

Carnegie Mellon University

Polar Opportunities

- Volatiles
- Resources
- Landing sites
- Habitation sites
- Magellan routes

Magellan Routes

No *point* of eternal sun

But *routes* of eternal sun

Myriad routes exist

Seasonal illumination on Mars Poles

Circumnavigation

Navigation of Magellan routes

- Follow daylight
- Enable persistent mobile operations
- Possible within a range of polar latitudes

Circumnavigate

- Features
- Poles
- Regions

Sun-Synchrony Advantages

High solar flux Abundant solar energy

Moderate gravity
Lower locomotion power needed

Small planetary diameter Traversable circumnavigation

> Persistent Power Without isotopes

MOON

MARS

Generous rotational period ≈ 29 days Long seasons

Little planetary axial tilt

Substantial tilt

Persistent polar exploration

Seasonal polar exploration

Achievable Sun-Synchronous Speeds

Latitude (degrees)	Lunar Circumference (km)	Rover Speed (m/s)
(Pole) 89	191	0.07
87	572	0.22
85	952	0.37
75	2826	1.11
60	5460	2.14
45	7722	3.03

0.3 m/s Earth speed 3.6 6:1 Lunar gravity advantage ac

3.6 m/s Lunar speed achievable

Robotic pathway to the poles

Science Autonomy Isotope Analogue

Kilometer per Command 1 m/s Navigation Science on the Fly

Fast Navigation of Unrehearsed Irregular Terrain Meters/Mips/Seconds

Skip the Landers – Go for Circumnavigation

- Mission simulation
- Mission design
- Mapping
- Route studies

2005

- Lander design
- Robot design
- Component prototyping

2006

- Lander brass boards
- Rover brass boards
- Payload brass boards
- Preliminary design review

2007

- Critical design review
- Rover build-up and testing
- Upper stage build-up
- Lander testing
- Surrogate testing

2008

- Flight article build-up
- Landing site selection
- Test & evaluation
- Launch integration
- Readiness review
- Flight
- Circumnavigation

Sun-Synchronous Future: Lunar

Explore sites, regions and routes

Characterize volatiles and cold traps

Explore and produce resources

Support power, and infrastructure

Sun-Synchronous Future: Mars and Beyond

Investigate ice caps and hydrogen (water?) permafrost

Develop rover technology to enable missions for many destinations and latitudes

Beyond Moon and Mars... Spiral the surface of Mercury - the ultimate circumnavigation venue

Poles are unexplored opportunities for science, resources, and habitation that are accessible by solar means

Lunar circumnavigation is the achievable, affordable first step

Prioritize polar exploration – Go for the Poles