommittee on Energy
• Subcommittee on Public Lands and Forests
• Subcommittee on Water and Power

Committee on Agriculture, Nutrition, and Forestry

Jurisdiction includes: USDA Forest Service, Natural Resources Conservation Service programs, including watershed conservation on agricultural lands and nonpoint source pollution activities as they relate to agriculture practices; and inspection of marine mammals in captivity.

Table F.1 Congressional Committees and Subcommittees

<table>
<thead>
<tr>
<th>Standing Committees</th>
<th>Number with ocean- and coastal-related jurisdiction</th>
<th>Percent with ocean- and coastal-related jurisdiction</th>
<th>Subcommittees of Standing Committees</th>
<th>Number with ocean- and coastal-related jurisdiction</th>
<th>Percent with ocean- and coastal-related jurisdiction</th>
<th>Jurisdictional Entities*</th>
<th>Number with ocean- and coastal-related jurisdiction</th>
<th>Percent with ocean- and coastal-related jurisdiction</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Senate</td>
<td>17 7</td>
<td>41%</td>
<td>68 21</td>
<td>31%</td>
<td>85 28</td>
<td>33%</td>
<td>117 30</td>
<td>26%</td>
</tr>
<tr>
<td>U.S. House</td>
<td>19 8</td>
<td>42%</td>
<td>98 22</td>
<td>22%</td>
<td>202 58</td>
<td>29%</td>
<td>202 58</td>
<td>29%</td>
</tr>
<tr>
<td>Total</td>
<td>36 15</td>
<td>42%</td>
<td>166 43</td>
<td>26%</td>
<td>202 58</td>
<td>29%</td>
<td>202 58</td>
<td>29%</td>
</tr>
</tbody>
</table>

* total of full committees and subcommittees
United States House Of Representatives Committees And Subcommittees With Ocean- And Coastal-related Jurisdiction: 108th Congress

Of the nineteen standing committees and ninety-eight subcommittees in the U.S. House of Representatives, eight committees and twenty-two subcommittees are involved in ocean- and coastal-related policy and legislative issues. Selective examples of ocean-related programs, activities, and agencies under the jurisdiction of the applicable full authorizing committees and appropriations subcommittees are provided for illustrative purposes.

Authorizing Committees

Committee on Resources
Jurisdiction includes: most of NOAA’s marine related activities, such as living marine resource management, conservation, and regulation; coastal zone management; marine sanctuaries and oceanography; DOS’ international fisheries agreements; MMS’ conservation and development of oil and gas resources on the outer Continental Shelf; management of federal lands in the coastal zone (national parks, refuges, and forests); and relations with federally-recognized Indian tribes and U.S. territorial possessions.
- Subcommittee on Energy and Mineral Resources
- Subcommittee on Fisheries Conservation, Wildlife and Oceans
- Subcommittee on National Parks, Recreation and Public Lands

Committee on Science
Jurisdiction includes: oceanic, atmospheric, environmental, and climatic research and development activities of NOAA, NSF, EPA, NASA, DOE, and USGS, including water and air pollution, renewable energy and fossil energy; ocean science policy and technology; earth remote sensing research and policy; and science education.
- Subcommittee on Environment, Technology and Standards
- Subcommittee on Research

Appropriations Committee

Committee on Appropriations
Jurisdiction of the full Committee includes appropriation of the revenue and the provision of new spending authority for the support of the government.
- Subcommittee on Agriculture, Rural Development, and Related Agencies
 Funding for USDA and FDA
- Subcommittee on Commerce, Justice, State and the Judiciary
 Funding for NOAA, DOS, and MMC
- Subcommittee on Defense
 Funding for the Navy
- Subcommittee on Energy and Water Development
 Funding for USACE Civil Works and DOI/BOR
- Subcommittee on Foreign Operations
 Funding for USAID and DOS
- Subcommittee on Homeland Security
 Funding for USCG and FEMA
- Subcommittee on the Interior and Related Agencies
 Funding for DOI agencies (USGS, MMS, FWS, NPS) and LWCF
- Subcommittee on Transportation/Treasury and General Government
 Funding for Executive Office of the President, MARAD and FMC
- Subcommittee on Veterans Affairs, Housing and Urban Development and Independent Agencies
 Funding for NSF, EPA, NASA, NIH/NIEHS, CEQ, and OSTP
Committee on Transportation and Infrastructure
Jurisdiction includes: Coast Guard safety, enforcement and environmental protection programs; FMC and merchant marine and navigation matters; USACE civil works programs for navigation, environmental restoration, and shoreline protection; water and oil pollution; ocean dumping; and FEMA (hazards mitigation).
- Subcommittee on Coast Guard and Marine Transportation
- Subcommittee on Water Resources and Environment

Committee on Energy and Commerce
Jurisdiction includes: national energy policy, generally, including renewable energy resources; environmental regulatory programs of EPA, generally; air pollution; clean-up of hazardous wastes; public health; and travel and tourism.
- Subcommittee on Energy and Air Quality
- Subcommittee on Environment and Hazardous Materials

Committee on Agriculture
Jurisdiction includes: USDA Forest Service, Natural Resources Conservation Service programs, including watershed conservation on agricultural lands and non-point source pollution activities as they relate to agriculture practices; seafood inspection; and inspection of marine mammals in captivity.
- Subcommittee on Conservation, Credit, Rural Development and Research
- Subcommittee on Livestock and Horticulture

Committee on Armed Services
Jurisdiction includes: naval operations, research, and development, and related environmental issues; and MARAD.
- Subcommittee on Projection Forces

Committee on International Relations
Jurisdiction includes: DOS oceans and international environmental and scientific affairs, including treaties and agreements other than international fisheries agreements; boundaries of the United States; and U.S. activities related to the United Nations Convention on the Law of the Sea.

Appropriations Committee

Committee on Appropriations
Jurisdiction of the full Committee includes appropriation of the revenue and the provision of new spending authority for the support of the government.
- Subcommittee on Agriculture, Rural Development, Food and Drug Administration, and Related Agencies
 Funding for USDA and FDA
- Subcommittee on Commerce, Justice, and State, the Judiciary, and Related Agencies
 Funding for NOAA, DOS, DOJ, and MARAD
- Subcommittee on Defense
 Funding for the Navy
- Subcommittee on Energy and Water Development
 Funding for USACE Civil Works and DOI/BOR
- Subcommittee on Foreign Operations, Exported Financing, and Related Programs
 Funding for USAID and DOS
- Subcommittee on Homeland Security
 Funding for USCG and FEMA
- Subcommittee onInterior and Related Agencies
 Funding for DOI agencies (USGS, MMS, FWS, NPS) and LWCF
- Subcommittee on Transportation and Treasury, and Independent Agencies
 Funding for Executive Office of the President and FMC
- Subcommittee on Veterans Affairs and Housing and Urban Development, and Independent Agencies
 Funding for NSF, EPA, NASA, NIH/NIEHS, CEQ, and OSTP
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy

Listed below are the estimated new costs, in millions of dollars, associated with each recommendation in this report. These amounts should be added to existing federal expenditures in each area. Additional caveats, context, and discussion are provided in Chapter 30.

<table>
<thead>
<tr>
<th>Rec.</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Recognizing Ocean Assets and Challenges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Chapter 2: Understanding the Past to Shape a New National Ocean Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Chapter 3: Setting the Nation’s Sights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no recommendations</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Chapter 4: Enhancing Ocean Leadership and Coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–1 create the National Ocean Council, the Assistant to the President, and the President’s Council of Advisors on Ocean Policy (travel)</td>
<td>$0.162</td>
<td>$0.324</td>
<td></td>
</tr>
<tr>
<td>4–2 define duties for the National Ocean Council</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–3 promote ecosystem-based management approaches</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–4 define duties for the Assistant to the President</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–5 define duties for the President’s Council of Advisors on Ocean Policy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–6 create the Office of Ocean Policy (small staff and budget)</td>
<td>$0.900</td>
<td>$1.800</td>
<td></td>
</tr>
<tr>
<td>4–7 create a Committee on Ocean Science, Education, Technology, and Operations</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–8 create a Committee on Ocean Resource Management</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>4–9 review ocean-related councils and commissions</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>Chapter 4 Total</td>
<td>$1.062</td>
<td>$2.124</td>
<td></td>
</tr>
<tr>
<td>Chapter 5: Advancing a Regional Approach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–1 design and apply a regional ocean council process</td>
<td>$3.000</td>
<td>$12.000</td>
<td>$1M per region</td>
</tr>
<tr>
<td>5–2 improve federal agency regional coordination</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>5–3 adopt common federal regions</td>
<td>TBD</td>
<td>TBD</td>
<td>cost will depend on the nature and timing of the transition</td>
</tr>
<tr>
<td>5–4 establish regional ocean information programs</td>
<td>$9.000</td>
<td>$36.000</td>
<td>$3M per region</td>
</tr>
<tr>
<td>5–5 conduct regional assessments</td>
<td>$0.750</td>
<td>$0.750</td>
<td>$250K per assessment on a four year rotation among regions</td>
</tr>
<tr>
<td>5–6 revise NEPA guidelines to incorporate regional ecosystem assessments</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>Chapter 5 Total</td>
<td>$12.750</td>
<td>$48.750</td>
<td></td>
</tr>
<tr>
<td>Chapter 6: Coordinating Management in Federal Waters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–1 select a lead agency for each offshore activity</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>6–2 create a coordinated offshore management regime (small staff and budget)</td>
<td>$0.900</td>
<td>$1.800</td>
<td></td>
</tr>
<tr>
<td>6–3 design marine protected area guidelines</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>6–4 implement and assess marine protected areas</td>
<td>$6.000</td>
<td>$20.000</td>
<td></td>
</tr>
<tr>
<td>Chapter 6 Total</td>
<td>$6.900</td>
<td>$21.800</td>
<td></td>
</tr>
</tbody>
</table>

“TBD” = to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review
“min” = indicates that the cost is either zero or small enough to be absorbed within existing budgets
* = indicates that some or all of the costs are included in another recommendation
= indicates that some or all of the recommendation’s costs are of national scope and are not included here
($xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 7: Strengthening the Federal Agency Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–1</td>
<td>establish an organic act for NOAA</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>7–2</td>
<td>review NOAA’s budget within OMB’s Natural Resources Programs directorate</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>7–3</td>
<td>review ocean and coastal programs and recommend opportunities for consolidation</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>7–4</td>
<td>authorize presidential reorganization authority</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>7–5</td>
<td>consider long-term reorganization of federal resource agencies</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>Chapter 7 Total</td>
<td></td>
<td>$0.000</td>
<td>$0.000</td>
</tr>
<tr>
<td>Chapter 8: Promoting Lifelong Ocean Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8–1</td>
<td>create Ocean.ED (small staff and budget)</td>
<td>$0.900</td>
<td>$1.800</td>
</tr>
<tr>
<td>8–2</td>
<td>establish the Ocean.ED budget as a line item in NOAA</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>8–3</td>
<td>strengthen ocean education in NOAA, NSF, NASA, and ONR</td>
<td>$10.000</td>
<td>$20.000</td>
</tr>
<tr>
<td>8–4</td>
<td>evaluate K-12 programs (grants and workshops)</td>
<td>$0.500</td>
<td>$2.040</td>
</tr>
<tr>
<td>8–5</td>
<td>expand the Centers for Ocean Science Education Excellence</td>
<td>$0.000</td>
<td>$29.100</td>
</tr>
<tr>
<td>8–6*</td>
<td>increase Sea Grant education efforts</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>8–7</td>
<td>coordinate K-12 materials to meet existing education standards (grants)</td>
<td>$0.000</td>
<td>$1.000</td>
</tr>
<tr>
<td>8–8</td>
<td>establish researcher/educator collaborations (grants)</td>
<td>$0.000</td>
<td>$10.000</td>
</tr>
<tr>
<td>8–9</td>
<td>promote ocean experiences outside school (traveling exhibits and grants)</td>
<td>$11.000</td>
<td>$3.000</td>
</tr>
<tr>
<td>8–10</td>
<td>support undergraduate ocean science course development and implementation (grants)</td>
<td>$0.000</td>
<td>$5.000</td>
</tr>
<tr>
<td>8–11*</td>
<td>promote development of the ocean workforce</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>8–12</td>
<td>establish an ocean workforce database with regular reporting and convene periodic summit meetings</td>
<td>$0.500</td>
<td>$2.000</td>
</tr>
<tr>
<td>8–13</td>
<td>enhance NOAA support for undergraduates, graduate students, and postdoctoral fellows</td>
<td>$0.000</td>
<td>$18.000</td>
</tr>
<tr>
<td>8–14</td>
<td>enhance NSF support for undergraduates, graduate students, and postdoctoral fellows</td>
<td>$0.000</td>
<td>$18.000</td>
</tr>
<tr>
<td>8–15</td>
<td>reinvigorate ONR support for graduate students</td>
<td>$0.000</td>
<td>$10.000</td>
</tr>
<tr>
<td>8–16</td>
<td>promote diversity in the ocean-related workforce (stipends)</td>
<td>$1.000</td>
<td>$3.930</td>
</tr>
<tr>
<td>8–17</td>
<td>promote community education (grants)</td>
<td>$1.250</td>
<td>$12.500</td>
</tr>
<tr>
<td>Chapter 8 Total</td>
<td></td>
<td>$25.150</td>
<td>$136.370</td>
</tr>
<tr>
<td>Chapter 9: Managing Coasts and Their Watersheds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9–1</td>
<td>strengthen the Coastal Zone Management Act</td>
<td>$35.000</td>
<td>$95.000</td>
</tr>
<tr>
<td>9–2</td>
<td>consolidate area-based programs</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>9–3</td>
<td>discourage growth in fragile areas</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>9–4</td>
<td>support watershed initiatives</td>
<td>$20.000</td>
<td>$60.000</td>
</tr>
<tr>
<td>Chapter 9 Total</td>
<td></td>
<td>$55.000</td>
<td>$155.000</td>
</tr>
</tbody>
</table>

TBD to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review

min indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation's costs are of national scope and are not included here

(5xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 10: Guarding People and Property Against Natural Hazards</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10–1</td>
<td>review and improve the USACE Civil Works Program</td>
<td>TBD</td>
<td>TBD</td>
<td>cost will depend on the nature of the changes</td>
</tr>
<tr>
<td>10–2</td>
<td>improve hazards-related data collection</td>
<td>TBD</td>
<td>TBD</td>
<td>costs to be determined after assessment of needs and capabilities</td>
</tr>
<tr>
<td>10–3</td>
<td>recommend changes to the National Flood Insurance Program</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>10–4</td>
<td>support state and local hazards mitigation plans</td>
<td>$2.500</td>
<td>$10.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 10 Total</td>
<td>$2.500</td>
<td>$10.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 11: Conserving and Restoring Coastal Habitat</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>11–1#</td>
<td>increase coastal and estuarine land conservation funds</td>
<td>$35.000</td>
<td>$70.000</td>
<td># these estimates do not cover flagship projects such as restoration of the Florida Everglades, Louisiana coastline, Chesapeake Bay, and other areas of national significance</td>
</tr>
<tr>
<td>11–2</td>
<td>set national and regional goals for habitat conservation and restoration</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>11–3</td>
<td>allow discretion in the use of conservation funds</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>11–4</td>
<td>digitize and update the National Wetlands Inventory</td>
<td>$5.000</td>
<td>$5.000</td>
<td></td>
</tr>
<tr>
<td>11–5</td>
<td>coordinate a comprehensive wetlands program</td>
<td>TBD</td>
<td>TBD</td>
<td>costs will depend on the extent of programmatic changes needed</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 Total</td>
<td>$40.000</td>
<td>$75.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 12: Managing Sediment and Shorelines</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–1</td>
<td>develop a national sediment management strategy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>12–2</td>
<td>adopt ecosystem-based management approaches at USACE</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>12–3</td>
<td>improve cost/benefit analyses for dredging projects</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>12–4</td>
<td>implement a streamlined, ecosystem-based dredging program</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>12–5*</td>
<td>develop and implement improved sediment research, monitoring, assessments, and technology</td>
<td>$12.500</td>
<td>$72.500</td>
<td>* funds for monitoring included in Rec. 15–1 and for development research in Rec. 25–1</td>
</tr>
<tr>
<td>12–6</td>
<td>review USACE project outcomes</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>12–7*</td>
<td>improve contaminated sediment management, assessments, monitoring, and research at EPA</td>
<td>TBD</td>
<td>TBD</td>
<td>* funds for monitoring included in Rec. 15–1 and for research in Rec. 25–1. Costs for improved management will depend on the methods available.</td>
</tr>
<tr>
<td></td>
<td>Chapter 12 Total</td>
<td>$12.500</td>
<td>$72.500</td>
<td></td>
</tr>
</tbody>
</table>

*TBD" to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review

"min" indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation's costs are of national scope and are not included here

($xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 13: Supporting Marine Commerce and Transportation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13–1</td>
<td>designate DOT as the lead agency for marine transportation</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>13–2</td>
<td>codify the Interagency Committee for the Marine Transportation System</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>13–3#</td>
<td>create a national freight strategy to plan and implement intermodal projects</td>
<td>min</td>
<td>TBD</td>
<td># the new strategy will help determine the extent of intermodal improvements needed</td>
</tr>
<tr>
<td>13–4</td>
<td>analyze and assess short sea shipping</td>
<td>$1.500</td>
<td>$0.000</td>
<td></td>
</tr>
<tr>
<td>13–5#</td>
<td>create a national freight flow information collection and analysis program</td>
<td>($1M)</td>
<td>($7.05M)</td>
<td></td>
</tr>
<tr>
<td>13–6</td>
<td>incorporate emergency preparedness in the freight flow strategy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 13 Total</td>
<td>$1.500</td>
<td>$0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 14: Addressing Coastal Water Pollution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14–1*</td>
<td>require advanced nutrient removal in wastewater and study the impact of chemicals in wastewater</td>
<td>min</td>
<td>min</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>14–2</td>
<td>provide assistance to improve septic systems</td>
<td>$0.000</td>
<td>$2.000</td>
<td></td>
</tr>
<tr>
<td>14–3*</td>
<td>support research and develop best management practices for removal of nutrients and pathogens from agricultural lands</td>
<td>$0.000</td>
<td>$2.000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>14–4#</td>
<td>maintain and upgrade wastewater and drinking water infrastructure</td>
<td>($30B)</td>
<td>($30B)</td>
<td></td>
</tr>
<tr>
<td>14–5</td>
<td>experiment with tradeable credits for nutrients and sediments</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>14–6</td>
<td>modernize the National Pollutant Discharge Elimination System's monitoring and information management and strengthen enforcement (staff and budget)</td>
<td>$2.000</td>
<td>$4.500</td>
<td></td>
</tr>
<tr>
<td>14–7</td>
<td>coordinate USDA programs aimed at reducing nonpoint source pollution with those of other agencies</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>14–8</td>
<td>set goals and objectives for reducing nonpoint source pollution</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>14–9</td>
<td>review CZARA section 6217 and CWA section 319 programs and consider consolidation</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>14–10</td>
<td>provide authority for imposing disincentives against programs that degrade water quality</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>14–11</td>
<td>help local governments improve land-use planning to maintain water quality</td>
<td>$0.000</td>
<td>$12.500</td>
<td></td>
</tr>
<tr>
<td>14–12*</td>
<td>implement National Pollutant Discharge Elimination System stormwater programs (additional staff plus grants to state and local governments)</td>
<td>$5.000</td>
<td>$17.300</td>
<td>* funds for monitoring included in Rec. 15–1</td>
</tr>
<tr>
<td>14–13</td>
<td>develop regional approaches for reducing atmospheric deposition (staff and grants)</td>
<td>$3.000</td>
<td>$12.600</td>
<td></td>
</tr>
<tr>
<td>14–14*</td>
<td>implement international solutions for addressing atmospheric deposition</td>
<td>$1.000</td>
<td>$3.000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td></td>
<td>Chapter 14 Total</td>
<td>$11.000</td>
<td>$53.900</td>
<td></td>
</tr>
</tbody>
</table>

"TBD" indicates that future funds are likely to be required, but the amount can only be determined after further review

"min" indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation's costs are of national scope and are not included here

($xx) numbers in parentheses are not included in totals
Chapter 15: Creating a National Monitoring Network

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Description</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>15–1#</td>
<td>develop a national monitoring network</td>
<td>$10.000</td>
<td>$60.000</td>
<td>* funds for infrastructure included in Ch. 27 # the estimates shown cover only coastal and watershed monitoring; funds needed to achieve improved monitoring nationwide are not included</td>
</tr>
<tr>
<td>15–2</td>
<td>coordinate the monitoring network with the IOOS</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>15–3</td>
<td>set goals and design elements for the national monitoring network</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 15 Total | $10.000 | $60.000 |

Chapter 16: Limiting Vessel Pollution and Improving Vessel Safety

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Description</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>16–1</td>
<td>encourage industry to adopt improved voluntary measures</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–2#</td>
<td>increase safety and environmental inspections (staff and budget)</td>
<td>$25.000</td>
<td>$65.000</td>
<td># these estimates are for enhancement of existing vessel inspection activities to better address safety and environmental concerns</td>
</tr>
<tr>
<td>16–3</td>
<td>work with the International Maritime Organization to enhance flag state oversight and enforcement</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–4</td>
<td>enhance port state control and international vessel information database</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–5</td>
<td>establish a new regime for managing wastewater from passenger vessels</td>
<td>$1.000</td>
<td>$1.000</td>
<td></td>
</tr>
<tr>
<td>16–6</td>
<td>review and revise the CWA regulations on marine sanitation devices</td>
<td>$1.500</td>
<td>$0.000</td>
<td></td>
</tr>
<tr>
<td>16–7</td>
<td>assess and increase the availability of pumpout facilities</td>
<td>$10.000</td>
<td>$10.000</td>
<td></td>
</tr>
<tr>
<td>16–8</td>
<td>ratify MARPOL Annex VI to adopt stricter air emission standards</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–9</td>
<td>develop incentives for voluntary reduction of air emissions</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–10</td>
<td>conduct risk analysis of all oil transportation systems</td>
<td>$1.500</td>
<td>$0.000</td>
<td></td>
</tr>
<tr>
<td>16–11</td>
<td>develop policies and plans for places of refuge</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>16–12</td>
<td>reduce air and water pollution from small vessels</td>
<td>$1.000</td>
<td>$2.000</td>
<td></td>
</tr>
<tr>
<td>16–13*</td>
<td>study and reduce impacts of vessel pollution</td>
<td>TBD</td>
<td>TBD</td>
<td>* funds for research included in Rec. 25–1. Costs of improvement will depend on the strategies employed.</td>
</tr>
<tr>
<td>16–14#</td>
<td>support ocean and coastal management needs while implementing Maritime Domain Awareness</td>
<td>$0.000</td>
<td>$10.000</td>
<td># these estimates are for enhancement of existing Maritime Domain Awareness activities to better address ocean and coastal management needs</td>
</tr>
</tbody>
</table>

Chapter 16 Total | $40.000 | $88.000 |

“TBD” to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review

“min” indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation’s costs are of national scope and are not included here

($xx) numbers in parentheses are not included in totals
Chapter 17: Preventing the Spread of Invasive Species

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>17–1*</td>
<td>Improve the national ballast water management program</td>
<td>min</td>
<td>min</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>17–2</td>
<td>Review and improve ballast water research and demonstration programs</td>
<td>$1.500</td>
<td>TBD</td>
<td>first year cost covers a review of existing R&D which will determine the scope of the ongoing program</td>
</tr>
<tr>
<td>17–3</td>
<td>Employ existing legal authorities to prohibit imports of invasive species</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>17–4*</td>
<td>Coordinate public education and outreach efforts</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 8–17</td>
</tr>
<tr>
<td>17–5*</td>
<td>Implement early detection and notification plans</td>
<td>$30.000</td>
<td>$50.000</td>
<td>* funds for monitoring included in Rec. 15–1</td>
</tr>
<tr>
<td>17–6</td>
<td>Coordinate, consolidate, and improve invasive species programs</td>
<td>TBD</td>
<td>TBD</td>
<td>costs of improvement will depend on the strategies employed</td>
</tr>
<tr>
<td>17–7</td>
<td>Lead international actions to control invasive species</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>17–8*</td>
<td>Coordinate interagency research and monitoring to address invasive species</td>
<td>*</td>
<td>*</td>
<td>* funds for monitoring included in Rec. 15–1 and for research in Rec. 25–1</td>
</tr>
</tbody>
</table>

Chapter 17 Total

<table>
<thead>
<tr>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$31.500</td>
<td>$50.000</td>
</tr>
</tbody>
</table>

Chapter 18: Reducing Marine Debris

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–1</td>
<td>Establish a marine debris management program in NOAA</td>
<td>$1.000</td>
<td>$2.000</td>
</tr>
<tr>
<td>18–2</td>
<td>Coordinate and implement expanded marine debris control efforts</td>
<td>$1.000</td>
<td>$3.000</td>
</tr>
<tr>
<td>18–3</td>
<td>Re-establish an interagency marine debris committee</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>18–4</td>
<td>Develop an international plan of action for addressing derelict fishing gear</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>18–5</td>
<td>Create incentives to dispose of derelict fishing gear</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>18–6</td>
<td>Ensure availability of adequate port reception facilities</td>
<td>min</td>
<td>min</td>
</tr>
</tbody>
</table>

Chapter 18 Total

<table>
<thead>
<tr>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.000</td>
<td>$5.000</td>
</tr>
</tbody>
</table>

Chapter 19: Achieving Sustainable Fisheries

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19–1</td>
<td>Expand the role of SSCs (SSC stipends)</td>
<td>$3.600</td>
<td>$7.200</td>
</tr>
<tr>
<td>19–2</td>
<td>Require SSCs to supply needed information</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–3</td>
<td>Set harvest levels at or below allowable biological catch</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–4</td>
<td>Ensure peer review of SSC findings</td>
<td>$0.400</td>
<td>$1.600</td>
</tr>
<tr>
<td>19–5</td>
<td>Set deadline for SSCs to determine allowable biological catch</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–6</td>
<td>Require that proposed fishery management plans be submitted with enough time for sufficient review</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–7</td>
<td>Develop and communicate annual RFMC information needs</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–8</td>
<td>Require licenses for saltwater anglers to improve data collection</td>
<td>min</td>
<td>min</td>
</tr>
<tr>
<td>19–9</td>
<td>Expand cooperative fishery research</td>
<td>$3.000</td>
<td>$10.000</td>
</tr>
<tr>
<td>19–10</td>
<td>Develop new statutory authority to support the Gulf States and Pacific States Fisheries Management Commissions</td>
<td>$3.000</td>
<td>$7.500</td>
</tr>
<tr>
<td>19–11</td>
<td>Designate lead authorities for interjurisdictional fisheries</td>
<td>min</td>
<td>min</td>
</tr>
</tbody>
</table>

TBD to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review

min indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation’s costs are of national scope and are not included here

(5xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Chapter 19 (continued): Achieving Sustainable Fisheries</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>19–12 require governors to submit a broad slate of candidates for vacant RFMC seats</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–13 give the NOAA Administrator responsibility for appointing RFMC members</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–14 require all new RFMC members to complete a training course (new course developed, course offered 4 times/year, participant travel covered)</td>
<td>$0.650</td>
<td>$0.250</td>
<td>costs to permanently reduce capacity will depend on the strategies employed</td>
</tr>
<tr>
<td>19–15 authorize RFMC use of dedicated access privileges</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–16 repeal programs that encourage overcapitalization of fishing fleets and take steps to permanently reduce fishing capacity</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>19–17 increase funding for Joint Enforcement Agreements</td>
<td>$6.000</td>
<td>$12.000</td>
<td></td>
</tr>
<tr>
<td>19–18 strengthen cooperative fishery enforcement efforts</td>
<td>$0.300</td>
<td>$0.300</td>
<td></td>
</tr>
<tr>
<td>19–19 require Vessel Monitoring Systems on all fishing boats</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–20 integrate the Vessel Monitoring System database into the larger maritime operations database</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–21* improve essential fish habitat designations</td>
<td>$5.000</td>
<td>$15.000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>19–22 develop and implement regional bycatch reduction plans</td>
<td>$5.000</td>
<td>$30.000</td>
<td></td>
</tr>
<tr>
<td>19–23 expand the NMFS program in conservation engineering</td>
<td>$1.000</td>
<td>$2.000</td>
<td></td>
</tr>
<tr>
<td>19–24 encourage all countries to ratify the Fish Stocks Agreement and the UN FAO Compliance Agreement</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>19–25 review and update regional and bilateral fishery agreements; fully fund U.S. fisheries treaty commitments</td>
<td>$1.000</td>
<td>$2.000</td>
<td></td>
</tr>
<tr>
<td>19–26 implement International Plans of Action in the United States</td>
<td>TBD</td>
<td>TBD</td>
<td>implementation costs will depend on the scope of the U.S. plan</td>
</tr>
<tr>
<td>19–27 improve implementation of international fisheries treaties</td>
<td>TBD</td>
<td>TBD</td>
<td>implementation costs will depend on the strategies employed</td>
</tr>
<tr>
<td>Chapter 19 Total</td>
<td>$28.950</td>
<td>$87.850</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 20: Protecting Marine Mammals and Endangered Marine Species

20–1 require the Marine Mammal Commission to coordinate with the National Ocean Council	min	min	
20–2 place the protection of all marine mammals within the jurisdiction of NOAA	min	min	
20–3 improve coordination between NMFS and USFWS with respect to the Endangered Species Act	min	min	
20–4 expand cooperative agreements with states under Section 6 of the Endangered Species Act	$1.000	$4.000	
20–5 clarify Marine Mammal Protection Act permitting	min	min	
20–6 revise the Marine Mammal Protection Act definition of harassment	min	min	
20–7 implement programmatic permitting under the MMPA (staff and budget)	$1.000	$2.000	
20–8* examine and mitigate the effects of human activities on marine mammals and endangered species	$5.000	$10.000	* funds for research included in Rec. 25–1

TBD to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review

"min" indicates that the cost is either zero or small enough to be absorbed within existing budgets

* indicates that some or all of the costs are included in another recommendation

indicates that some or all of the recommendation’s costs are of national scope and are not included here

($xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 20 (continued): Protecting Marine Mammals and Endangered Marine Species</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>20–9*</td>
<td>expand research on ocean acoustics and the potential impacts on marine species</td>
<td>($10M)</td>
<td>($20M)</td>
<td>* this entire research budget is included in Rec. 25–1</td>
</tr>
<tr>
<td>20–10</td>
<td>improve international efforts</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 20 Total</td>
<td>$7,000</td>
<td>$16,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 21: Preserving Coral Reefs and Other Coral Communities</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>21–1*</td>
<td>establish a Coral Protection and Management Act to enhance research, protection, management, and restoration of coral ecosystems</td>
<td>$5,000</td>
<td>$20,000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>21–2</td>
<td>codify and strengthen the U.S. Coral Reef Task Force</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>21–3*</td>
<td>designate NOAA as the lead agency for managing deep-water corals</td>
<td>$1,000</td>
<td>$3,000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>21–4</td>
<td>develop standards for the sustainable harvest of coral reef resources</td>
<td>$1,200</td>
<td>$2,200</td>
<td></td>
</tr>
<tr>
<td>21–5</td>
<td>develop regional, ecosystem-based research plans</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 21 Total</td>
<td>$7,200</td>
<td>$25,200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 22: Setting a Course for Sustainable Marine Aquaculture</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>22–1</td>
<td>designate NOAA as the lead agency for marine aquaculture and create an Office of Sustainable Marine Aquaculture in NOAA (small staff and budget)</td>
<td>$1,000</td>
<td>$2,000</td>
<td></td>
</tr>
<tr>
<td>22–2</td>
<td>develop a comprehensive aquaculture permitting, leasing, and regulatory program</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>22–3*</td>
<td>expand marine aquaculture research, development, training, extension, and technology transfer</td>
<td>$2,000</td>
<td>$5,000</td>
<td>* funds for research included in Rec. 25–1</td>
</tr>
<tr>
<td>22–4</td>
<td>work with the UN FAO to encourage and facilitate international standards</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 22 Total</td>
<td>$3,000</td>
<td>$7,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 23: Connecting the Oceans and Human Health</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>23–1*</td>
<td>expand research and development on marine bioproducts</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 23–4</td>
</tr>
<tr>
<td>23–2*</td>
<td>expand research on marine microbiology and virology</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 23–4</td>
</tr>
<tr>
<td>23–3*</td>
<td>support development of technologies to detect pathogens and toxins</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 23–4</td>
</tr>
<tr>
<td>23–4*</td>
<td>establish an expanded Oceans and Human Health Initiative</td>
<td>($10M)</td>
<td>($14M)</td>
<td>* this entire research budget is included in Rec. 25–1</td>
</tr>
<tr>
<td>23–5*</td>
<td>fully implement programs to ensure seafood safety and coastal water quality</td>
<td>$2,000</td>
<td>$10,000</td>
<td>* cost shown here covers expanded seafood monitoring; costs of improving and monitoring water quality are included in Chapters 14 and 15</td>
</tr>
<tr>
<td></td>
<td>Chapter 23 Total</td>
<td>$2,000</td>
<td>$10,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 24: Managing Offshore Energy and Other Mineral Resources</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>24–1*</td>
<td>provide a portion of OCS revenues to states for conservation and sustainable development of renewable resources</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 30–1</td>
</tr>
<tr>
<td>24–2*</td>
<td>expand the MMS Environmental Studies Program</td>
<td>($12M)</td>
<td>($38M)</td>
<td>* this entire research budget is included in Rec. 25–1</td>
</tr>
</tbody>
</table>

* "TBD" to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review
* "min" indicates that the cost is either zero or small enough to be absorbed within existing budgets
* indicates that some or all of the costs are included in another recommendation
indicates that some or all of the recommendation’s costs are of national scope and are not included here
($xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Description</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 24 (continued): Managing Offshore Energy and Other Mineral Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24–3</td>
<td>include the oil and gas industry as partners in developing and implementing the IOOS</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>24–4</td>
<td>review the status of methane hydrates research and development</td>
<td>TBD</td>
<td>TBD</td>
<td>future investments in methane hydrates research and development will depend on the outcome of the review</td>
</tr>
<tr>
<td>24–5</td>
<td>enact legislation to manage offshore renewable energy development (additional staff and budget)</td>
<td>$0.900</td>
<td>$1.800</td>
<td></td>
</tr>
<tr>
<td>24–6</td>
<td>identify offshore non-energy mineral resources and examine possible uses (additional staff and budget)</td>
<td>$1.000</td>
<td>$7.000</td>
<td></td>
</tr>
<tr>
<td>Chapter 24 Total</td>
<td></td>
<td></td>
<td>$1.900</td>
<td>$8.800</td>
</tr>
<tr>
<td>Chapter 25: Creating a National Strategy for Increasing Scientific Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–1</td>
<td>double ocean research funding</td>
<td>$200.000</td>
<td>$650.000</td>
<td>includes all of Recs. 20–9, 23–4, 24–2, 25–3, 25–4, and 29–6 and parts of other recommendations in Chapters 12, 14, 16, 17, 19, 20, 21, and 22</td>
</tr>
<tr>
<td>25–2</td>
<td>develop a national ocean research strategy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>25–3*</td>
<td>create a national program for social science and economic research</td>
<td>($5M)</td>
<td>($10M)</td>
<td>* this entire budget is included in Rec. 25–1</td>
</tr>
<tr>
<td>25–4*</td>
<td>expand the National Sea Grant College Program</td>
<td>($20M)</td>
<td>($60M)</td>
<td>* this entire budget is included in Rec. 25–1</td>
</tr>
<tr>
<td>25–5</td>
<td>improve federal research funding processes</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>25–6*</td>
<td>expand ocean exploration efforts</td>
<td>$30.000</td>
<td>$110.000</td>
<td>* funds for infrastructure included in Rec. 27–4</td>
</tr>
<tr>
<td>25–7</td>
<td>coordinate and complete federal mapping and charting missions and data integration</td>
<td>$50.000</td>
<td>$200.000</td>
<td></td>
</tr>
<tr>
<td>25–8#</td>
<td>re-establish the Office of Technology Assessment</td>
<td>($4M)</td>
<td>($18M)</td>
<td></td>
</tr>
<tr>
<td>Chapter 25 Total</td>
<td></td>
<td></td>
<td>$280.000</td>
<td>$960.000</td>
</tr>
<tr>
<td>Chapter 26: Achieving a Sustained, Integrated Ocean Observing System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26–1</td>
<td>make the IOOS a NOC priority</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–2</td>
<td>designate Ocean.US as the lead for planning and NOAA as the lead for operating the IOOS</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–3</td>
<td>codify Ocean.US (small staff and budget)</td>
<td>$3.000</td>
<td>$3.000</td>
<td></td>
</tr>
<tr>
<td>26–4</td>
<td>seek input from ocean and coastal stakeholder communities</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–5</td>
<td>specify core variables for IOOS</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–6</td>
<td>require plans for transitioning research results to operations</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–7</td>
<td>coordinate priorities and schedules for satellite missions</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–8</td>
<td>transfer the ongoing operation of Earth observing satellites to NOAA</td>
<td>$40.000</td>
<td>$150.000</td>
<td></td>
</tr>
<tr>
<td>26–9*</td>
<td>improve satellite data management at NOAA</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 26–8</td>
</tr>
<tr>
<td>26–10*</td>
<td>create information products based on broad user needs</td>
<td>*</td>
<td>*</td>
<td>* funds included in Recs. 26–11 and 28–2</td>
</tr>
</tbody>
</table>

TBD indicates that future funds are likely to be required, but the amount can only be determined after further review.

* min* indicates that the cost is either zero or small enough to be absorbed within existing budgets.

* * indicates that some or all of the costs are included in another recommendation.

indicates that some or all of the recommendation’s costs are of national scope and are not included here.

($) indicates numbers in parentheses are not included in totals.
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 26 (continued): Achieving a Sustained, Integrated Ocean Observing System</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>26–11</td>
<td>implement the IOOS (including ongoing technology development)</td>
<td>$188.000</td>
<td>$600.000</td>
<td>current IOOS implementation plans call for a 5 year ramp-up to full operation</td>
</tr>
<tr>
<td>26–12</td>
<td>integrate the IOOS into broader Earth observations</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>26–13</td>
<td>promote international coordination and capacity building</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 26 Total: $231,000 $753,000

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 27: Enhancing Ocean Infrastructure and Technology Development</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>27–1</td>
<td>develop a national ocean and coastal infrastructure and technology strategy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>27–2</td>
<td>create an Office of Technology Transfer in NOAA (small staff and grants)</td>
<td>$0.900</td>
<td>$16.800</td>
<td></td>
</tr>
<tr>
<td>27–3</td>
<td>conduct periodic assessments of U.S. ocean and coastal infrastructure and technology</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>27–4</td>
<td>improve science-related infrastructure (includes UNOLS fleet renewal@$445M over 20 yrs., 2 Coast Guard icebreakers@$1.2B, ocean drilling ship@$100M, 2 deep submergence vehicles@$25M, 2 NOAA fisheries research vessels@$104M, ocean exploration platforms and equipment@$160M, renewal of NOAA airfleet@$264M over 20 yrs., and the modernization of laboratories and other facilities, major instruments, and telecommunications)</td>
<td>$200.000</td>
<td>$150.000</td>
<td>covers new construction and upgrades to critical science facilities, estimated at around $3B over the next 20 years. Actual annual spending levels will depend on the scheduling of these major purchases</td>
</tr>
<tr>
<td>27–5#</td>
<td>improve operational ocean and coastal infrastructure (includes Coast Guard fleet@$17B over 20 yrs., other agencies’ fleets, operational satellites, monitoring stations, and other federal facilities)</td>
<td>#</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>27–6</td>
<td>establish virtual marine technology centers (five centers)</td>
<td>$5.000</td>
<td>$25.000</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 27 Total: $205,900 $191,800

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Chapter 28: Modernizing Ocean Data and Information Systems</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>28–1</td>
<td>create Ocean.IT (small staff and budget)</td>
<td>$1.000</td>
<td>$3.000</td>
<td></td>
</tr>
<tr>
<td>28–2</td>
<td>establish a NOAA–Navy ocean and coastal information management and communications partnership</td>
<td>$5.000</td>
<td>$20.000</td>
<td>a total of $34M will be needed over the first five years for the design and implementation of new software, with lower ongoing operational costs</td>
</tr>
<tr>
<td>28–3</td>
<td>improve access to ocean and coastal data by creating software for data discovery and transport</td>
<td>$8.000</td>
<td>$1.000</td>
<td></td>
</tr>
<tr>
<td>28–4</td>
<td>establish data reporting requirements and deadlines</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>28–5</td>
<td>review and declassify appropriate Navy oceanographic data</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>28–6</td>
<td>plan for an integrated Earth environmental data system</td>
<td>TBD</td>
<td>TBD</td>
<td>costs of implementing the new system will depend on the strategies employed</td>
</tr>
</tbody>
</table>

Chapter 28 Total: $14,000 $24,000

"TBD" to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review
"min" indicates that the cost is either zero or small enough to be absorbed within existing budgets
* indicates that some or all of the costs are included in another recommendation
indicates that some or all of the recommendation’s costs are of national scope and are not included here
($xx) numbers in parentheses are not included in totals
Detailed Costs Associated with Recommendations of the U.S. Commission on Ocean Policy (continued)

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>29–1</td>
<td>accede to the UN Convention on the Law of the Sea</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>29–2</td>
<td>review ocean-related components of the UN Convention on Biological Diversity</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>29–3</td>
<td>establish an interagency committee within the National Ocean Council focused on international ocean policy</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>29–4</td>
<td>assess emerging international ocean-related management challenges</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>29–5</td>
<td>improve the State Department’s integration of scientific expertise in ocean-related fields (staff training and borrowed personnel)</td>
<td>$0.900</td>
<td>$1.950</td>
<td></td>
</tr>
<tr>
<td>29–6*</td>
<td>participate in international ocean science organizations and programs</td>
<td>*</td>
<td>*</td>
<td>* funds included in Rec. 25–1</td>
</tr>
<tr>
<td>29–7</td>
<td>assist U.S. scientists conducting research in international or foreign waters (staff and budget)</td>
<td>$0.360</td>
<td>$0.900</td>
<td></td>
</tr>
<tr>
<td>29–8</td>
<td>enhance ocean science and management capacity in other nations</td>
<td>$2.000</td>
<td>$5.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 29 Total</td>
<td>$3.260</td>
<td>$7.850</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 30: Funding Needs and Possible Sources

<table>
<thead>
<tr>
<th>Rec.</th>
<th>Recommendation</th>
<th>1st Year Cost (millions of dollars)</th>
<th>Ongoing Annual Cost (millions of dollars)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>30–1</td>
<td>a) create the Ocean Policy Trust Fund</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) provide support for state, territorial, and tribal ocean and coastal responsibilities</td>
<td>$500.000</td>
<td>$1,000.000</td>
<td></td>
</tr>
<tr>
<td>30–2</td>
<td>compile biennial ocean budget reports</td>
<td>min</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 30 Total</td>
<td>$500.000</td>
<td>$1,000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRAND TOTAL</td>
<td>$1,536.072</td>
<td>$3,869.944</td>
<td></td>
</tr>
</tbody>
</table>

TBD to be determined, indicates that future funds are likely to be required, but the amount can only be determined after further review.

min indicates that the cost is either zero or small enough to be absorbed within existing budgets.

* indicates that some or all of the costs are included in another recommendation.

indicates that some or all of the recommendation’s costs are of national scope and are not included here.

($xx) numbers in parentheses are not included in totals.
Index

academic/academia, 260
aquaculture support, 333
data management, 437
socioeconomic research, 383, 384
research community linkages, 49, 124, 125, 129, 130, 132, 133, 135–136, 137, 139, 335, 347
acoustic research programs, 315–316, 377
Act to Prevent Pollution from Ships, 266
Administrative Procedures Act, 287
Agreement to Promote Compliance with International Conservation and Management Measures by Fishing Vessels on the High Seas, 300, 301, 446
agriculture (see also U.S. Department of Agriculture) conservation programs, 213, 214, 219
economic value compared to oceans, 31
pollution from, 39, 54, 159, 183, 206, 213, 214, 215, 216, 219
air pollution (see also atmosphere/atmospheric) from vessels, 244–245
and water quality, 64, 206
Alaska, 282, 299, 317
Community Development Quota Program, 288, 289
Marine Conservation Council, 298
mineral deposits, 368
oil and gas development, 354, 357, 359, 365
Synthetic Aperture Radar Facility, 430
vessel pollution, 241, 242
albatross, 299, 308
algal blooms (see harmful algal blooms)
allowable biological catch, 277–278, 279, 280, 287
Alvin, 418, 419
American Samoa, 34, 70, 135, 170, 321, 325
Animal and Plant Health Inspection Service, 254, 260
animal feeding operations, 39, 206, 211 (see also concentrated animal feeding operations)
aquaculture
coordinated action, 66, 100, 101, 333–334, 336
environmental impacts, 40, 331–332, 336
fishery impacts, 40, 331–332, 334
health impacts, 346, 349
infrastructure, 330
international cooperation, 302, 336
and invasive species, 40, 256, 257, 258, 261, 331–332, 336
management structure, 332–333
offshore, 33, 54, 100, 101, 332, 336
permitting and leasing system, 101, 332, 334
regulatory regime, 101, 332–333
research and development needs, 335, 380
sustainable management, 333–335
value of, 32, 330–331
aquariums, 35, 125, 136, 143, 144, 151, 316
Aquatic Nuisance Species Task Force, 253, 259, 259–260, 478
archaeology, 37, 102, 387
Arctic Ocean, 73, 364
Argo float program, 395, 414
artificial reefs, 33, 99
Ash Council, 109, 116
Asrar, Ghassem, 404
assessments (see ecosystem assessments; evaluation)
Assistant to the President, 80–81, 114, 449, 475
Atlantic Coastal Fisheries Cooperative Management Act, 284
Atlantic States Marine Fisheries Commission, 284, 298
atmosphere/atmospheric (see also air pollution)
deposition of pollutants, 39, 210, 211, 223–224
monitoring, 229, 230, 232, 408
pollution control, 223–224
Australia, ocean policy, 79, 288, 308
bacteria, 35, 39, 210, 229, 241, 341, 346 (see also human health)
barrier islands, 155, 165, 187
beaches and shorelines
 cleanups, 265, 268
closings and advisories, 39, 210, 217, 226, 264, 349–350
debris management, 264, 265, 268
economic value, 35
erosion, 42, 44, 163, 166, 167, 168
nourishment, 150, 157, 163–164, 181, 184, 186, 187, 307, 369
water quality monitoring, 233, 349–350
Beaches Environmental Assessment and Coastal Health Act, 213, 229, 266
Bering Sea, 49, 73, 288
best management practices, 151, 211, 214, 215, 218, 219, 221, 232, 335
biodiversity
coral ecosystems, 37, 307, 321, 326–327
ecosystem–based management, 62, 66–67, 104, 473
ecosystem diversity, 66, 379
education needs, 136, 138, 140
and human health, 33, 35, 339–340
genetic diversity, 66, 379
human impacts, 66–67, 206
international convention, 54
and marine animal models for human research, 339
in marine protected areas, 104
microbial, 341
monitoring, 228
public support for, 309
research needs, 66, 379, 380
species diversity, 66, 379
bioproducts
economic value, 33, 35, 339
industrial uses, 340–341
investments in, 340
managing discovery and development, 54, 341, 343
molecular probes, 340
nutrients, 33, 340
pharmaceuticals, 33, 339, 340, 341
bioprospecting, 100, 343
Bush (G.H.W.) administration, 54, 178, 354
Bush (G.W.) administration, 56, 93, 475
business (see employment)
Caldwell, Jack C., 178
CALFED, 89, 159
California
beach–related activities, 35, 151, 182
costal economy, 151
coastal zone, 154
invasive species, 41, 256, 257, 259
mineral resources, 368
offshore management, 160, 354, 357, 358
water management projects, 182
wetlands, 40, 170
California Bay–Delta Authority (see CALFED)
Canada, ocean policy, 79, 87, 93, 223, 224, 261, 275, 284, 301, 358
cancer, 33, 35, 340, 341, 342
Capital Construction Fund, 275, 290, 291
carbon sequestration, 33, 37, 67–68, 450
Caribbean Sea
coral reefs, 41, 323
pollution management, 223, 224, 270, 455
Carter administration, 117
Centers for Disease Control, 339, 341, 347
Centers for Ocean Sciences Education Excellence, 124, 129, 130, 132, 134
channels, 186, 196, 200
chart/charting (see mapping and charting activities)
Chesapeake Bay, 41, 86–87, 88, 89, 159, 171, 173, 209, 223, 261, 332, 422
Childers, Dorothy, 298
cholera, 43, 346–347 (see also human health)
CITES, 303, 326–327, 448
Clean Air Act, 157, 224, 245, 366
Clean Vessel Act, 243
Clean Water Act, 73, 101, 171, 214, 224, 241, 243, 266, 324, 366
amendments, 156, 157, 160, 213
NPDES program, 207, 211, 221
Section 319 program, 218, 219–220
Section 404 program, 178–179
State Revolving Funds, 207, 212, 217, 219
climate (see also global climate change)
Global Climate Observing System, 414
global system studies, 387, 395
and oceans, 37, 387
Clinton administration, 54, 72, 354
Coastal America, 84, 173
Coastal and Ocean Resource Economics Program, 382
coastal areas (see also beaches and shorelines)
defining, 34, 35
dune ecosystems, 307
economy, 31, 32, 34–36, 150, 151, 382–384
monitoring, 176–177, 231–232
population pressures, 36, 41–42, 43, 150–152
real estate, 36, 37
water quality, 233, 204–205, 349–350
watersheds, 31, 32, 34, 154
Coastal Barrier Resources Act, 155, 163
Coastal Barrier Resources System, 153, 155
coastal habitats, 170–179 (see also
habitat restoration; wetlands; other specific habitats)
Coastal and Estuarine Land Conservation Program, 172
conservation programs, 155–156, 171–172, 176
ecosystem–based approach, 173, 175, 176, 177
funding for, 172, 176
inventories and assessments, 176–177
losses, 40–41, 151, 170, 172
regional coordination, 177
research needs, 380
restoration, 156, 172–176
threats to, 151, 170–171
value of, 36, 170, 173
vulnerability to natural hazards, 42, 165
coastal planning and management, 150–161 (see also development)
boundary/jurisdictional considerations, 153–154, 155, 157
consolidation and coordination of programs, 156–157, 173, 175
decision–making layers, 152–153, 184
existing programs, 152, 153–155, 158–159
Coastal Zone Management Act, 324
amendments, 54, 154–155, 160, 214
Coastal Energy Impact
Program, 354, 360
Coastal Zone Management
Program, 53, 54, 153–155, 156, 163, 181, 228, 459
definition of coastal state, 34
enactment, 50
federal consistency provisions, 51, 54, 153, 158–159, 160, 362, 367
goals, 172
and offshore energy development, 353, 354, 360, 366
Reauthorization Amendments, 214, 218, 219
Code of Conduct for Responsible
Fisheries, 293, 302, 303, 336
collaborative approaches (see also partnerships)
education and outreach network, 124–130, 132, 133, 134, 144
international research, 454
watershed management, 222
Coloma–Agaran, Gilbert, 269
commercial fishing industry (see also fisheries; fishery management; fishing gear)
aversarial relationship with government, 275–276
cooperative research, 281–282
cultural value, 32
debris from, 264, 265, 267, 268, 269–270
economic value, 31
impacts of, 295–297, 306–307, 308
longline, 303, 308
overcapitalization of fleets, 275, 290–291
safety issues, 287, 288, 292, 293
Commission (see U.S.
Commission on Ocean Policy)
Commission on Marine Science,
Engineering and Resources
(see Stratton Commission)
Commission on the Limits of the
Continental Shelf, 390, 445
Committee on Ocean Resource
Management (proposed), 83–84, 166, 198, 313, 326, 476
Committee on Ocean Science,
Education, Technology, and Operations, 82–83, 126, 127, 375–376, 437, 475
Commonwealth of the Northern
Mariana Islands, 34, 170, 321, 325
community quotas, 288
Comprehensive Environmental
Response, Compensation and
Liability Act, 183
centrated animal feeding operations (see also animal feeding operations), 211
Congress, 55, 87, 219, 266–267
(see also legislation; individual statutes)
information analysis for, 391–392
and OCS revenue sharing, 360
recommendations to, 222, 246, 284, 286, 290, 310, 348, 368, 474, 475
Connauton, James, 41
Conservation Security Program
(see also U.S. Department of
Agriculture), 159, 214
consolidation of ocean and coastal
programs, 112–115
Consortium for Oceanographic
Research and Education, 139, 420
contiguous zone, 72, 73
continental shelf, 72–73, 103, 390
Convention Concerning the
Protection of World Cultural
and Natural Heritage, 448
Convention on Biological
Diversity, 54, 448
Convention on International Trade
in Endangered Species of Wild
Fauna and Flora (see CITES)
Convention on Long–Range
Transboundary Air Pollution, 224
Convention on the Conservation and Management of Highly Migratory Fish Stocks in the Western and Central Pacific Ocean, 301

Convention on the Conservation of Antarctic Marine Living Resources, 447

Convention on the Continental Shelf, 72–73

Convention on the Law of the Sea (see LOS Convention)

Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (see London Convention)

Convention on the Territorial Sea and the Contiguous Zone, 70

Convention on Wetlands of International Importance, Especially as Waterfowl Habitat, 448

Cooksey, Sarah, 153

Coral ecosystems, 320–328
 biodiversity, 37, 307, 321, 326–327
 bleaching, 41, 44, 322
 climate change and, 44, 320, 325, 327
 debris management, 264, 266, 323
 deep–water (cold–water), 320, 321–323, 326
 distribution, 320–321
 federal agency roles and responsibilities, 323–324
 fisheries, 37, 322, 323
 interagency and intergovernmental initiatives, 87, 324–325
 International Coral Reef Action Network, 451
 International Coral Reef Initiative, 327
 international initiatives, 326–327
 legislation, 323–324, 325–326
 management, 323–326
 monitoring, 324, 327–328
 research needs, 327–328, 380
 restoration, 323, 324
 shallow–water (warm–water), 171, 321
 status, 41, 171, 320–323
 sustainable harvesting practices, 327
 threats to, 41, 186, 208, 210, 322–323, 324, 325, 326, 450
 value, 35, 37, 41, 321–322, 325
 white band disease, 263, 323
 Coral Protection and Management Act, 326
 Coral Reef Conservation Act, 323, 325
 Coral Reef Task Force (see U.S. Coral Reef Task Force)
 COSEE (see Centers for Ocean Sciences Education Excellence)
 COSETO (see Committee on Ocean Science, Education, Technology, and Operations)
 cost–benefit analyses, 164, 179, 185–188, 295, 382–385
 costs (see also economic issues; funding)
 beyond scope of report, 463
 deferred, 462–463
 implementation of USCOP recommendations, 459–462
 Council on Environmental Quality, 41, 77, 84, 96, 476
 Cousteau, Jean–Michel, 125
 cruise industry, 31, 32, 35, 151, 194, 236, 241–243, 244, 264
 cultural heritage/resources
 coral reefs, 322, 325
 exploration of submerged sites, 387
 fishery management and, 32, 282
 ownership of submerged resources, 102
 promotion through education, 136, 141
 value of oceans, 32, 36, 37
 curriculum (see also education and outreach)
 field and laboratory experiments, 125, 130, 135–136
 graduate school, 123, 124, 134, 136, 137, 138–139

K–12 programs, 37, 122, 124, 127, 128, 129, 130–136, 144
 remote–access technologies, 135
 science literacy, 69, 123, 125, 131–132
 teacher preparation, 124, 125, 128, 130, 133–135
 undergraduate programs, 124, 125, 127, 133, 136–141

CZMA (see Coastal Zone Management Act)

Danson, Ted, 65

data (see also information)
 academic research, 437
 classified, 431, 435, 437–438
 communication networks, 33, 99, 396, 428
 defined, 428
 long–term time series, 435, 438
 raw, 436–437
 redundant, 389, 390
 visualization tools, 433, 436–437

data centers
 discipline–based world collections, 431
 distributed active archive, 433
 military, 432, 433
 national civilian, 431, 432
 types, 431–433

data management, 428–438 (see also information)
 analysis, 266, 268–269, 384
 challenges, 428–429, 438
 computer hardware, 433
 coordination of, 389, 429–431
 distribution to users, 230, 234, 266, 268–269, 384, 386, 432, 434, 435–437
 growth of data holdings, 432
 human resources, 433–434
 improvements in, 432–438
 incorporating data in national data centers, 433, 437–438
 infrastructure, 433–434, 438
interagency planning, 432–435

DDT, 223, 264, 349
death zones, 39, 87, 206
Dearry, Allen, 349

Deepwater Port Act, 358
Delaware, 88, 153, 154, 159, 252

DeVoe, Richard, 384
dioxins, 223, 346, 349 disaster assistance, 168–169

Disaster Mitigation Act, 168–169 dolphins, 303, 306–307, 308, 316, 350

DOT (see U.S. Department of Transportation)
dredging

Earle, Sylvia, 387
Earth Observation Summit, 409
Earth Summit, 54, 79, 300, 301, 445, 448
ECOHAB (see Ecology and Oceanography of Harmful Algal Blooms)
Ecology and Oceanography of Harmful Algal Blooms, 339, 345
economic issues
value of oceans, 30–36
ecosystem assessments, 96, 99, 104, 157, 316, 350, 379, 381, 459
ecosystem–based management (see also large marine ecosystems)
climate change and, 67–68
coordination of decision making, 64–65, 67, 84, 99–100, 103, 173
of endangered species, 310, 311, 315, 316–318
of fisheries, 280, 295–299
geographic boundaries for, 63–64, 90
goals and objectives, 66, 296
governance, 62, 68, 473
habitat preservation, 173, 175, 176, 177
hazards component, 169
ingternational coordination, 318, 473
marine transportation system, 196, 249–250
monitoring component, 226
multiple–use perspective, 62, 66, 67, 80, 92, 97, 100–101, 105, 249, 296–297, 333, 369, 473
precautionary approach, 65–66, 80
reorganization of federal agencies for, 108, 118
sediment management, 184
watershed approach, 150, 154, 157, 159–160, 169, 205, 213
education and outreach, 122–146
(see also curriculum; National Sea Grant College Program; Ocean.ED)
biodiversity, 136, 138, 140
cooperative network, 124–130, 132, 133, 134, 144
coordination of, 83, 90, 124, 125–128, 134, 143–144, 258
cross–cutting themes, 124
cultural/ethnic considerations, 136, 141
derived management, 266, 267–268, 269, 270
endangered species, 316
exploration program and, 387, 388
evaluation and assessment of efforts, 128–129, 130
existing efforts, 125–126, 145
federal programs, 124–125, 126–128, 136, 137, 139–141, 143, 144
fishery management, 136, 291
funding, 125, 168, 129–130, 136–142, 143, 144
habitat restoration, 173, 176
health–related, 350
informal, 122, 124, 125, 127, 142–145
invasive species, 255, 258–259
for leadership of ocean workforce, 122, 123, 136, 137, 143
message design and delivery, 128, 143–144
natural hazard risks, 163, 164–166
outreach, 130, 136, 137–138, 139, 143, 144–145, 221
participants, 124–125, 132 and public awareness, 68–69, 90, 122–124, 130, 142–143, 213, 220
recruitment of students, 137–138
research community linkages, 124, 125, 129, 130, 132, 133, 135–136, 139, 335
scientists’ roles, 132, 133–136
standards, 131–132, 144
state initiatives, 124–125, 127, 132
and stewardship, 69, 123, 142, 144, 173, 176
underrepresented and underserved groups, 130, 136, 141–142, 145
value of oceans, 37, 122, 130
vessel pollution, 243, 248
water pollution control, 69, 138, 213, 214, 220, 221, 243, 248, 350
workforce training, 69, 123, 136–142
EEZ (see exclusive economic zone)
El Niño–La Niña, 275, 296, 395, 408, 409, 424, 453
emergency preparedness, 200–201
(see also hazard management; natural hazards)
employment (see also economic issues; jobs; socioeconomic considerations; workforce)
data needs, 139, 384
economic value, 30–32
endangered species, 306–319
(see also marine mammals; individual species)
behavior, 312, 314–315
coordination of programs, 311
domestic action, 316–318
debris threats, 264, 307
ecosystem–based management, 310, 311, 315, 316–318
education and outreach, 316
funding for, 311
habitat losses, 308
human impacts, 307, 314, 315–316
international coordination, 303, 308, 318
jurisdiction and authority, 306, 309, 310–311
legislation, 309–310
permitting and review standards, 311–314
programmatic permitting, 312–314
protection gaps, 310–314
research needs, 314–316, 380
state–federal cooperation, 311
takes, 311–312
threats to, 264, 306–308, 314–315–317
energy and mineral resources, 48 (see also natural gas; oil, offshore)
bonus bid and royalty payments, 33, 103, 359
deep–water production, 357, 363–364, 387, 445
economic value, 33
exploration and development process, 51, 354–357
federal consistency provision, 158, 362, 367
federal revenues from, 33, 102–103, 357, 359–360
federal–state partnerships, 158, 357, 360, 361
incentive–based approach, 357
IOOS information and resource sharing, 364
jurisdiction, 49, 70, 71, 72, 352–352, 367, 445
legislation, 49, 353–354, 360, 366
management, 99, 100, 158, 352–364, 368
methane hydrates, 33, 341, 364–365, 450
offshore development, 53, 98, 100, 343, 352–370
production trends, 353, 357
renewable, 33, 105, 182, 365–368
research needs, 365, 381
resource rents, 102–103, 359, 366
state revenue sharing, 359–360
state decision–making role, 361
sustainable development, 360
technology, 417
enforcement
fishery management, 288–289, 291–295, 297, 300, 301
of permitting for marine mammals, 312
pollution control measures, 212, 218, 220, 238, 239, 242–243, 257
vessel pollution, 238, 239, 242–243, 257
vessel safety and security, 236, 237–240
entanglement of marine animals, 264, 266–267, 306–307, 331
environmental impacts
assessments, 189, 295, 363–364, 366
of aquaculture, 40, 331–332, 336
of coastal development, 40, 41–42, 43, 94, 150, 151–152, 175, 182, 215
commercial fishing, 295–297, 306–307, 308
Cumulative, 96, 242, 267, 295, 363
invasive species, 41, 252–253
marine debris, 264–265, 266, 267
of nutrient pollution, 39, 175, 206, 208–209, 210, 215, 216
of offshore oil and gas production, 366
of population growth, 41–42, 43, 170
of tourism and recreational activities, 42
of vessel pollution, 242
weather–related, 42
environmental movement, 51–52, 353
Environmental Protection Agency (see also individual programs)
aquaculture responsibilities, 334
budget support, 112
creation, 115
debris management, 266, 267, 269
educational programs, 124, 125
Environmental Monitoring and Assessment Program, 229
existing ocean and coastal programs and responsibilities, 78, 114
habitat conservation/restoration programs, 88, 113, 153, 171, 173, 177
health–related activities, 339, 341
Gulf of Mexico Program
Office, 89
international contributions, 222
invasive species control, 256, 257, 260
mapping and charting activities, 389, 390
marine transportation–related programs, 196, 197, 245
monitoring programs, 228, 229, 230, 231, 424
Office of Water, 113
Office of Wetlands, Oceans, and Watersheds, 113, 220
offshore responsibilities, 358, 361–364, 366
recommendations, 478
regional boundaries, 92–93, 94
reorganization proposals, 116, 117
research infrastructure, 416, 422
sediment management, 113, 181, 182, 183, 186, 188, 189, 190
socioeconomic research, 382–383, 384
vessels, 422
water quality management, 101, 113, 182, 183, 204–205, 206, 207, 210, 211, 212, 213, 214, 217, 220, 221, 222, 224, 241, 295, 324, 326, 449
watershed focus, 113, 159
EPA (see Environmental Protection Agency)
erosion, 40, 182
beaches, 42, 44, 163, 166, 167, 168
control, 150, 157, 163–164, 181, 183, 184, 186, 187, 307, 369
runoff and, 216
estuary/estuarine
nutrient overenrichment, 39
sanctuaries, 103–104, 153, 155
water quality, 38, 204–205

Estuary Habitat Restoration Council, 173, 175, 176, 177
Estuary Restoration Act, 173
European Community, 245, 409, 413
evaluation
of coastal management programs, 155
of education programs, 128–129, 130
of hazard mitigation programs, 165
Evans, Christopher J., 232
exclusive economic zone, 53, 443
of exclusive economic zone, 387–388
defined, 72, 73
fishery management in, 275, 283, 291, 300
foreign research in, 72, 454
invasive species control in, 256
mineral production in, 352, 368
pollution permits, 101
size of U.S. territory, 30–31
Executive Office of the President, leadership and coordination role, 77–79, 81–82, 389
exploration, 386–388
education and outreach through, 387, 388
energy and mineral resources, 51, 354–357
of exclusive economic zone, 387–388
funding, 388
national program, 387–388
technology, 419
unexplored areas, 35, 122, 387
value of, 37, 386, 387

FAO (see Food and Agriculture Organization)
farm (see agriculture; aquaculture)
Farm Service Agency, 215, 260
Federal Aviation Act, 366
Federal Aviation Administration, 197, 366
federal consistency provisions (see Coastal Zone Management Act), 51, 54, 153, 158–159, 160, 362, 367
Federal Energy Regulatory Commission, 358, 367
Federal Geographic Data Committee, 166, 389, 478
Marine and Coastal Spatial Data Subcommittee, 390
Federal Highway Administration, 197, 199, 260
Federal Insecticide, Fungicide, and Rodenticide Act, 256
Federal Land Policy and Management Act, 365
Federal Oceanographic Facilities Committee, 82, 375, 417
Federal Power Act, 367
federal waters (see offshore)
FEMA (see Federal Emergency Management Agency)
Fenical, William, 340
fertilizers, 206, 216 (see also nutrient pollution)
FHA (see Federal Highway Administration)
fish
diseases, 331–332
habitat protection, 39, 99, 104, 295, 323
harvests, 274–275
and human health, 32, 183, 210
kills, 206, 344
migratory species, 283–285, 300
ornamental/aquarium trade, 31–32, 41
Fish and Wildlife Coordination Act, 367
Fish Stocks Agreement, 300–302, 446
fisheries
aquaculture impacts, 40, 331–332, 334
Chignik salmon, 40, 288
collapse, 40, 275
coral reef, 37, 322, 323
depletion, 38, 40, 49, 54, 275, 299
economics, 32–33
flounder, 276, 281
halibut/sablefish, 287, 288, 289, 297
international, 298, 299–303
invasive species, 41, 331–332
monkfish, 282
New England groundfish, 276, 287–288, 290, 296
North Atlantic cod, 40, 275
Peruvian anchoveta, 275
pollock, 288
recovery, 276, 277, 281
regime shifts, 296
striped bass, 276, 281
surf clam/ocean quahog, 288, 289
whiting, 288
world stocks, 40
wreckfish, 288
fishery management, 274–304 (see also fisheries; commercial fishing; Regional Fishery Management Councils)
allocation decisions, 277, 278, 279
allowable biological catch, 277–278, 279, 280, 287
assessment decisions, 277, 278
authority, 52, 283–285
catch-and–release programs, 281
closures, 39, 99, 104, 284, 291, 293, 294, 299, 314
conservation, 51–52, 54, 63, 101, 297–299, 302
cooperative research, 281–282
coordination and cooperation in, 100, 284–285, 288, 291, 292–293, 301–303
data collection and sharing, 276, 280–281, 292–294, 295, 298
dedicated access privileges, 288–290, 293
ecosystem–based approach, 280, 295–299
education and outreach, 136, 291
enforcement of restrictions, 288–289, 291–295, 297, 300, 301
funding, 291, 292
global climate change and, 43, 296
governance, 283–287
habitat protection, 295, 297–298
history of, 274–276
incentive–based approaches, 275, 287, 303
indigenous knowledge, 282
international cooperation, 284, 291, 293, 298, 299–303, 318, 445, 446, 451
interstate commissions, 277, 278, 279, 283, 284, 299
jurisdiction, 49, 51–52, 53, 275, 283–285, 300
lawsuits, 276, 279, 286, 317
leadership, 284–285
legislation, 51–52, 34, 275
management areas, 63, 295
monitoring, 291, 293–294, 298, 408
overcapitalization of fishing fleets, 273, 290–291
partnerships, 292–293
permits, 287–288
political pressures, 277, 278, 287
“race for the fish” approach, 287–291
recreational fishing, 275, 281
regional concerns linked to, 295–297
research priorities, 40, 280–283, 295, 380
safety issues, 287, 288, 292, 293
science–based, 276–282
socioeconomic considerations, 289, 296–297, 382
state role, 292, 332, 334
stock assessments, 276–277, 279, 282, 296–297
subsistence harvesting, 282
trade sanctions, 303
traditional approaches, 287–288
sustainable, 104, 276–282
Vessel Monitoring System, 291, 293–294
fishing gear
circle hooks, 299
derelict, 265, 268, 269–270, 288
entanglement of marine animals in, 264, 266–267, 306–307
research needs, 282, 299
sensors on, 293
turtle excluder devices, 308
fishing industry (see commercial fishing; recreational fishing)
Fishing Vessel Obligation Guarantee Program, 275, 290, 291
flag state, 236, 238–239, 300
flame retardants, 183, 209, 234
Fletcher, Madilyn, 420
flood control, 42, 88, 89, 113, 163–164, 165, 166, 174, 175, 179, 182, 184, 369
flood insurance, 155 (see also National Flood Insurance Program)
floodplain development, 165, 166, 167, 168
flooding, 40, 42, 44, 165, 217
Florida, 89, 316
coastal planning and management, 152, 160
coastal zone, 34, 154
coral reefs, 41, 321
endangered species, 307
Everglades, 173, 175
habitat losses, 41, 171
invasive species, 259
mineral deposits, 368
offshore management, 160, 354, 368
recreation and tourism, 151
seaward boundary, 70
water quality issues, 210
Florida Keys, 151, 322
food (see seafood)
Food and Agriculture Organization, 269, 450, 451
Code of Conduct for Responsible Fisheries, 293, 302, 303, 336
Committee on Fisheries, 300
Compliance Agreement, 300, 301
Fish Stocks Agreement, 300–302
International Plans of Action, 302, 303
Food and Drug Administration, 332–333, 339, 341, 347, 349, 351, 477
Framework Agreement on Climate Change, 54, 445, 448
Freely Associated States of Micronesia, 409–410
funding (see also costs)
budget assessment and review, 469–470
national ocean policy framework, 463–464
nonfederal authorities and, 466–467
Ocean Policy Trust Fund, 468–469
partnerships, 418
with revenues from ocean uses, 467–469
GAO (see General Accounting Office)
gas (see natural gas)
General Accounting Office, 93, 238, 246, 259, 392
General Agreement on Tariffs and Trade, 303
Georges Bank, 51, 297
Georgia, 358, 368
global climate change
abrupt, 44, 67, 378
c | coral ecosystem effects, 44, 320, 325, 327
c | costs of, 40, 43–44, 307
c | and fishery regime shifts, 43, 296
c | and human health, 43, 338, 346–347
c | Intergovernmental Panel on Climate Change, 43
c | and invasive species, 253
c | and marine transportation system, 197
c | monitoring, 229, 408, 409, 453
c | polar melting, 44, 450
c | process, 378
c | regional coordination, 87, 94
c | research needs, 44, 67–68, 378–379, 380, 453
c | sea level rise, 40, 42, 44, 54, 171, 378
c | and sediment flows, 181
c | temperature increases, 43, 338, 346–347
c | vulnerability of coastal areas, 162, 171
c | Global Environmental Affairs Policy Coordinating Committee, 449
| Global Ocean Observing System, 397, 409–410, 414, 425, 434, 453
| Global Positioning System, 195, 293, 385, 389
| Global Program of Action for the Protection of the Marine Environment from Land–Based Sources, 222, 447, 451, 455
| governance (see also National Ocean Council)
c | framework, 61, 68
c | guiding principles, 62, 473
c | international structure, 449–450, 451
c | national coordination and leadership, 76–84
c | participatory, 62, 68, 102, 473
c | timeliness, 62, 473
| Great Lakes
| beach–related activities, 35
| coastal watershed counties, 34
| coastal zone, 34
| coordination of regional approaches, 87, 90, 92, 93
| fisheries, 252
| habitat restoration, 173
| International Joint Commission, 93
| invasive species, 41, 252, 254, 257
| national lakeshores, 104
| pollution, 28, 223
| population density, 38
| value of, 35, 38
| Great Lakes Commission, 93, 159
| Great Lakes Fishery Commission, 93, 283, 284
| Great Lakes Interagency Task Force, 92, 93
| Griffin, Robert, 185
gross domestic product, 31, 32, 192

| Hanna, Susan, 288
| harbors, 186, 196, 200
| harmful algal blooms
| causes, 206, 208, 344
| costs of, 39, 344
| and human health, 39, 338–339, 344–345, 346, 349
| management, 165, 344–345, 349
| and marine mammal mortality, 307, 315
| monitoring, 228, 344, 345–346
| nature of the problem, 204, 338–339
| outbreak trends, 54, 344, 345, 346
| research needs, 344
| Hartwig, William F., 259
| Hawaiian Islands
| aquaculture, 332, 335
| coastal management program, 160
| coastal zone, 154
| coral reefs, 35, 41, 264, 321, 323, 325
| debris management, 264, 270
Department of Education initiative, 135
endangered species, 264
habitat restoration, 177
mineral deposits, 368
monk seals, 264, 266
offshore management, 160
recreation and tourism, 151
water quality issues, 210

hazard management (see also weather; individual types of hazards)

beach erosion mapping and rating, 167
in coastal areas, 150–151, 157, 162–169
costs, 162, 163, 164, 165
data collection and analysis, 163, 164–166
disaster assistance, 168–169
ecosystem–based approach, 169
education and outreach, 163, 164–166
federal programs, 163–169
floodplain development, 165, 166, 167, 168
infrastructure policies and programs, 163–164
mapping and charting, 165–166
mitigation planning, 163, 168–169
National Flood Insurance Program, 163, 166–168
offshore, 99
repetitive–loss properties, 167–168

health (see human health)

heavy metals, 183, 210, 223, 229, 340–341
Hilltops to Oceans (H2O) initiative, 222–223, 455
Hogarth, William T., 104
horseshoe crab, 33, 342
human health, 338–351

animal models for human research, 339
aquaculture and, 346, 349
bacteria and viruses and, 39, 341, 346
biodiversity and, 33, 35, 339–340

bioproducts related to, 33, 339–343
coordination of federal programs, 339, 348, 350
education and outreach, 350
funding, 339, 341
global climate change and, 43, 338, 346–347
harmful algal blooms and, 39, 338–339, 344–345, 346, 349
interdisciplinary biomedical research, 341, 343
links between oceans and, 338–339
microbiological testing and monitoring, 229, 233, 344, 347–348, 349–350
pathogenic marine microorganisms and, 343–348, 349–350
Oceans and Human Health Initiative, 339, 462
Pfiesteria piscicida, 344
protection of, 229, 348–351
regional dimensions, 183, 350–351
research and development needs, 344, 345, 346, 347–348, 381
seafood contamination, 32–33, 210, 39, 222, 346, 348–349, 350
sediment contamination and, 183, 348–349
Vibrio cholerae, 346–347
water pollution and, 206, 210, 213, 217, 304–341, 344, 346, 349–350

hurricanes

Andrew, 42, 164
Betsy, 165
Hugo, 164
Floyd, 164
Isabel, 201
losses, 42, 164

hydrothermal vents, 33, 37, 341, 387
hypoxia, 39, 87, 204, 208

IFQ (see individual fishing quota)
IMO (see International Maritime Organization)

incentive–based approaches

agriculture, 219
coastal planning and management, 155, 158
debris management, 270
education, 270
fishery management, 275, 287, 303
inappropriate, 157, 162, 163–164, 167, 168, 186, 210, 275, 287
oil and gas production, 357
vessel pollution, 243, 245
vessel safety and security, 237, 240
water pollution control, 212, 214, 217, 218, 219–220, 243, 245

individual fishing quotas, 288, 289
individual transferable quotas, 288, 289

informal education, 122, 124, 125, 127, 142–145

information (see also data; research needs)

accessibility to users, 434
coastal ecosystems, 157, 159–160, 176–177
coordination of, 159–160, 176, 386, 390
defined, 428
geospatial, 390
hazards–related, 163, 164–166
IOOS end products, 95, 405–406
regional needs, 94–95, 157, 159–160, 176, 386
sharing, 177, 240, 268–269, 293, 295, 389, 392–393, 436, 451

workforce supply and demand, 139

infrastructure (see also research infrastructure and technology)
aquaculture, 330
marine transportation system, 186, 193–196, 198–199, 200
oil, 236, 246, 362–363
science and technology components, 416–425
wastewater treatment, 207, 211–212, 219–220
inland waterways, 186, 196, 200
Integrated Ocean Drilling Program, 414, 417, 454
Integrated Ocean Observing System, 394–410
capacity building, 409–410
coastal and ocean systems, 395–396
commitment to creation of, 396–397
components, 82, 269, 396
cost estimates, 407–408
data management, 405, 407–408, 434, 435, 437
design elements 397, 400–406
Earth Observation Summit, 409
end product development, 95, 405–406
environmental variables, 400–402
existing systems, 327, 328, 394, 395–396, 409, 420
fishery data, 281, 408
funding, 397, 404, 406–408, 459, 462
governance structure, 397–399
implementation steps, 396–397
international cooperation, 396
397, 403, 409–410, 453
national planning, 397–398
as national monitoring system component, 231–232, 234
offshore infrastructure and, 364
outreach to user community, 399–400
partnerships, 396 397, 405, 406, 409–410
potential benefits, 164–165, 394–395, 408
product development, 95, 110
397, 406
regional structure, 95, 398–399, 400, 405–406, 436
research observatories and, 402
satellite observations, 395, 403–405, 407–408, 423, 424, 425
sensors, 346, 364, 402–403, 423
space-based observation missions, 403–404
user input for planning, 405–406
value of, 395–396, 408
Interagency Committee for the Marine Transportation System, 84, 197–198, 478
Intergovernmental Oceanographic Commission, 449–450, 451, 453
intermodal connections, 196, 198–199, 200
internal waters, defined, 70
International Coastal Cleanup, 264, 266, 268
International Convention for the Conservation of Atlantic Tunas, 443, 446
International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 261
International Convention for the Prevention of Pollution from Ships, 244, 245, 265, 270, 447
International Convention for the Regulation of Whaling, 448
international cooperation, 90 (see also international ocean policy; LOS Convention)
agreements and treaties, 444–449
capacity building, 453, 454–455
challenges, 442–443, 449, 450, 452
collaboration, 291, 449–450
developing and implementing, 443–452
Earth Summit and, 445, 448
evolution of, 443
freedom of the seas, 53, 72, 99, 105, 443, 450, 454
funding issues, 449
GOOS and, 453
governance structure, 449–450, 451
guiding principles, 444, 448, 473
recommendations, 479
responsible international bodies, 451
science programs, 452–454
U.S. coordination, 300, 449–450, 451
U.S. research contributions, 454
interstate fisheries commissions, 277, 278, 279, 283, 284, 299, 334, 479
intracoastal waterways, 186, 196, 200
Great Lakes region, 87, 93
invasive species control, 261–262
on IOOS, 396 397, 403, 409–410, 453
pollution control, 222–223, 224
port state control, 240
on research, 380, 454
on trade policy, 445, 451
vessel pollution control, 239, 244, 245, 247, 451
vessel safety and security, 237, 238, 239, 451
International Maritime Organization, 237, 238, 239, 244, 247, 261, 450, 451
international ocean policy (see also international cooperation; LOS Convention)
agreements and treaties, 444–449
capacity building, 453, 454–455
challenges, 442–443, 449, 450, 452
collaboration, 291, 449–450
developing and implementing, 443–452
Earth Summit and, 445, 448
evolution of, 443
freedom of the seas, 53, 72, 99, 105, 443, 450, 454
funding issues, 449
GOOS and, 453
governance structure, 449–450, 451
guiding principles, 444, 448, 473
recommendations, 479
responsible international bodies, 451
science programs, 452–454
U.S. coordination, 300, 449–450, 451
U.S. research contributions, 454
interstate fisheries commissions, 277, 278, 279, 283, 284, 299, 334, 479
intracoastal waterways, 186, 196, 200
invasive species, 252–263
aquaculture and, 40, 256, 257, 258, 261, 331–332, 336
Caulerpa taxifolia, 41, 259
climate change and, 253
costs of, 252, 259
coordination of programs, 258, 260–261
Crassostrea ariakensis, 261
defined, 253
detection and response, 177, 259–260
domestic port–to–port contamination, 257
education and outreach, 255, 258–259
European green crab, 41, 253
federal and state programs, 255–256, 260–261
funding for control, 252, 255, 256, 258, 259
hydrilla, 252, 259
impacts, 41, 252–253, 308, 345
intentional introductions, 256, 261
international partnerships, 261–262
legislation, 253–255
management, 253–256, 260–261
monitoring, 260, 262
pathways for introduction, 41, 253, 254, 256–257, 264
prevention, 257–259
regional approach, 254, 255
research needs, 255, 262, 380
trade in marine organisms and, 31, 41, 256, 257, 258
IOC (see Intergovernmental Oceanographic Commission)
IOOS (see Integrated Ocean Observing System)
ITQ (see individual transferable quotas)
Japan, 274, 301, 340, 409, 413, 418
Jason II, 418–419
jobs (see also employment; workforce)
ocean–related, 31, 32, 322, 353
losses, 40, 41
John H. Chafee Coastal Barrier Resources System, 155, 156
Johnson administration, 50, 53
jurisdictions
baseline, 70
and coastal planning and management, 153–154, 155, 157
continental shelf, 72–73
dangerous species, 306, 309, 310–311
energy and mineral resources, 49, 70, 71, 72, 352–352, 367
exclusive economic zone, 30–31, 72, 73, 454
fishery, 49, 51–52, 53, 275, 283–285, 300
high seas, 73, 454
inconsistencies and ambiguities in laws, 73
land use planning, 152
marine mammal and endangered species protection
offshore energy and mineral resources, 49, 70, 445
overseas, 70–73
sediment management, 181
state, 49, 70–71, 284, 332, 334, 352–354
territorial sea, 53, 72, 73
Kennedy administration, 49, 53, 88
laboratories and instrumentation, 420
Lacey Act, 254–255, 324
Lake Erie, 206, 344 (see also Great Lakes)
Lake Michigan, 34, 183 (see also Great Lakes)
Land and Water Conservation Fund, 172, 359
land use planning, 217, 220–221, 395 (see also development)
Landsat satellite system, 395, 425, 431
large marine ecosystems, 63–64, 90, 295 (see also ecosystem–based management)
Law of the Sea Convention (see _LOS_ Convention)
lease/leasing, offshore, 382
for aquaculture, 101, 332, 334
oil and gas, 49, 53, 54, 71, 353–357, 359, 366, 369
legislation (see also individual statutes)
conservation, 51–52, 54, 63, 101
coral reef management, 323–324, 325–326
debris management, 266
dangerous species, 101, 309–310
energy and resource minerals, 49, 353–354, 360, 366
environmental protection, 51, 54, 222
fishery management, 51–52, 54, 275
guiding principles, 62, 473
invasive species control, 253–255
presidential reorganization authority, 114, 115
resource development, 52
territorial jurisdiction, 52
Leinen, Margaret, 418
levees (see flood control)
London Convention, 265–266, 446
LOS Convention, 53, 54, 300, 444–445, 390, 446, 451, 454
jurisdictional definitions, 70, 72, 73
Louisiana, 89
flood control measures, 165, 174, 369
habitat restoration, 173, 174–175, 369
offshore oil and gas production, 353, 358
vulnerability to natural hazards, 164, 165, 168
wetlands, 40, 165, 174, 178
Loy, James M., 200

Maine, 152, 160, 332

Malone, Thomas, 397

mammal (see marine mammals) manatees, 307, 309, 313, 317

mangrove forests, 41, 44, 171

mapping and charting activities, 118

continental shelf, 390

Electronic Navigational Charts, 195

erosion risks, 167

federal, 389–392

flood hazards, 165–166, 167

funding, 177, 189, 213, 228, 229, 231, 465

integrated maps and assessments, 388, 389, 436

value of, 388

MARAD (see Maritime Administration)

marine debris (see debris)

marine habitats (see also coastal habitats; marine protected areas)

areas of particular concern, 297

losses, 40, 308

protection, 104, 295, 297–298

value of, 37

Marine Mammal Commission, 84, 267, 309, 310

Marine Mammal Protection Act, 101, 309, 310, 311–313, 316, 317, 353, 366, 367

marine mammals, 48 (see also endangered species; individual species)

commercial harvesting, 307

harassment, 312

interactive education programs, 316

legislation, 101, 309

noise effects, 307, 315–316

permitting and review standards, 312–314

research, 312, 380

status of stocks, 309

strandings, 315

threats to, 266–267, 306–307, 331

marine operations

coordinating and consolidating, 388–391

defined, 388

federal mapping and charting, 390–392

mapping and assessing resources, 389

Marine Plastic Pollution Research and Control Act, 266, 269

marine protected areas (see also National Marine Sanctuary Program)

biodiversity in, 104

defined, 103

federal efforts, 103–104, 171

fishery management and, 295

international agreements, 450

as management tool, 103–106

national interests and, 105

stakeholder input, 90, 99, 106

research in, 343

role, 104

Marine Protection, Research, and Sanctuaries Act, 266, 325, 353

Marine Resources and Engineering Development Act, 50

marine sanitation devices, 241, 243

Marine Transportation Security Act, 238

marine transportation system, 192–201

components, 193–196

coordination of, 196, 197–198, 200

economic value, 31, 32, 192–193, 194, 195, 200, 236

ecosystem–based management, 196

emergency preparedness, 200–201

federal roles, 197–198

global climate change and, 197

harbors, channels, and waterways, 186, 196, 200

information needs, 199–200, 390

interagency committee, 197–198, 199

intermodal connections, 196, 198–199, 200, 384

National Advisory Council, 198, 199

national interests, 238

navigational aids, 195, 390

personnel, 196

ports, 186, 193–194, 196, 198, 200–201

security, 32, 200, 238

services provided, 193

shipbuilding and repair, 194–195, 198

vessel characteristics, 194

Maritime Administration, 51, 199, 358

maritime domain awareness, 249–250

MARPOL (see International Convention for the Prevention of Pollution from Ships)

Marshall Islands, 44, 321, 409–410

Maryland, 88, 344, 358

Smart Growth and Neighborhood Conservation Initiative, 152

Massachusetts, 160, 236, 358, 367

McCready, Richard, 239

mentoring, 135, 141

Merchant Marine Act (Jones Act), 194, 195

mercury, 223, 224, 346, 348, 349

(see also heavy metals)

MERHAB (see Monitoring and Event Response for Harmful Algal Blooms)

metadata, 429, 436

methane hydrates, 33, 341, 364–365, 387, 450

Methane Hydrate Research and Development Act, 365

Mexico, 224, 261, 358, 454

Mineral Leasing Act, 359

minerals, non–petroleum (see also energy and mineral resources)

commercial interest in, 352
common heritage of mankind, 53
deep seabed mining, 53, 54, 444, 446
economic value, 33
management, 368–369
Environmental Studies Program, 363–364
minorities, education of underrepresented and underserved groups, 130, 136, 141–142, 145
minority–serving institutions, 141
Mississippi River Basin, 39, 87, 174, 206, 216, 229
Mississippi Sound, habitat losses, 41, 171
MMS (see Minerals Management Service)
monitoring, 89 (see also Integrated Ocean Observing System; national monitoring network; individual programs)
atmospheric deposition, 229, 230, 232
biodiversity, 228
climate change, 229, 409
coastal margin, 176–177, 231–232
compliance–related, 213, 294, 298
conservation and restoration efforts, 177
contaminants, 228, 229, 230, 232
coral ecosystems, 324, 327–328
costs of, 298
effects–based, 233
federal programs, 227–230
fishery–related, 291, 293–294, 298
funding, 177, 189, 213, 228, 229, 231
harmful algal blooms, 228, 344–345
health–related, 229, 349
interagency coordination, 230–231
invasive species, 260, 262
land–cover characteristics, 228
local efforts, 177, 228
marine debris, 266, 268–269
needs, 104, 177, 189, 231–232
nonpoint–source pollution, 217, 220, 213, 214, 220, 221
offshore, 294, 382
pathogens, 344–345, 346
priority pollutants, 234
sampling protocols, 233
satellites, 294, 345, 346, 424
sediment, 189, 229
ship–based, 423
shortcomings in programs, 229–230
state–based, 229
stations and buoy arrays, 424
streamflow, 228, 229
stressor–based, 233
Vessel Monitoring System, 293–294
visual environments, 229
water quality, 165, 177, 213, 214, 217, 221, 224, 228, 229, 230–231, 233
weather, 228
Monitoring and Event Response for Harmful Algal Blooms, 228, 345
museums, 35, 125, 136, 143, 144
NACOA (see National Advisory Committee on Oceans and Atmosphere)
NASA (see National Aeronautics and Space Administration)
National Academy of Sciences, 58, 289
National Advisory Committee on Oceans and Atmosphere, 81, 84, 117, 387–388
National Aeronautics and Space Administration, 50, 341, 347, 402, 403, 410, 419
data collection, 429–431
Earth Science Enterprise, 113
education programs, 124, 127, 128, 132, 140, 142, 220
existing ocean and coastal responsibilities, 78, 112, 114, 395
hazards–related role, 164
mission, 404
recommendations, 478
National Aquaculture Act, 333, 334
National Atmospheric Deposition Program, 229, 230
National Coastal Condition Report, 204–205
National Dredging Team, 84, 188, 478
National Environmental Satellite, Data, and Information Service, 110, 118
National Estuarine Research Reserve System, 103–104, 153, 155, 156, 171
Coastal Training Program, 138, 220
Graduate Research Fellowship Program, 140
System–wide Monitoring Program, 228
National Estuary Program, 153, 156, 171, 229
National Flood Insurance Program erosion mapping and rating, 167
flood hazard mapping, 165–167
incentives for development, 168
premiums, 167
repetitive–loss payments, 165, 167–168
National Geographic Society, 132, 387
National Geophysical Data Center, 430, 437
National Geospatial–Intelligence Agency, 199, 389, 390
National Historic Preservation Act, 359, 367
National Ice Center, 402, 424, 430
National Institute of Environmental Health Sciences, 82, 339, 341, 347, 348, 477
National Institutes of Health, 82, 137, 140, 341, 347
National Invasive Species Act, 253
National Invasive Species Council, 84, 254, 259–260
National Marine Educators Association, 125, 132, 136
Cooperative Enforcement Program, 292, 414
endangered species jurisdiction, 309, 311
fishery management, 275, 276, 278–283, 286, 290–299, 366
recommendations, 476
socioeconomic research, 379–380
National Marine Sanctuaries Act, 323, 325
National Marine Sanctuary Program, 99, 103, 104, 144, 153, 155–156, 171, 343, 382
national monitoring network (see also monitoring)
coordination of existing programs with, 230–232, 346
critical factors tracked in, 227
data accessibility and usefulness, 230, 234, 434, 435
design, 233
goals and objectives, 189, 232
IOOS linked to, 231–232, 234, 327, 328, 346, 347
new contaminants, 209, 233, 234
review and modification, 233–234
stakeholders, 227
technical coordination, 233, 347–348
user input, 234
value, 226–227
National Ocean Council (proposed)
Committee on Ocean Resource Management, 83–84, 166, 198, 313, 326, 476
Committee on Ocean Science, Education, Technology, and Operations, 82–83, 126, 127, 375–376, 437, 475
composition, 79
Ocean.ED, 126–128, 139, 160, 475
Ocean.IT, 375, 476
Ocean.US, 82, 364, 375, 476
functions, 79–80
interagency team, 313–312
International Committee, 302, 303, 476
recommendations, 475
research strategy, 384
structure, 129
National Ocean Economics Project, 31, 382–383
national ocean policy, 48–55, 60–69 (see also international ocean policy)
accountability in, 63, 197, 473
activism and, 51–52
consensus for change, 55
developing and implementing, 63–69
closure of the oceans, 48
exploitation, 48, 53
formative years, 48–49
fragmentation, 50–51, 52, 55, 65, 77–78, 93, 109–110, 112, 114, 125, 197
framework, 61, 76–118
guiding principles, 60–69, 97
international cooperation, 53, 63, 473
post–World War II period, 49–50
science and, 49–50, 54, 67–68
Soviet Union and, 49
stewardship ethic, 51
Stratton Commission and, 50–51, 52, 274
USCOP mandate, 55–56
vision, 60–61
National Ocean Research Leadership Council, 82, 126
National Ocean Service, 110, 117, 118, 382, 414, 435
National Oceanic and Atmospheric Administration, 79, 159, 197, 199, 306
aquaculture programs, 332–335
biotoxin program, 345
budget support, 54, 112
Bureau of Commercial Fisheries, 51
coastal management program, 153–155, 181
coral reef programs, 266, 321, 323, 324, 326, 327
creation, 50, 55, 115
data collection, 139, 164, 364, 389, 390, 429–432, 435–435
debris research and management programs, 266, 267, 269, 270
defining coastal watershed counties, 34
education role, 124, 127–128, 134, 137, 138, 139–140, 141, 142, 143, 144, 221, 222
endangered species programs, 309–315, 317, 318
energy resource management, 362
exploration programs, 388
fellowships, 140
fishery management, 279, 282, 285, 286, 291, 297, 302 (see also National Marine Fisheries Service)
habitat conservation programs, 101, 103–104, 153, 155–156, 171, 177
human health initiatives, 339, 341, 345, 347–349, 351
international contributions, 222
invasive species management, 253, 255, 258, 259–260
line offices, 110 (see individual offices)
marine protected areas, 103–104, 153, 449
mission and responsibilities, 110 397–398, 431, 449
monitoring programs, 228, 230, 231, 345, 349, 395, 399, 424
natural hazards management, 163, 164
navigation products, 195
observing system, 163, 402–406, 410 (see also Integrated Ocean Observing System)
Office of Oceanic and Atmospheric Research, 110, 117, 118
Office of Program Planning and Integration, 110
prior proposed changes in, 116–118
recommendations, 476
research funding, 137, 379
research capabilities, 416–418, 420, 422
Science Advisory Board, 382
sediment management, 181, 189
socioeconomic research, 382–384
status and authority, 51, 52
structural strengthening, 110–112, 115, 117, 156
successful programs, 110
water pollution control, 205, 214, 215, 217, 220, 221
weather forecasting, 163
workforce development, 139, 142
National Oceanographic Data Center, 430, 437
National Oceanographic Partnership Act, 82, 127
National Oceanographic Partnership Program, 82, 125, 126–128, 375, 414, 417, 436
National Park Service, 104, 113, 124, 159, 260, 343
National Parks and Seashores, 171, 229
National Pollutant Discharge Elimination System, 101, 207, 210, 211, 212, 221
National Science and Technology Council, 77, 82, 125, 231
Joint Subcommittee on Aquaculture, 84, 333–334
National Science Education Standards, 131–132
National Science Foundation, 49, 50, 142, 181, 313–314, 316, 365, 376, 389
biomedical research funding, 341
budget support, 112
data collection, 431
education programs, 127, 128, 129, 134, 137–142, 339 (see also Centers for Ocean Sciences Education Excellence)
extisting ocean and coastal responsibilities, 78, 112, 113, 124, 260, 334, 375
exploration program, 388
health–related programs, 339, 347, 348
infrastructure funding, 413, 419, 420
National Science Board, 413
observing initiatives, 402, 403, 420
recommendations, 478
socioeconomic research, 383, 384
National Science Teachers Association, 125, 132
National Security Council, 449
Global Environment Policy Coordinating Committee, 77
National Status and Trends Program, 228, 230
National Stream Quality Accounting Network, 228, 229, 230
National Streamflow Information Program, 228, 229, 395
National Survey of Fishing, Hunting, and Wildlife–Associated Recreation, 275, 281
National Virtual Ocean Data System, 436–437
National Water Quality Assessment, 228, 229
National Water Quality Monitoring Council, 230–231
National Weather Service, 110, 118, 163, 228, 394, 395, 398, 405, 406, 408, 435
National Wildlife Refuge System, 104, 171, 256
Native Americans (see also tribe/tribal), 183, 312
Miccosukee tribe, 175
Seminole tribe, 175
natural gas (see also energy and mineral resources)
demand, 358
LNG ports, 33, 358
methane hydrates, 341, 364–365, 387, 450
offshore resource management, 353, 358
production trends, 33, 333, 357
royalty relief, 357
shallow–water supply, 357
natural hazards, 162–169 (see also hazard management)
costs of, 162–163, 164, 165
and navigation and port operations, 200–201
and offshore management, 362
research needs, 381
vulnerability of coastal populations, 42, 165
natural hazards, 162–169 (see also hazard management)
costs of, 162–163, 164, 165
and navigation and port operations, 200–201
and offshore management, 362
research needs, 381
vulnerability of coastal populations, 42, 165
navigation/navigational, 101 (see also mapping and charting)
aids, 195, 390
dredging, 181, 183, 185–186, 187, 196, 217
freedom of, 53, 72, 99, 105, 443, 450, 454
impacts of projects, 179, 366
invasive species and, 41, 256
offshore activities and, 332
safety requirements, 101, 200
Netherlands, ocean policy, 79, 223
New Jersey, 88, 134, 187, 368
debris management, 264
Division of Watershed Management, 157, 159
New York, 88, 159, 187
Nichols, Mary, 92
NIEHS (see National Institute of Environmental Health Sciences)
NIH (see National Institutes of Health)
nitrogen, 212, 219, 223, 224 (see also nutrient pollution)
nitrogen oxide emissions, 224, 244
Nixon administration, 52, 109, 115, 353
NMEA (see National Marine Educators Association)
NMFS (see National Marine Fisheries Service)
no-discharge zones, 241, 243, 244
noise, 307, 315–316
Nonindigenous Aquatic Nuisance Prevention and Control Act, 253–254, 258
non-native species, 177, 252, 253, 256–257 (see also invasive species)
nonpoint source pollution
agricultural, 54, 213, 214, 215, 216, 219
coordination of programs, 90, 94, 214, 217–218, 222
enforcement programs, 212, 213, 218, 220
financial disincentives, 217, 219–220
incentive-based controls, 214, 217, 218, 219–220
international cooperation, 222–223
land use planning and, 217, 220–221
major sources, 213, 215–217
monitoring, 217, 220, 213, 214, 220, 221
public education on, 69, 213, 214, 220
State Revolving Funds, 217, 219
stormwater runoff, 54, 215–217, 220, 221
watershed approaches, 177, 213, 214, 219, 222
North Atlantic right whales, 264, 298–299, 317
North Carolina, 167, 368
NOS (see National Ocean Service)
NPDS (see National Pollutant Discharge Elimination System)
NPS (see National Park Service)
NSF (see National Science Foundation)
nutrient pollution, 39, 88, 89
control, 205, 206, 208–209, 212
ecological effects, 39, 175, 206, 208–209, 210, 215, 216, 345, 346
monitoring, 229, 232
sources, 204, 210, 211, 216, 223
tradable credits, 212, 219
nutritional bioproducts, 33, 340
NWS (see National Weather Service)
observing systems (see also Integrated Ocean Observing System; monitoring; national monitoring network; satellite observations)
Earth Observing System Data and Information System, 431, 438
Earth Resources Observation Systems Data Center, 430
funding, 177, 189, 213, 228, 229, 231, 465
Global Climate Observing System, 414
Global Ocean Observing System, 397, 409–410, 414, 425, 434, 453
Group on Earth Observations, 409
Long-term Ecosystem Observatory, 402
Marine Observation Network, 424
Monterey Bay Aquarium Research Institute Ocean Observing System, 402
National Water Level Observation Network, 424
NOAA system, 163, 402–406, 410
NSF initiatives, 402, 403, 420
Ocean Observatories Initiative, 402, 420
weather, 228, 293, 394, 404
Ocean Dumping Act (see Marine Protection, Research, and Sanctuaries Act)
ocean economy (see also economic issues)
defined, 31
service-oriented activities, 36, 42
ocean education (see curriculum; education and outreach; Ocean.ED)
ocean–land–atmosphere connection, 37, 61–62, 387, 453, 472 (see also global climate change)
Ocean Policy Trust Fund (proposed), 459, 468–469
Ocean Research Advisory Panel, 82, 125, 126–127
ocean science and technology (see also exploration; marine operations; research infrastructure and technology; research needs)
components, 374–375, 376
defined, 374–375
exploration program, 357, 386–388
federal leadership, 375–376
and fishery management, 293–294
funding, 376–377, 379, 385–386
guiding principles, 62
international programs, 452–454
jurisdiction issues, 72, 454
national strategy, 377–378
and ocean policy making, 54, 62
U.S. activities abroad
value of, 374–375
Ocean Thermal Energy Conversion Act, 368
Ocean.ED (proposed), 160, 475
community outreach, 136, 145
evaluation of education programs, 129
funding for, 127, 459
recommendations, 475
responsibilities, 127, 128, 129
science literacy promotion, 132, 135
workforce preparation, 139, 142
Ocean.IT (proposed), 375, 434–435, 476
description, 127, 398
Oceans Act of 2000, 55, 58, 59
Office of Education and Sustainable Development, 127–128, 140
Office of Management and Budget, 81, 112, 389, 476
Natural Resources Program, 112
Office of Ocean Policy (proposed), 459
description, 81–82
Office of Science and Technology Policy, 77, 82, 84
Office of Sustainable Marine Aquaculture (proposed), 334, 335
Office of Technology Assessment, 391–392, 413
offshore (see also energy and mineral resources; Outer Continental Shelf Lands Act)
aquaculture, 33, 54, 100, 101, 332, 336
bioprospecting, 343
coastal management linked to, 158, 160
coordinating management in, 90, 98–106, 160, 332, 343, 361, 368
compensation for resources, 102–103
current authorities and responsibilities, 98, 100, 101
defined, 98
energy and mineral resources, 53, 98, 99, 100, 158, 174, 343, 352–369
hazard management, 99
international management, 336
jurisdiction, 352, 355
leasing, 101, 332, 334, 353–357
movable activities, 100, 101
no-leasing buffer zones, 53
petroleum industry, 264, 268
planning areas, 355–356
site-specific activities, 100, 101
states responsibilities, 99, 101, 102, 158, 332, 334, 352–354, 361
oil (see also energy and mineral resources)
bio-remediation of spills, 35
deep-water production, 357, 363
demand, 357
embargoes, 52, 353
environmental issues, 361–364
infrastructure aging, 246, 362–363
offshore resource management, 99, 158, 174, 352–364
political issues, 353–354
production trends, 353, 357
from recreational vessels, 248
royalty relief, 357, 359
safety issues, 361
tankers and barges, 39, 54, 194, 245–246
supplies, 33
Oil Pollution Act, 54, 246, 247
OMB (see Office of Management and Budget)
Orbach, Michael, 435
Oregon, 152, 157, 160, 257, 354, 368
Outer Continental Shelf Lands Act, 49, 354, 355, 359, 362, 366, 369
Amendments of 1978, 53, 360, 361, 382
outreach (see education and outreach)
overfishing (see also fishery management), 40, 41, 276, 281, 285, 297, 299, 308, 323, 452
oysters, 41, 252, 261, 332
Pacific Decadal Oscillation, 296, 409
Pacific Freely Associated States, 135, 321
Pacific States Marine Fisheries Commission, 284
Panetta, Leon, 51
partnerships (see also National Oceanographic Partnership Program)
conservation, 172
educational, 134, 141
in energy and mineral resource development, 158, 357, 360, 361
federal–state, 153, 158–159, 311, 357, 360, 361
in fishery management, 281–282, 292–293
funding, 418
industry–research community, 364
information management, 435–436
international, 93, 223, 380, 454
IOOS, 396 397, 405, 406, 409–410
in marine transportation, 192–193, 237
NOAA–Navy, 435–436
research community and academia, 49, 124, 125, 129, 130, 132, 133, 135–136, 139
watershed management, 222
passenger ferries, 194, 236
PCBs, 183, 210, 223, 264, 349
peer review, 187, 278
Pennsylvania, 88, 159
permitting
aquaculture, 333, 335
for bioprospecting, 343
coastal construction and restoration, 184
fishery, 287–288
for marine mammals, 311–314
for offshore activities, 100, 343
pollution, 101, 207, 210, 211, 212, 221
programmatic, 312–314
for research, 343, 454
pesticides, 223, 234
Pew Oceans Commission, 51, 55, 77
pharmaceuticals
bioproducts, 33, 339, 340, 341
pollutants, 209, 234, 349
phosphates, 33, 368
phytoplankton, 37, 229
places of refuge, 247–248
Plant Protection Act, 254
plastic debris materials, 264–265, 266, 267, 307
point source pollution
animal feeding operations, 211
enforcement programs, 212
incentive–based controls, 212
industrial facilities, 207, 210
infrastructure investments, 211–212
major sources, 208–211
management tools, 207
septic systems, 210
sewer system overflows, 39, 208, 209–210, 211
wastewater treatment plants, 207, 208–209, 210, 211–212
Polar–orbiting Operational Environmental Satellites, 404, 424
polar regions, 297, 346–347, 364, 365, 378, 387, 417, 450
pollution (see nonpoint source pollution; point source pollution; water pollution)
population growth
coastal pressures, 36, 41–42, 43, 150–152
environmental impacts, 41–42, 43, 170
porpoises, 306, 309
ports
closures, 200–201
commerce flows, 193–194
economic value, 31, 32, 193–194
garbage reception facilities, 270
infrastructure, 193–194
LNG, 33, 358
planning and management, 186, 193–194, 196, 198, 200–201
pollution control, 245, 270
security, 32, 200
sediment management, 187
stewardship programs, 196
precautionary approach, 65–66, 80
President's Council of Advisors on Ocean Policy (proposed), 79, 80, 81, 87, 90, 102, 114, 115, 476
public awareness, education and, 68–69, 90, 122–124, 130, 142–143, 213, 220
Puget Sound, habitat losses, 41, 171
Puerto Rico, 34, 70, 155, 164, 321, 325
Radonski, Gilbert, 281
Reagan administration, 53–54, 72, 354, 387
recommendations
to Congress, 475
to Executive Branch leadership, 475–476
to federal government agencies, 476–478
on international policy implementation, 479
guiding principles for, 472–473
index to, 475–479
list, by appearance in report, 480–522
to regional bodies, 479
to states, 473–474, 479
recreation/recreational, 99, 105
boating, 32, 39, 66, 236, 241, 243, 245, 248, 264, 267
debris, 267
diving, 37
economic value, 31, 32, 35–36, 150, 151, 382
environmental impacts, 39, 42, 248
fishing, 31, 217, 275, 281, 321
jobs, 31
losses, 39
shipwreck sites, 102
threats to, 183
vessel pollution, 236, 241, 243, 245, 248
water quality and, 213, 229, 349–350
reefs (see artificial reefs; coral ecosystems)
Regional Fishery Management Councils, 90, 101 (see also commercial fishing; fishery management)
authority and jurisdiction, 283–285
creation, 52, 275
delays in management plans, 279–280, 280
ecosystem–based approach, 295–297, 326
government relationship with, 286, 291, 294
Gulf of Mexico, 286
input on research, 280–281
membership, 283–286
AN OCEAN BLUEPRINT FOR THE 21ST CENTURY

Mid-Atlantic, 276, 278, 288
mission, 275
multispecies plans, 295, 298
National Bycatch Strategy, 299
New England, 276, 278, 288
North Pacific, 278, 285, 288, 297, 326
peer review programs, 278
recommendations, 479
scientific and statistical committees, 277–278, 280, 479
South Atlantic, 288
successes, 285
training new members, 286–287
Western Pacific, 285

regional ocean councils (proposed)
boundaries, 90, 92–94
ecosystem assessments, 96, 100, 160, 176, 350
existing initiatives, 86–87, 88–89, 91, 93
federal agency coordination, 92–93, 157, 160, 350
national support and guidelines, 87
nature and functions, 90–91, 102, 103, 106, 222
recommendations, 479
research and information needs, 94–95, 160, 176, 234

Reilly, William, 327

renewable energy, 33
hydropower, 367
management regime, 368
thermal energy conversion technology, 367–368
wave or tidal energy technology, 366–367
wind power, 99, 365–366, 367

Reorganization Act of 1949, 115
reorganization of federal agencies (see also specific agencies)
consolidation of ocean and coastal programs, 112–115
for ecosystem–based approach, 108, 115
NOAA, 108, 110–112
presidential authority, 114–115

previous proposals, 109–110, 116–118
repetitive–loss properties, 167–168
research infrastructure and technology, 33 (see also monitoring; national monitoring network)
academic community linkages, 49, 124, 125, 129, 130, 132, 133, 135–136, 137, 139, 335, 347
airborne ocean science platforms, 419, 422–423
collaboration to maximize resources, 281–282, 347–348, 414, 418, 419
esential components, 412–413, 416–425
federal commitment to, 50, 421
funding for, 137, 335, 340, 376, 385–386, 418, 420, 424, 425, 459
gaps in, 413
health–related, 339, 340, 347–348
interdisciplinary, 339, 376, 414, 426, 426
international cooperation, 380
inventory of facilities, 413, 414, 415–416
laboratories and instrumentation, 420
land–based facilities, 423–424
leadership and coordination, 82, 89, 95, 105, 365
maintenance and upgrades, 425
modernization, 137, 416–425
monitoring station and buoy arrays, 424
national strategy, 414–415
Navy role, 49–50, 385, 390
ocean exploration platforms, 419
Ocean Observatories Initiative, 402, 420
planning to support ocean activities, 425
periodic review and assessments, 415–416
permits and licenses, 343
review process for grants, 386
satellites, 424–425
telecommunications, 420–421
undersea vessels, 417–418
virtual technology centers, 426

research needs
aquaculture, 335, 380
basic research, 385
biodiversity, 66, 379, 380
coastal habitats, 380
coral ecosystems, 327–328, 377, 380
cooperative, 281–282
data management, 384
economic, 31, 382–384
endangered species, 314–316, 380
energy and mineral resources, 365, 381
evaluation of programs, 128–129, 130
fisheries, 40, 280–283, 295, 377, 380
harmful algal blooms, 344
human health–related, 344, 345, 346, 347–348, 381
interdisciplinary, 341, 343, 385
invasive species, 255, 262, 380
marine debris, 380
marine mammal behavior, 380
marine transportation, 199–200, 248–249
natural hazards, 381
regional ecosystem dynamics, 96, 99, 104, 157, 316, 350, 379, 381
sediment, 381
socioeconomic, 377, 379, 381–384
vessel pollution, 248–249, 381
water pollution, 381
revenues from resources, 33, 102–103, 357, 359–360, 467–469
Reynolds, John E., III, 314
RFMC (see Regional Fishery Management Councils)
Rheault, Robert, 333
Rhode Island, 154, 414
Rivers and Harbors Act, 101, 366, 367
royalty payments, 33, 103, 359
runoff (see also nutrient pollution; water pollution, nonpoint source pollution)
agricultural, 39, 54, 159, 183, 206, 213, 214, 215, 216, 219
development and, 42, 151, 183
impervious surfaces and, 151, 215, 216–217
management of, 213, 220
stormwater, 39, 54, 151, 179, 206, 208, 209, 215–217, 220, 221
safety (see also security)
in oil and gas production, 361
seafood, 346, 348–349, 350
vessel, 237–238, 292
salmon, 33, 40, 43, 87, 288, 306, 308, 311, 318, 331–332, 335, 408
saltwater intrusion, 40, 44
salvage, 102, 423
San Francisco Bay, 41, 171, 253
San Francisco Bay–Delta estuary, 89, 173
sand and gravel resources, 368, 369
sanitary sewer systems, 210, 221, 350
Santa Barbara Channel oil spill, 51, 353, 361
Sartou, Cynthia, 295
satellite observations
civilian, 403–405
 collaborative, 425
 coordination with IOOS, 395, 403–405, 407–408, 423, 424, 425
data management, 390, 405, 407, 438
Earth observing, 404–405, 407–408, 424–425, 438
Geostationary Operational Environmental Satellites, 404, 424
National Polar–orbiting Operational Environmental Satellite System, 425
sensor development, 402–403, 414
Schwartz, Suzanne E., 267
science (see also ocean science and technology)
centers, 143
for diplomacy, 452
education standards, 131–132
literacy, 69, 123, 125, 131–132
peer–reviewed, 187, 278
Scientific and Statistical Committees (see also fishery management), 277–278, 280, 479
Scientific Committee for Oceanographic Aircraft Research, 419, 453
Sea Grant (see National Sea Grant College Program)
sea hare, 35, 342
sea lamprey, 252, 284
sea lions, 309, 317
sea level rise, 40, 42, 44, 54, 151, 166, 171, 174, 378 (see also global climate change)
sea sponge, 33, 342
seabirds, 299, 303, 306, 308
seafood contaminated, 32–33, 210, 222, 39, 346, 348–349, 350
demand for, 330
safety measures, 346, 348–349, 350
seagrass beds, 39, 41, 88, 171, 208, 264, 307
seals, 307, 309
seamounts, 326, 452
security, 105, 449
energy supply, 53
and funding for other programs, 291
marine transportation system, 32, 200, 249, 390
sediment (see also dredging)
climate change and, 181
composition, 180
disposal of dredged materials, 181, 182, 187
dual nature, 180–181, 204, 215
federal management role, 181–182, 187–188, 189
human activities and, 182–183, 184, 215
legislation, 183
monitoring, 189, 229
quality changes, 39–40, 183
quantity changes, 42, 151, 174, 182
regional management strategies, 181, 184–185, 212
remediation, 183
research, 181, 188–189, 381
transport, 180, 215, 217
sensors, 293, 345, 346, 347, 364, 388, 390, 396, 402–403, 414, 423, 426
septic systems, 39, 210, 350
sewer system
construction funding, 155
debris management, 268
overflows, 39, 208, 209–210, 211, 350
shipbuilding and repair industry, 194–195, 198
ships (see also vessel activities)
Automated Identification System, 249
collisions and groundings, 195, 200, 236, 237, 324, 362
container ships, 194
cruise liners, 194
domestic marine fleet, 194, 237
foreign flag vessels, 194, 236–237, 239
navigation aids, 195
oil tankers and barges, 39, 54, 194, 245–246
open registries, 239
passenger ferries, 194, 236
single-hull vessel phase-outs, 54, 245–246
shipwrecks, 37, 100, 102, 156, 246, 387
Shore Protection Act, 266
shrimp, 303, 308, 331, 335
shorelines (see beaches and shorelines)
Sikes Act, 324
Small Business Administration, 169, 334
Smithsonian Institution, 83, 140, 260
socioeconomic considerations in fishery management, 289, 296–297
research needs, 381
South Carolina, 164, 292, 368, 414
Soviet Union, 49, 52, 274
Stahl, James, 168
State Fish and Wildlife Consumption Advisories, 349, 350
states (see also coastal states; individual states)
disaster assistance, 168–169
monitoring programs, 229
recommendations, 473–474, 479
water quality management, 206, 207, 211, 217, 219
Steller sea lion, 309, 317
stewardship
coordination of decision making and, 64
education and, 69, 123, 142, 144, 173, 176
existing programs, 159, 196, 214, 281
guiding principles, 61, 472
legislation, 51
local community involvement, 177, 214
recreational fishing, 281
Stockholm Convention on Persistent Organic Pollutants, 224
storm surges, 42, 167
stormwater
flooding, 166
management, 217, 220
runoff, 39, 151, 179, 208, 220
Stratton Commission, 50–51, 52, 54, 55, 79, 81, 109, 117, 153, 274, 275, 414
Our Nation and the Sea (report), 50
Submerged Lands Act of 1953, 49, 70, 353
subsidence, 40, 166, 174
sustainability
aquaculture, 333–335
coral harvesting practices, 327
economic development, 89
fishery management, 104, 274–304
funding for, 360
guiding principles, 61, 472
international efforts, 223, 445, 448
redevelopment in hazard–prone areas, 169, 184
resource management, 138, 360
science–based, 276–282
Sustainable Fisheries Act of 1996, 54
swamps (see wetlands)
Tampa Bay, 41, 171, 209, 223
Taylor Grazing Act, 359
teachers
preparation, 124, 125, 128, 130, 133–135
professional development programs, 134
Teachers–at–Sea program, 134
unqualified, 133
technology (see also ocean science and technology; research infrastructure and technology)
costs, 209, 294
deep ocean, 387
enforcement, 293–294
and jurisdictional definitions, 73
sensor, 293, 388, 402–403
undersea research vessels, 417–418
virtual centers, 426
telecommunications, 33, 99, 396, 428
Tennessee Valley Authority, 159, 334
territorial sea, 53, 72, 73
terrorism, 55, 200, 238, 249 (see also emergency preparedness; security)
Texas, 34, 70, 89, 168, 200, 248, 353
TMDL (see Total Maximum Daily Load Program)
Total Maximum Daily Load Program, 207, 209, 217
tourism
debris and, 264, 267
education role, 144
economic value, 31, 35–36, 150, 151, 264
environmental impacts, 42
jobs, 31
seafood poisonings and, 344
losses, 39, 217, 264, 344, 349
water quality and, 349–350
toxic pollutants, 183, 204, 210, 212, 223, 224, 232, 241, 242
tradable
development rights, 172
pollution credits, 212, 245
quota program for fishing, 288
trade, 105 (see also marine transportation system)
conservation linked to, 303
coral, 327
in endangered species, 303
environmental policy and, 303, 451
international, 192–193, 194, 196, 244, 303, 327
in marine organisms, 31, 41, 256, 257, 258, 291
ornamental fish, 31–32
projections, 32, 244
sanctions, 303
seafood, 330–331
traditional knowledge, 282, 325
transportation (see also marine transportation system)
infrastructure, 155, 157
trawling, 52, 274
treasure, 100, 102
treaty/treaties (see also agreement; convention)
Antarctic Treaty, 447
Boundary Waters Treaty, 447
Pacific Salmon Treaty, 301
Yukon River Treaty, 301

tribe/tribal (see also Native Americans), 87, 95, 256, 380, 462, 466
aquaculture management, 333, 335
collaboration with state and federal governments, 92, 93, 94, 103, 104, 360, 389, 397
conservation, 171, 175, 178, 222
education and outreach, 81, 95, 104, 141
enforcement role, 291, 292
feedback, 59, 399
fisheries management, 277, 282, 284, 286, 289, 291, 292, 318
funding to, 468–469
health issues, 349
international cooperation, 444
monitoring role, 226, 228, 230–231, 232, 233, 234, 346
ocean observing, 397, 398, 399, 400
sovereignty, 90, 91, 286
water pollution control, 205, 207, 213, 222, 228
watershed management, 152, 159

Tropical Atmosphere Ocean, 395, 408, 424, 425
Truman administration, 49, 72
Trust Territories of the Pacific Islands, 34
tsunamis, 42, 165
turtles (see sea turtles)

UNCLOS (see LOS Convention)
UNEP (see United Nations Environment Program)
United Nations (see also Convention; Food and Agriculture Organization; Framework Agreement)
Atlas of the Oceans, 451
Commission on the Limits of the Continental Shelf, 390, 445
Conference on Environment and Development, 300, 301, 445
Conference on the Human Environment, 51, 445
Convention on Law of the Sea (see LOS Convention)
Division for Ocean Affairs and Law of the Sea, 451
United Nations Educational, Scientific and Cultural Organization, 451
United Nations Environment Program, 222, 445, 450, 451, 453, 455
United Nations Development Program, 451
University–National Oceanographic Laboratory System, 416, 417, 419, 420
U.S. Agency for International Development, 78, 113, 179
and marine transportation and commerce, 197, 199, 200, 390
offshore responsibilities, 52, 101, 358, 366
recommendations, 477
reorganization, 50, 55

U.S. Commission on Ocean Policy mandate, 55–56
members, 56
outreach efforts, 59
regional meetings, 56–58
report development, 59
science advisory panel, 58
working groups, 58

U.S. Coral Reef Task Force, 84, 324–325, 326, 327, 328, 478

U.S. Customs and Border Protection, 197, 199, 260

U.S. Department of Agriculture Agricultural Research Service, 260
aquaculture responsibilities, 332, 334
budget support, 112
conservation/restoration programs, 159, 171, 172, 173, 177, 182, 214, 215, 219
Cooperative State Research, Education, and Extension
Service, 215, 260
Economic Research Service, 260
Environmental Quality Incentives Program, 214
existing ocean and coastal responsibilities, 78, 112, 113, 199
invasive species control, 252, 254, 258
monitoring programs, 228, 231
Natural Resources Conservation Service, 159, 182, 215, 260
proposed reorganization, 116, 117
recommendations, 476
socioeconomic research, 383, 384
water pollution control, 205, 211, 214, 215, 217, 219, 220, 324, 326
Bureau of Economic Analysis, 383, 384
Bureau of Export Administration, 199
Bureau of the Census, 34, 383
U.S. Department of Education, 124, 127
Federal Energy Administration, 116
U.S. Department of Health and Human Services, 78, 112, 113, 334, 477
U.S. Department of the Interior, 324
aquaculture responsibilities, 332, 334
budget support, 112
Bureau of Indian Affairs, 260
Bureau of Land Management, 117, 260, 365
Bureau of Reclamation, 117, 182, 260
conservation/restoration funding, 33, 171, 177
endangered species management, 309, 315, 318
energy resource management, 53, 334, 358, 361, 362, 364, 365
existing ocean and coastal responsibilities, 78, 104, 112, 113, 114
exploration programs, 387–388
invasive species management, 254–255, 256, 258, 259, 260
recommendations, 477
reorganization proposals, 109, 116–118
research infrastructure, 416
U.S. Department of Justice existing ocean and coastal responsibilities, 77, 78, 112, 113
U.S. Department of Labor, 78, 112, 113, 124, 220, 389
Coastal Program, 153, 156
coral reef initiatives, 326
endangered species management, 306, 309–312, 366
fishery management, 275, 281, 302
habitat conservation and restoration, 101, 104, 153, 155, 171, 173, 181
invasive species management, 253, 255, 260
natural hazards management, 163
recommendations, 477
regional boundaries, 93, 94
reorganization proposals, 117
sediment management, 181
vessel pollution management, 243, 244
U.S. Forest Service, 116, 117, 159, 260
U.S. Geological Survey, 113, 124, 420
Coastal and Marine Geology program, 424
data collection, 429–431
exploration, 388
hazards–related role, 164, 209
mapping activities, 34, 389, 390
monitoring programs, 228, 229, 230, 231, 260, 260, 395, 424
recommendations, 477
reorganization proposals, 116, 117
research assets, 422, 424
sediment research, 181, 189
U.S. Merchant Marine, 49, 198
U.S. Navy, 112, 124, 199, 269, 314, 316, 385, 389, 390, 399
(see also Office of Naval Research)
data management, 435–436, 437–438
education support, 137, 140, 141
Fleet Numerical Meteorology and Oceanography Center, 402, 430, 435
Meteorological and Oceanography Command, 113, 402
Oceanographic Office, 435
oceanographic research, 49–50, 375, 376, 402, 403, 431
recommendations, 477
research vessels, 416
technology transfer, 415
USACE (see U.S. Army Corps of Engineers)
USAID (see U.S. Agency for International Development)
USCOP (see U.S. Commission on Ocean Policy)
USDA (see U.S. Department of Agriculture)
USFS (see U.S. Forest Service)
USFWS (see U.S. Fish and Wildlife Service)
USGS (see U.S. Geological Survey)
vessel activities, 236–251 (see also commercial fishing industry; marine transportation system; ships)
benefits and risks, 236–237
cruise industry, 194, 236
debris from, 264–265
flag state responsibilities, 236, 238–239
hazardous cargo, 200
incentive–based controls, 237, 240
international controls, 237, 238, 239, 240
and marine mammal mortality, 307, 317
maritime domain awareness, 249–250
merchant fleet characteristics, 194
oversight and enforcement, 236, 237–240, 291–295
passenger ferries, 194, 236
port state control, 240
recreational boating, 236
safety culture, 237–238, 292
short sea shipping, 198
third–party audits, 237, 239
traffic management, 249, 314
Vessel Monitoring System, 293–294, 434
vessel pollution
air emissions, 244–245
ballast water discharge and, 41, 253, 254, 255, 256, 257–258, 259, 260–261, 345
commercial ships, 244–245
cruise ships, 241–243, 244
debris, 264
debris from, 264–265
education and outreach programs, 243, 248
incentive–based controls, 243, 245
infrastructure–related, 236, 246
international cooperation, 239, 244, 245, 247, 452
invasive species introductions, 41, 253, 254, 255, 256, 257–258, 259, 260–261
no–discharge zones, 241, 243, 244
oil releases, 39, 54, 236, 237, 245–248
oversight and enforcement, 238, 239, 242–243
places of refuge, 247–248
prevention and response, 246–247
recreational vessels, 39, 241, 243, 245, 248
research needs, 248–249, 381
single–hull vessel phase–outs, 54, 245–246
Sulfur Oxide Emission Control Areas, 244
tradable credits, 245
waste pumpout facilities, 243–244
waste stream discharges, 41, 183, 187, 210, 241–248
Virgin Islands (U.S.), 34, 70, 155, 164, 321, 325
viruses (see also human health), 33, 39, 342, 346, 349–350
Volcker Commission, 109, 114
Walker, Sharon H., 139
Washington, 152, 257, 354, 366, 367
waste pumpout facilities, 243–244
wastewater
industrial, 209, 210, 221
innovative treatment technologies, 242
pumpout facilities, 243–244
re–use, 209
stormwater discharges, 215, 350
tertiary treatment, 209
tradable credits, 212, 245
treatment plants, 39, 163, 206, 207, 208–209, 210, 211–212, 219
vessel discharges, 41, 183, 187, 210, 241–248
water pollution, 204–225 (see also nonpoint source pollution; nutrient pollution; point source pollution)
aquaculture and, 331
atmospheric deposition, 39, 210, 211, 223–224, 349
control measures, 151, 156, 205, 211–212, 217–222, 224, 295
coordination of programs, 205, 214, 215, 217–218, 222, 295
costs of, 38–40, 204, 206, 209, 211, 217
education and training, 214, 220, 221
and endangered species, 314
extent of degradation, 38, 88, 151, 204–205
funding for programs, 207, 208, 213, 214, 215, 218, 219
human health effects, 206, 210, 213, 217, 340–341, 344, 346, 349–350
incentive–based approaches, 212, 214, 217, 218, 219–220, 243, 245
international efforts, 222–223, 224
management tools, 35, 101, 207, 213–214
modeling, 224
monitoring, 165, 214, 217, 221, 224
permits, 101, 207, 210, 211, 212, 221
permits, 101, 207, 210, 211, 212, 221
water pollution, 204–225 (see also nonpoint source pollution; nutrient pollution; point source pollution)
aquaculture and, 331
atmospheric deposition, 39, 210, 211, 223–224, 349
control measures, 151, 156, 205, 211–212, 217–222, 224, 295
coordination of programs, 205, 214, 215, 217–218, 222, 295
costs of, 38–40, 204, 206, 209, 211, 217
education and training, 214, 220, 221
and endangered species, 314
extent of degradation, 38, 88, 151, 204–205
funding for programs, 207, 208, 213, 214, 215, 218, 219
human health effects, 206, 210, 213, 217, 340–341, 344, 346, 349–350
incentive–based approaches, 212, 214, 217, 218, 219–220, 243, 245
international efforts, 222–223, 224
management tools, 35, 101, 207, 213–214
modeling, 224
monitoring, 165, 214, 217, 221, 224
permits, 101, 207, 210, 211, 212, 221
pharmaceuticals and antibiotics, 209
research needs, 381
thermal, 210
watershed approaches, 64, 151, 156, 206, 213, 214, 219, 222
water quality (see also debris; invasive species; national monitoring network; vessel pollution; water pollution)
coastal areas, 233, 204–205, 349–350
development and, 42, 151, 215, 216–217
education needs, 138
funding, 211–212
and human health, [23]
infrastructure improvement, 207, 211–212, 219–220
inventory of coastal waters, 204–205
monitoring, 177, 228, 233, 349–350
regional initiatives, 87, 88, 89, 156
standard setting, 213, 217
threats to, 38, 40, 183
water conservation and, 209
water supply, 38, 87, 88, 89
projects, 155, 163, 175, 182
watersheds (see also specific watersheds)
airsheds corresponding to, 223
coastal management approach, 150, 154, 157, 159–160, 169
collaborative approaches, 222
defined, 154
existing management initiatives, 86–87, 88, 157, 158, 159, 184, 214
funding, 157, 159
guiding principles for management, 63
impervious areas in, 151, 215
information needs and sources, 159–160
mapping, 34
monitoring, 230
upland, 172
USACE boundaries, 93, 94
water pollution control, 64, 151, 156, 172, 177, 206, 213, 214, 219, 222
wave or tidal energy technology, 366–367
Wayland, Robert, III, 220
weather (see also global climate change)
economic and environmental impacts, 42
observing and forecasting, 228, 293, 394, 404
West, Mary Beth, 445
wetlands, 151, 155
policy changes, 178
compensatory mitigation, 178
constructed, 220
defined, 178
inventory, 178
legislation, 178–179
losses, 40–41, 42, 165, 170, 174, 178, 180
National Wetlands Inventory Program, 178
permitting program, 65, 171, 178–179
sediments and, 180, 181, 183, 187
value and functions of, 178
White, Robert, 55
White Water to Blue Water initiative, 223, 455
wind power, 99, 100
Withee, Gregory, 425
Wiygul, Robert, 361
WMO (see World Meteorological Organization)
World Summit on Sustainable Development, 79, 222–223
World Trade Organization, 303, 451
workforce (see also jobs; employment

data management, 433–434
education of, 69, 123, 136–142
marine transportation system, 196
minority representation, 141, 142
needs assessment, 139
recruitment of students for, 137–138
professional development and continuing education, 138
WTO (see World Trade Organization)

zebra mussels, 41, 256, 259 (see also invasive species)
zoos, 125, 143, 151